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ABSTRACT

Layer-4 load balancing is fundamental to creating scale-out web
services. We designed and implemented Ananta, a scale-out layer-4
load balancer that runs on commodity hardware and meets the per-
formance, reliability and operational requirements of multi-tenant
cloud computing environments. Ananta combines existing tech-
niques in routing and distributed systems in a unique way and splits
the components of a load balancer into a consensus-based reliable
control plane and a decentralized scale-out data plane. A key com-
ponent of Ananta is an agent in every host that can take over the
packet modification function from the load balancer, thereby en-
abling the load balancer to naturally scale with the size of the data
center. Due to its distributed architecture, Ananta provides direct
server return (DSR) and network address translation (NAT) capa-
bilities across layer-2 boundaries. Multiple instances of Ananta
have been deployed in the Windows Azure public cloud with com-
bined bandwidth capacity exceeding 1Tbps. It is serving traffic
needs of a diverse set of tenants, including the blob, table and rela-
tional storage services. With its scale-out data plane we can easily
achieve more than 100Gbps throughput for a single public IP ad-
dress. In this paper, we describe the requirements of a cloud-scale
load balancer, the design of Ananta and lessons learnt from its im-
plementation and operation in the Windows Azure public cloud.

Categories and Subject Descriptors: C.2.4 [Computer-Communi-
cation Networks]: Distributed Systems

General Terms: Design, Performance, Reliability

Keywords: Software Defined Networking; Distributed Systems;
Server Load Balancing

1. INTRODUCTION

The rapid rise of cloud computing is driving demand for large
scale multi-tenant clouds. A multi-tenant cloud environment hosts
many different types of applications at a low cost while providing
high uptime SLA — 99.9% or higher [3, 4, 19, 10]. A multi-tenant
load balancer service is a fundamental building block of such multi-
tenant cloud environments. It is involved in almost all external and
half of intra-DC traffic (§2) and hence its uptime requirements need
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Figure 1: Ananta Data Plane Tiers

3rd Tier: Provides stateful
NAT implemented in the
virtual switch in every
server.

to be at least as high as applications’ SLA, but often significantly
higher to account for failures in other infrastructure services.

As a cloud provider, we have seen that cloud services put huge
pressure on the load balancer’s control plane and data plane. In-
bound flows can be intense — greater than 100 Gbps for a single
IP address — with every packet hitting the load balancer. The pay-
as-you-go model and large tenant deployments put extremely high
demands on real-time load balancer configuration — in a typical
environment of 1000 hosts we see six configuration operations per
minute on average, peaking at one operation per second. In our ex-
perience, the data plane and control plane demands drove our hard-
ware load balancer solution into an untenable corner of the design
space, with high cost, with SLA violations and with load balancing
device failures accounting for 37% of all live site incidents.

The design proposed in this paper, which we call Ananta (mean-
ing infinite in Sanskrit), resulted from examining the basic require-
ments, and taking an altogether different approach. Ananta is a
scalable software load balancer and NAT that is optimized for multi-
tenant clouds. It achieves scale, reliability and any service any-
where (§2) via a novel division of the data plane functionality into
three separate tiers. As shown in Figure 1, at the topmost tier
routers provide load distribution at the network layer (layer-3) based
on the Equal Cost Multi Path (ECMP) routing protocol [25]. At the
second tier, a scalable set of dedicated servers for load balancing,
called multiplexers (Mux), maintain connection flow state in mem-
ory and do layer-4 load distribution to application servers. A third
tier present in the virtual switch on every server provides stateful
NAT functionality. Using this design, no outbound trafffic has to
pass through the Mux, thereby significantly reducing packet pro-
cessing requirement. Another key element of this design is the
ability to offload multiplexer functionality down to the host. As
discussed in §2, this design enables greater than 80% of the load
balanced traffic to bypass the load balancer and go direct, thereby



eliminating throughput bottleneck and reducing latency. This divi-
sion of data plane scales naturally with the size of the network and
introduces minimal bottlenecks along the path.

Ananta’s approach is an example of Software Defined Network-
ing (SDN) as it uses the same architectural principle of manag-
ing a flexible data plane via a centralized control plane. The con-
troller maintains high availability via state replication based on the
Paxos [14] distributed consensus protocol. The controller also im-
plements real-time port allocation for outbound NAT, also known
as Source NAT (SNAT).

Ananta has been implemented as a service in the Windows Azure
cloud platform. We considered implementing Ananta functionality
in hardware. However, with this initial Ananta version in software,
we were able to rapidly explore various options in production and
determine what functions should be built into hardware, e.g., we
realized that keeping per-connection state is necessary to maintain
application uptime due to the dynamic nature of the cloud. Sim-
ilarly, weighted random load balancing policy, which reduces the
need for per-flow state synchronization among load balancer in-
stances, is sufficient for typical cloud workloads. We consider the
evaluation of these mechanisms, regardless of how they are imple-
mented, to be a key contribution of this work.

More than 100 instances of Ananta have been deployed in Win-
dows Azure since September 2011 with a combined capacity of
1Tbps. It has been serving 100,000 VIPs with varying workloads.
It has proven very effective against DoS attacks and minimized dis-
ruption due to abusive tenants. Compared to the previous solution,
Ananta costs one order of magnitude less; and provides a more
scalable, flexible, reliable and secure solution overall.

There has been significant interest in moving middlebox func-
tionality to software running on general-purpose hardware in both
research [23, 24, 5] and industry [8, 2, 27, 21, 31]. Most of these
architectures propose using either DNS or OpenFlow-enabled hard-
ware switches for scaling. To the best of our knowledge Ananta is
the first middlebox architecture that refactors the middlebox func-
tionality and moves parts of it to the host thereby enabling use of
network routing technologies — ECMP and BGP — for natural
scaling with the size of the network. The main contributions of this
paper to the research community are:

o Identifying the requirements and design space for a cloud-
scale solution for layer-4 load balancing.

e Providing design, implementation and evaluation of Ananta
that combines techniques in networking and distributed sys-
tems to refactor load balancer functionality in a novel way to
meet scale, performance and reliability requirements.

e Providing measurements and insights from running Ananta
in a large operational Cloud.

2. BACKGROUND

In this section, we first consider our data center network archi-
tecture and the nature of traffic that is serviced by the load balancer.
We then derive a set of requirements for the load balancer.

2.1 Data Center Network

Figure 2 shows the network of a typical data center in our cloud.
A medium sized data center hosts 40,000 servers, each with one
10Gbps NIC. This two-level Clos network architecture [11] typi-
cally has an over-subscription ratio of 1 : 4 at the spine layer. The
border routers provide a combined capacity of 400Gbps for con-
nectivity to other data centers and the Internet. A cloud controller
manages resources in the data center and hosts services. A service
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Figure 2: Flat Data Center Network of the Cloud. All network
devices run as Layer-3 devices causing all traffic external to a rack
to be routed. All inter-service traffic — intra-DC, inter-DC and
Internet — goes via the load balancer.
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Figure 3: Internet and inter-service traffic as a percentage of
total traffic in eight data centers.

is a collection of virtual or native machines that is managed as one
entity. We use the terms tenant and service interchangeably in this
paper. Each machine is assigned a private Direct IP (DIP) address.
Typically, a service is assigned one public Virtual IP (VIP) address
and all traffic crossing the service boundary, e.g., to the Internet or
to back-end services within the same data center such as storage,
uses the VIP address. A service exposes zero or more external end-
points that each receive inbound traffic on a specific protocol and
port on the VIP. Traffic directed to an external endpoint is load-
balanced to one or more machines of the service. All outbound
traffic originating from a service is Source NAT ed (SNAT) using
the same VIP address as well. Using the same VIP for all inter-
service traffic has two important benefits. First, it enables easy
upgrade and disaster recovery of services since the VIP can be dy-
namically mapped to another instance of the service. Second, it
makes ACL management easier since the ACLs can be expressed
in terms of VIPs and hence do not change as services scale up or
down or get redeployed.

2.2 Nature of VIP Traffic

Public cloud services [3, 4, 19] host a diverse set of workloads,
such as storage, web and data analysis. In addition, there are an in-
creasing number of third-party services available in the cloud. This
trend leads us to believe that the amount of inter-service traffic in
the cloud will continue to increase. We examined the total traffic
in eight data centers for a period of one week and computed the
ratio of Internet traffic and inter-service traffic to the total traffic.



The result is shown in Figure 3. On average, about 44% (with a
minimum of 18% and maximum of 59%) of the total traffic is VIP
traffic — it either needs load balancing or SNAT or both. Out of
this, about 14% traffic on average is to the Internet and the remain-
ing 30% is intra-DC. The ratio of intra-DC VIP traffic to Internet
VIP traffic is 2 : 1. Overall, we find that 70% of total VIP traffic
is inter-service within the same data center. We further found that
on average the ratio of inbound traffic to outbound traffic across
our data centers is 1 : 1. Majority of this traffic is read-write traf-
fic and cross-data center replication traffic to our storage services.
In summary, greater than 80% of VIP traffic is either outbound or
contained within the data center. As we show in this paper, Ananta
offloads all of this traffic to the host, thereby handling only 20% of
the total VIP traffic.

2.3 Requirements

Scale, Scale and Scale: The most stringent scale requirements
can be derived by assuming that all traffic in the network is either
load balanced or NAT’ed. For a 40, 000 server network, built us-
ing the architecture shown in Figure 2, 400Gbps of external traffic
and 100 Tbps of intra-DC traffic will need load balancing or NAT.
Based on the traffic ratios presented in §2.2, at 100% network uti-
lization, 44Tbps traffic will be VIP traffic. A truly scalable load
balancer architecture would support this requirement while main-
taining low cost. While cost is a subjective metric, in our cloud, less
than 1% of the total server cost would be considered low cost, so
any solution that would cost more than 400 general-purpose servers
is too expensive. At the current typical price of US$2500 per server,
the total cost should be less than US$1,000,000. Traditional hard-
ware load balancers do not meet this requirement as their typical
list price is US$80,000 for 20Gbps capacity without considering
bulk discounts, support costs or redundancy requirements.

There are two more dimensions to the scale requirement. First,
the bandwidth and number of connections served by a single VIP
are highly variable and may go up to 100Gbps and Imillion simul-
taneous connections. Second, the rate of change in VIP configura-
tion tends to be very large and bursty, on average 12000 configura-
tions per day for a 1000 node cluster, with bursts of 100s of changes
per minute as customer services get deployed, deleted or migrated.

Reliability: The load balancer is a critical component to meet
the uptime SLA of applications. Services rely on the load balancer
to monitor health of their instances and maintain availability during
planned and unplanned downtime. Over many years of operation
of our cloud we found that traditional 1 + 1 redundancy solutions
deployed as active/standby hardware load balancers are unable to
meet these high availability needs. The load balancer must support
N + 1 redundancy model with auto-recovery, and the load balanc-
ing service must degrade gracefully in the face of failures.

Any Service Anywhere: In our cloud, applications are gener-
ally spread over multiple layer-2 domains and sometimes even span
multiple data centers. The load balancer should be able to reach
DIPs located anywhere on the network. Traditional load balancers
provide some of their functionality, e.g., NAT, to DIPs only within
a layer-2 domain. This fragments the load balancer capacity and
makes them unusable in layer-3 based architectures.

Tenant Isolation: A multi-tenant load balancer is shared by
thousands of services. It is critical that DoS attacks on one ser-
vice do not affect the availability of other services. Similarly, an
abusive service should not be able to affect the availability of NAT
for other services by creating large number of outbound connec-
tions. In our cloud environment, we often see services with large
number of outbound NAT connections due to bugs and poor appli-
cation design. Furthermore, when the load balancer is under load,
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Figure 4: Components of a traditional load balancer. Typically,
the load balancer is deployed in an active-standby configuration.
The route management component ensures that the currently active
instance handles all the traffic.

it is important that the load balancer provides each service its fair
share of resources.

3. DESIGN
3.1 Design Principles

Scale-out In-network Processing: Figure 4 illustrates the main
components of a traditional load balancer. For each new flow, the
load balancer selects a destination address (or source for SNAT)
depending on the currently active flows and remembers that deci-
sion in a flow table. Subsequent packets for that flow use the state
created by the first packet. Traditional NAT and load balancing al-
gorithms (e.g., round-robin) require knowledge of all active flows,
hence all traffic for a VIP must pass through the same load balancer.
This forces the load balancer into a scale-up model. A scale-up or
vertical scaling model is one where handling more bandwidth for
a VIP requires a higher capacity box.

Network routers, on the other hand, follow a scale-out model. A
scale-out or horizontal scaling model is one where more bandwidth
can be handled by simply adding more devices of similar capac-
ity. Routers scale out because they do not maintain any per-flow
state that needs synchronization across routers and therefore one
can add or remove additional routers easily. Ananta design reduces
the in-network functionality needed for load balancing to be such
that multiple network elements can simultaneously process packets
for the same VIP without requiring per-flow state synchronization.

This design choice is enabled because we can make certain as-
sumptions about our environment. One of the key assumptions is
that load balancing policies that require global knowledge, e.g.,
weighted round robin (WRR), are not required for layer-4 load bal-
ancing. Instead, randomly distributing connections across servers
based on their weights is a reasonable substitute for WRR. In fact,
weighted random is the only load balancing policy used by our load
balancer in production. The weights are derived based on the size
of the VM or other capacity metrics.

Offload to End Systems: Hypervisors in end systems can al-
ready do highly scalable network processing, e.g., ACL enforce-
ment, rate limiting and metering. Ananta leverages this distributed
scalable platform and offloads significant data plane and control
plane functionality down to the hypervisor in end systems. The hy-
pervisor needs to handle state only for the VMs hosted on it. This
design choice is another key differentiator from existing load bal-
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Figure 5: The Ananta Architecture. Ananta consists of three
components — Ananta Manager, Ananta Mux and Host Agent.
Each component is independently scalable. Manager coordinates
state across Agents and Muxes. Mux is responsible for packet for-
warding for inbound packets. Agent implements NAT, which allows
all outbound traffic to bypass Mux. Agents are co-located with des-
tination servers.

ancers. While on one hand it enables natural scaling with the size of
the data center; on the other hand, it presents significant challenges
in managing distributed state across all hosts and maintaining avail-
ability during failures of centralized components.

3.2 Architecture

Ananta is a loosely coupled distributed system comprising three
main components (see Figure 5) — Ananta Manager (AM), Multi-
plexer (Mux) and Host Agent (HA). To better understand the details
of these components, we first discuss the load balancer configura-
tion and the overall packet flow. All packet flows are described
using TCP connections but the same logic is applied for UDP and
other protocols using the notion of pseudo connections.

3.2.1 VIP Configuration

The load balancer receives a VIP Configuration for every VIP
that it is doing load balancing and NAT for. A simplified VIP con-
figuration is shown in Figure 6. An Endpoint refers to a specific
transport protocol and port on the VIP that is load balanced to a set
of DIPs. Packets destined to an Endpoint are NAT ed to the DIP
address and port. SNAT specifies a list of IP addresses for which
outbound connections need to be Source NAT ed with the VIP and
an ephemeral port.

3.2.2 Inbound Connections

Figure 7 shows how packets destined for a VIP are load bal-
anced and delivered to the DIP of a VM. When a VIP is con-
figured on Ananta, each Mux advertises a route to its first-hop
router announcing itself as the next hop for that VIP'. This causes
the routers to distribute packets destined for the VIP across all
the Mux nodes based on Equal Cost MultiPath Routing Protocol
(ECMP) [25] (step 1). Upon receiving a packet, the Mux chooses
a DIP for the connection based on its load balancing algorithm, de-
scribed later in this section. It then encapsulates the received packet

'In reality, routes are advertised for VIP subnets due to small rout-
ing tables in commodity routers but the same logic applies.
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{  “VIP":“1.2.3.4",

“Endpoint”: [ {
“protocol”:"tcp”,
“port”: “80”,
“DIP”: [ {
“Host”: “1.1.1.0",
“IP”:“1.1.1.1",
“port”:”8080”, }11}1,
“SNAT”: [
“IP”: “1.1.1.1",
“IP”:“2.2.2.2" ]

Figure 6: JSON representation of a simple VIP Configuration.
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Figure 7: Load Balancing for Inbound Connections.

using IP-in-IP protocol [18] setting the selected DIP as the destina-
tion address in the outer header (step 2). It then sends it out using
regular IP routing at the Mux (step 3). The Mux and the DIP do not
need to be on the same VLAN, they just need to have IP (layer-3)
connectivity between them. The HA, located on the same physi-
cal machine as the target DIP, intercepts this encapsulated packet,
removes the outer header, and rewrites the destination address and
port (step 4) and remembers this NAT state. The HA then sends the
rewritten packet to the VM (step 5).

When the VM sends a reply packet for this connection, it is in-
tercepted by the HA (step 6). The HA does a reverse NAT based on
the state from step 4 and rewrites the source address and port (step
7). It then sends the packet out to the router towards the source of
this connection. The return packet does not go through the Mux at
all, thereby saving packet processing resources and network delay.
This technique of bypassing the load balancer on the return path is
known as Direct Server Return (DSR). Not all packets of a connec-
tion would end up at the same Mux, however all packets for a single
connection must be delivered to the same DIP. Muxes achieve this
via a combination of consistent hashing and state management as
explained later in this section.

3.2.3  Outbound Connections

A unique feature of Ananta is a distributed NAT for outbound
connections. Even for outbound connections that need source NAT
(SNAT), Ananta ensures that outgoing packets do not need to go
through Mux. Figure 8 shows how packets for an outbound SNAT

_____ Control Packets

Data Packets

Router

Figure 8: Handling Outbound SNAT Connections.



connection are handled. A VM sends a packet containing its DIP
as the source address, porty as the port and an external address as
the destination address (step 1). The HA intercepts this packet and
recognizes that this packet needs SNAT. It then holds the packet
in a queue and sends a message to AM requesting an externally
routable VIP and a port for this connection (step 2). AM allocates
a (VIP, ports) from a pool of available ports and configures each
Mux with this allocation (step 3). AM then sends this allocation to
the HA (step 4). The HA uses this allocation to rewrite the packet
so that its source address and port are now (VIP, ports). The HA
sends this rewritten packet directly to the router. The return pack-
ets from the external destination are handled similar to inbound
connections. The return packet is sent by the router to one of the
Mux nodes (step 6). The Mux already knows that DI P2 should
receive this packet (based on the mapping in step 3), so it encap-
sulates the packet with DI P2 as the destination and sends it out
(step 7). The HA intercepts the return packet, performs a reverse
translation so that the packet’s destination address and port are now
(DIP,ports). The HA sends this packet to the VM (step 8).

3.2.4 Fastpath

In order to scale to the 100s of terabit bandwidth requirement of
intra-DC traffic, Ananta offloads most of the intra-DC traffic to end
systems. This is done by a technique we call Fastpath. The key
idea is that the load balancer makes its decision about which DIP
a new connection should go to when the first packet of that con-
nection arrives. Once this decision is made for a connection it does
not change. Therefore, this information can be sent to the HAs on
the source and destination machines so that they can communicate
directly. This results in the packets being delivered directly to the
DIP, bypassing Mux in both directions, thereby enabling commu-
nication at full capacity supported by the underlying network. This
change is transparent to both the source and destination VMs.

To illustrate how Fastpath works, consider two services 1 and 2
that have been assigned virtual addresses V I P1 and V' I P2 respec-
tively. These two services communicate with each other via VI P1
and V' I P2 using the algorithms for load balancing and SNAT de-
scribed above. Figure 9 shows a simplified version of packet flow
for a connection initiated by a VM DI P1 (belonging to service 1)
to VIP2. The source host of DI P1 SNATSs the TCP SYN packet
using VIP1 and sends it to VIP2 (step 1). This packet is de-
livered to a Mux2, which forwards the packet towards destination
DIP2 (step 2). When DI P2 replies to this packet, it is SNAT ed
by the destination host using V' I P2 and sent to Mux1 (step 3). This
Mux uses its SNAT state and sends this packet to DI P1 (step 4).
Subsequent packets for this connection follow the same path.

For Fastpath, Ananta configures Mux with a set of source and
destination subnets that are capable of Fastpath. Once a connec-
tion has been fully established (e.g., TCP three-way handshake has
completed) between V' I P1 and V I P2, Mux?2 sends a redirect mes-
sage to V' I P1, informing it that the connection is mapped to D1 P2
(step 5). This redirect packet goes to a Mux handling V' I P1, which
looks up its table to know that this port is used by DI P1. Mux1
then sends a redirect message towards DI P1 and DI P2 (steps 6
and 7 respectively). HA on the source host intercepts this redirect
packet and remembers that this connection should be sent directly
to DI P2. Similarly HA on the destination host intercepts the redi-
rect message and remembers that this connection should be sent to
DIP1. Once this exchange is complete, any future packets for this
connection are exchanged directly between the source and destina-
tion hosts (step 8).

There is one security concern associated with Fastpath — a rogue
host could send a redirect message impersonating the Mux and hi-
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Figure 9: Fastpath Control and Data Packets. Routers are not
shown for brevity. Starting with step 8, packets flow directly
between source and destination hosts.

jack traffic. HA prevents this by validating that the source address
of redirect message belongs to one of the Ananta services in the
data center. This works in our environment since the hypervisor
prevents IP spoofing. If IP spoofing cannot be prevented, a more
dynamic security protocol such as IPSEC can be employed.

3.3 Mux

The Multiplexer (Mux) handles all incoming traffic. It is respon-
sible for receiving traffic for all the configured VIPs from the router
and forwarding it to appropriate DIPs. Each instance of Ananta has
one or more sets of Muxes called Mux Pool. All Muxes in a Mux
Pool have uniform machine capabilities and identical configuration,
i.e., they handle the same set of VIPs. Having a notion of Mux Pool
allows us to scale the number of Muxes (data plane) independent
of the number of AM replicas (control plane).

3.3.1 Route Management

Each Mux is a BGP speaker [20]. When a VIP is configured on
Ananta, each Mux starts advertising a route for that VIP to its first-
hop router with itself as the next hop. All Muxes in a Mux Pool are
equal number of Layer-3 network hops away from the entry point
of the data center. This ensures that the routers distribute traffic for
a given VIP equally across all Muxes via the Equal Cost MultiPath
(ECMP) routing protocol [25]. Running the BGP protocol on the
Mux provides automatic failure detection and recovery. If a Mux
fails or shuts down unexpectedly, the router detects this failure via
the BGP protocol and automatically stops sending traffic to that
Mux. Similarly, when the Mux comes up and it has received state
from AM, it can start announcing the routes and the router will start
forwarding traffic to it. Muxes use the TCP MDS5 [13] protocol for
authenticating their BGP sessions.

3.3.2  Packet Handling

The Mux maintains a mapping table, called VIP map, that deter-
mines how incoming packets are handled. Each entry in the map-
ping table maps a VIP endpoint, i.e., three-tuple (VIP, IP protocol,
port), to a list of DIPs. The mapping table is computed by AM and
sent to all the Muxes in a Mux Pool. When Mux receives a packet
from the router, it computes a hash using the five-tuple from packet
header fields — (source IP, destination IP, IP Protocol, source port,
destination port). It then uses this hash to lookup a DIP from the
list of DIPs in the associated map. Finally, it encapsulates [18] the



packet with an outer IP header — with itself as the source IP and
the DIP as the destination IP — and forwards this packet to the DIP.

The encapsulation at the Mux preserves the original IP header
and IP payload of the packet, which is essential for achieving Di-
rect Server Return (DSR). All Muxes in a Mux Pool use the exact
same hash function and seed value. Since all Muxes have the same
mapping table, it doesn’t matter which Mux a given new connec-
tion goes to, it will be directed to the same DIP.

3.3.3 Flow State Management

Mux supports two types of mapping entries — stateful and state-
less. Stateful entries are used for load balancing and stateless en-
tries are used for SNAT. For stateful mapping entries, once a Mux
has chosen a DIP for a connection, it remembers that decision in
a flow table. Every non-SYN TCP packet, and every packet for
connection-less protocols, is matched against this flow table first,
and if a match is found it is forwarded to the DIP from the flow
table. This ensures that once a connection is directed to a DIP, it
continues to go to that DIP despite changes in the list of DIPs in the
mapping entry. If there is no match in the flow table, the packet is
treated as a first packet of the connection.

Given that Muxes maintain per-flow state, it makes them vulner-
able to state exhaustion attacks such as the SYN-flood attack. To
counter this type of abuse, Mux classifies flows into trusted flows
and untrusted flows. A trusted flow is one for which the Mux has
seen more than one packet. These flows have a longer idle time-
out. Untrusted flows are the ones for which the Mux has seen only
one packet. These flows have a much shorter idle timeout. Trusted
and untrusted flows are maintained in two separate queues and they
have different memory quotas as well. Once a Mux has exhausted
its memory quota, it stops creating new flow states and falls back to
lookup in the mapping entry. This allows even an overloaded Mux
to maintain VIP availability with a slightly degraded service.

3.3.4 Handling Mux Pool Changes

When a Mux in a Mux Pool goes down, routers take it out of ro-
tation once BGP hold timer expires (we typically set hold timer to
30 seconds). When any change to the number of Muxes takes place,
ongoing connections will get redistributed among the currently live
Muxes based on the router’s ECMP implementation. When this
happens, connections that relied on the flow state on another Mux
may now get misdirected to a wrong DIP if there has been a change
in the mapping entry since the connection started. We have de-
signed a mechanism to deal with this by replicating flow state on
two Muxes using a DHT. The description of that design is outside
the scope of this paper as we have chosen to not implement this
mechanism yet in favor of reduced complexity and maintaining low
latency. In addition, we have found that clients easily deal with oc-
casional connectivity disruptions by retrying connections, which
happen for various other reasons as well.

3.4 Host Agent

A differentiating component of the Ananta architecture is an agent,
called Host Agent, which is present on the host partition of every
physical machine that is served by Ananta. The Host Agent is the
key to achieving DSR and SNAT across layer-2 domains. Further-
more, the Host Agent enables data plane scale by implementing
Fastpath and NAT; and control plane scale by implementing VM
health monitoring.

3.4.1 NAT for Inbound Connections

For load balanced connections, the Host Agent performs stateful
layer-4 NAT for all connections. As encapsulated packets arrive at
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the Host Agent, it decapsulates them and then performs a NAT as
per the NAT rules configured by Ananta Manager. The NAT rules
describe the rewrite rules of type: (VIP,protocol,,port,) =
(DIP, protocol,, portq). In this case, the Host Agent identifies
packets that are destined to (VI P, protocol.,, port,), rewrites the

destination address and port to (DI P, portq) and creates bi-directional

flow state that is used by subsequent packets of this connection.
When a return packet for this connection is received, it does re-
verse NAT based on flow state and sends the packet to the source
directly through the router, bypassing the Muxes.

3.4.2  Source NAT for Outbound Connections

For outbound connections, the Host Agent does the following.
It holds the first packet of a flow in a queue and sends a mes-
sage to Ananta Manager requesting a VIP and port for this con-
nection. Ananta Manager responds with a VIP and port and the
Host Agent NATs all pending connections to different destinations
using this VIP and port. Any new connections to different destina-
tions (remoteaddress, remoteport) can also reuse the same port
as the TCP five-tuple will still be unique. We call this technique
port reuse. AM may return multiple ports in response to a single
request. The HA uses these ports for any subsequent connections.
Any unused ports are returned back after a configurable idle time-
out. If the HA keeps getting new connections, these ports are never
returned back to AM, however, AM may force HA to release them
at any time. Based on our production workload, we have made a
number of optimizations to minimize the number of SNAT requests
a Host Agent needs to send, including preallocation of ports. These
and other optimizations are discussed later in this paper.

3.4.3 DIP Health Monitoring

Ananta is responsible for monitoring the health of DIPs that are
behind each VIP endpoint and take unhealthy DIPs out of rotation.
DIP health check rules are specified as part of VIP Configuration.
On first look, it would seem natural to run health monitoring on the
Mux nodes so that health monitoring traffic would take the exact
same network path as the actual data traffic. However, it would put
additional load on each Mux, could result in a different health state
on each mux and would incur additional monitoring load on the
DIPs as the number of Muxes can be large. Guided by our principle
of offloading to end systems, we chose to implement health mon-
itoring on the Host Agents. A Host Agent monitors the health of
local VMs and communicates any changes in health to AM, which
then relays these messages to all Muxes in the Mux Pool. Perhaps
surprising to some readers, running health monitoring on the host
makes it easy to protect monitoring endpoints against unwarranted
traffic — an agent in the guest VM learns the host VM’s IP address
via DHCP and configures a firewall rule to allow monitoring traffic
only from the host. Since a VM’s host address does not change
(we don’t do live VM migration), migration of a VIP from one in-
stance of Ananta to another or scaling the number of Muxes does
not require reconfiguration inside guest VMs. We believe that these
benefits justify this design choice. Furthermore, in a fully managed
cloud environment such as ours, out-of-band monitoring can detect
network partitions where HA considers a VM healthy but some
Muxes are unable to communicate with its DIPs, raise an alert and
even take corrective actions.

3.5 Ananta Manager

The Ananta Manager (AM) implements the control plane of Ananta.

It exposes an API to configure VIPs for load balancing and SNAT.
Based on the VIP Configuration, it configures the Host Agents and
Mux Pools and monitors for any changes in DIP health. Ananta



Manager is also responsible for keeping track of health of Muxes
and Hosts and taking appropriate actions. AM achieves high avail-
ability using the Paxos [14] distributed consensus protocol. Each
instance of Ananta runs five replicas that are placed to avoid cor-
related failures. Three replicas need to be available at any given
time to make forward progress. The AM uses Paxos to elect a
primary, which is responsible for performing all configuration and
state management tasks. We now look at some key AM functions
in detail.

3.5.1 SNAT Port Management

AM also does port allocation for SNAT (§3.2.3). When an HA
makes a new port request on behalf of a DIP, AM allocates a free
port for the VIP, replicates the allocation to other AM replicas, cre-
ates a stateless VIP map entry mapping the port to the requesting
DIP, configures the entry on the Mux Pool and then sends the allo-
cation to the HA. There are two main challenges in serving SNAT
requests — latency and availability. Since SNAT request is done
on the first packet of a connection, a delay in serving SNAT request
directly translates into latency seen by applications. Similarly, AM
downtime would result in failure of outbound connections for appli-
cations resulting in complete outage for some applications. Ananta
employs a number of techniques to reduce latency and increase
availability. First, it allocates a contiguous port range instead of
allocating one port at a time. By using fixed sized port ranges, we
optimize storage and memory requirements on both the AM and the
Mux. On the Mux driver, only the start port of a range is configured
and by making the port range size a power of 2, we can efficiently
map a range of ports to a specific DIP. Second, it preallocates a set
of port ranges to DIPs when it first receives a VIP configuration.
Third, it tries to do demand prediction and allocates multiple port
ranges in a single request. We evaluate the effectiveness of these
techniques in §5.

3.6 Tenant Isolation

Ananta is a multi-tenant load balancer and hence tenant isola-
tion is an essential requirement. The goal of tenant isolation is to
ensure that the Quality of Service (QoS) received by one tenant is
independent of other tenants in the system. However, Ananta is
an oversubscribed resource and we do not guarantee a minimum
bandwidth or latency QoS. As such, we interpret this requirement
as follows — the total CPU, memory and bandwidth resources are
divided among all tenants based on their weights. The weights are
directly proportional to the number of VMs allocated to the tenant.
We make another simplifying assumption that traffic for all VIPs
is distributed equally among all Muxes, therefore, each Mux can
independently implement tenant isolation. We find this assumption
to hold true in our environment. If this assumption were to not hold
true in the future, a global monitor could dynamically inform each
Mux to assign different weights to different tenants. Memory fair-
ness is implemented at Muxes and AM by keeping track of flow
state and enforcing limits.

3.6.1 SNAT Fairness

AM is a critical resource as it handles all SNAT port requests.
Excessive requests from one tenant should not slow down the SNAT
response time of another tenant. AM ensures this by processing re-
quests in a first-come-first-serve (FCES) order and it ensures that at
any given time there is at most one outstanding request from a DIP.
If a new request is received while another request from the same
DIP is pending, the new request is dropped. This simple mecha-
nism ensures that VIPs get SNAT allocation time in proportion to
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the number of VMs. Furthermore, there are limits on the number of
ports allocated and rate of allocations allowed for any given VM.

3.6.2 Packet Rate Fairness

Mux tries to ensure fairness among VIPs by allocating available
bandwidth among all active flows. If a flow attempts to steal more
than its fair share of bandwidth, Mux starts to drop its packets with
a probability directly proportional to the excess bandwidth it is us-
ing. While bandwidth fairness works for TCP flows that are send-
ing large-sized packets, it does not work for short packets spread
across flows, or flows that are non-TCP (e.g., UDP) or flows that
are malicious (e.g., a DDoS attack). A key characteristic of these
flows is that they do not back off in response to packet drops, in
fact we sometimes see the exact opposite reaction. Since dropping
packets at the Mux is not going to help and increases the chances
of overload, our primary approach has been to build a robust detec-
tion mechanism for overload due to packet rate. Each Mux keeps
track of its top-talkers — VIPs with the highest rate of packets. Mux
continuously monitors its own network interfaces and once it de-
tects that there is packet drop due to overload, it informs AM about
the overload and the top talkers. AM then identifies the topmost
top-talker as the victim of overload and withdraws that VIP from
all Muxes, thereby creating a black hole for the VIP. This ensures
that there is minimal collateral damage due to Mux overload. De-
pending on the policy for the VIP, we then route it through DoS
protection services (the details are outside the scope of this paper)
and enable it back on Ananta. We evaluate the effectiveness of
overload detection and route withdrawal in §5.

3.7 Design Alternatives
3.7.1 DNS-based Scale Out

Ananta uses BGP to achieve scale out among multiple active in-
stances of Mux. A traditional approach to scaling out middlebox
functionality is via DNS. Each instance of the middlebox device,
e.g., load balancer, is assigned a public IP address. The author-
itative DNS server is then used to distribute load among IP ad-
dresses of the instances using an algorithm like weighted round-
robin. When an instance goes down, the DNS server stops giving
out its IP address. This approach has several limitations. First, it
is harder to get good distribution of load because it is hard to pre-
dict how much load can be generated via a single DNS resolution
request. For example, load from large clients such as a megaproxy
is always sent to a single server. Second, it takes longer to take
unhealthy middlebox nodes out of rotation due to DNS caching
— many local DNS resolvers and clients violate DNS TTLs. And
third, it cannot be used for scale out of stateful middleboxes, such
as a NAT.

3.7.2  OpenFlow-based Load Balancing

An alternative to implementing Mux functionality in general-
purpose servers is to use OpenFlow-capable switches [16]. How-
ever, currently available OpenFlow devices have insufficient sup-
port for general-purpose layer-4 load balancing. For example, ex-
isting OpenFlow switches only support 2000 to 4000 flows, whereas
Mux needs to maintain state for millions of flows. Another key
primitive lacking in existing OpenFlow hardware is tenant isola-
tion. Finally, in a pure OpenFlow-based network, we will also need
to replace BGP with centralized routing in Ananta Manager, which
has certain drawbacks as discussed in §6. Other researchers have
also attempted to build load balancers using OpenFlow switches [28],
however, these solutions do not yet meet all the requirements, e.g.,
tenant isolation and scalable source NAT across layer-2 domains.
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Figure 10: Staged event-driven (SEDA) Ananta Manager.
Ananta manager shares the same threadpool across multiple stages
and supports priority event queues to maintain responsiveness of
VIP configuration operations under overload.

4. IMPLEMENTATION

We implemented all three Ananta components from Figure 5.
Ananta Manager and Mux are deployed as a tenant of our cloud
platform itself. The Host Agent is deployed on every host in our
cloud and is updated whenever we update the Ananta tenant. In a
typical deployment five replicas of AM manage a single Mux Pool.
Most Mux Pools have eight Muxes in them but the number can be
based on load.

Ananta Manager: AM performs various time-critical tasks —
configuration of VIPs, allocation of ports, coordination of DIP health
across Muxes. Therefore, its responsiveness is very critical. To
achieve a high degree of concurrency, we implemented AM using
a lock-free architecture that is somewhat similar to SEDA [29]. As
shown in Figure 10, AM is divided into the following stages — VIP
validation, VIP configuration, Route Management, SNAT Man-
agement, Host Agent Management and Mux Pool Management.
Ananta implementation makes two key enhancements to SEDA.
First, in Ananta, multiple stages share the same threadpool. This
allows us to limit the total number of threads used by the system.
Second, Ananta supports multiple priority queues for each stage.
This is useful in maintaining responsiveness during overload con-
ditions. For example, SNAT events take less priority over VIP con-
figuration events. This allows Ananta to finish VIP configuration
tasks even when it is under heavy load due to SNAT requests.

Ananta maintains high availability using Paxos [14]. We took an
existing implementation of Paxos and added discovery and health
monitoring using the SDK of our cloud platform. The SDK notifies
AM of addition, removal or migration of any replicas of the Paxos
cluster. This allows us to automatically reconfigure the cluster as
instances are added or removed dynamically. These features of the
platform SDK result in significantly reduced operational overhead
for Ananta. The platform also provides a guarantee that no more
than one instance of the AM role is brought down for OS or applica-
tion upgrade. This notion of instance-by-instance update maintains
availability during upgrades. Ananta uses Paxos to elect a primary
and only the primary does all the work.

Mux: Mux has two main components — a kernel-mode driver
and a user-mode BGP [20] speaker. The kernel-mode driver is im-
plemented using the Windows Filtering Platform (WFP) [30] driver
model. The driver intercepts packets at the IP layer, encapsulates
and then sends them using the built-in forwarding function of the
OS. Delegating routing to the OS stack has allowed Mux code
to remain simple, especially when adding support for IPv6, as it
does not need to deal with IP fragmentation and next-hop selec-
tion. The driver scales to multiple cores using receive side scaling
(RSS) [22]. Since the Mux driver only encapsulates the packet with
a new IP header and leaves the inner IP header and its payload in-
tact, it does not need to recalculate TCP checksum and hence it does
not need any sender-side NIC offloads. For IPv4, each Mux can
hold 20,000 load balanced endpoints and 1.6 million SNAT ports

214

M No Fastpath Fastpath

% CPU

Figure 11: CPU usage at Mux and Hosts with and without Fast-
path. Once Fastpath is turned on, the hosts take over the encap-
sulation function from Mux. This results in lower CPU at Mux and
CPU increase at every host doing encapsulation.

in its VIP Map with 1GB of memory. Each mux can maintain state
for millions of connections and is only limited by available mem-
ory on the server. CPU performance characteristics of the Mux are
discussed in §5.2.3.

Host Agent: The Host Agent also has a driver component that
runs as an extension of the Windows Hyper-V hypervisor’s virtual
switch. Being in the hypervisor enables us to support unmodified
VMs running different operating systems. For tenants running with
native (non-VM) configuration, we run a stripped-down version of
the virtual switch inside the host networking stack. This enables us
to reuse the same codebase for both native and VM scenarios.

Upgrading Ananta: Upgrading Ananta is a complex process
that takes place in three phases in order to maintain backwards-
compatibility between various components. First, we update in-
stances of the Ananta Manager, one at a time. During this phase,
AM also adapts its persistent state from previous schema version
to the new version. Schema rollback is currently not supported.
Second, we upgrade the Muxes; and third, the Host Agents.

S. MEASUREMENTS

In this section we first present a few micro-benchmarks to evalu-
ate effectiveness and limitations of some of our design choices and
implementation, and then some data from real world deployments.

5.1 Micro-benchmarks

5.1.1 Fastpath

To measure the effectiveness of Fastpath and its impact on host
CPU, we conducted the following experiment. We deployed a 20
VM tenant as the server and two 10 VM tenants as clients. All
the client VMs create up to ten connections to the server and up-
load 1MB of data per connection. We recorded the CPU usage at
the host nodes and one Mux. The results are shown in Figure 11.
We found the host CPU usage to be uniform across all hosts, so
we only show median CPU observed at a representative host. As
expected, as soon as Fastpath is turned on, no new data transfers
happen through the Mux. It only handles the first two packets of
any new connection. Once the Mux is out of the way, it also stops
being a bottleneck for data transfer and VMs can exchange data at
the speed allowed by the underlying network.

5.1.2 Tenant Isolation

Tenant isolation is a fundamental requirement of any multi-tenant
service. In the following we present two different experiments
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Figure 12: SYN-flood Attack Mitigation. Duration of impact
shows the time Ananta takes to detect and black-hole traffic to the
victim VIP on all Muxes.

that show Ananta’s ability to isolate inbound packet and outbound
SNAT abuse. For these experiments, we deployed five different
tenants, each with ten virtual machines, on Ananta.

SYN-flood Isolation: To measure how quickly Ananta can iso-
late a VIP under a SYN-flood attack, we ran the following experi-
ment (other packet rate based attacks, such as a UDP-flood, would
show similar result.) We load Ananta Muxes with a baseline load
and launch a SYN-flood attack using spoofed source IP addresses
on one of the VIPs. We then measure if there is any connection
loss observed by clients of the other tenants. Figure 12 shows the
maximum duration of impact observed over ten trials. As seen in
the chart, Mux can detect and isolate an abusive VIP within 120
seconds when it is running under no load, minimum time being 20
seconds. However, under moderate to heavy load it takes longer to
detect an attack as it gets harder to distinguish between legitimate
and attack traffic. We are working on improving our DoS detection
algorithms to overcome this limitation.

SNAT Performance Isolation: SNAT port allocation at Ananta
Manager could be a subject of abuse by some tenants. It is possi-
ble that a tenant makes a lot of SNAT connections causing impact
on other tenants. To measure the effectiveness of per-VM SNAT
isolation at AM, we conducted the following experiment. A set of
normal use tenants (N) make outbound connections at a steady rate
of 150 connections per minute. Whereas, a heavy SNAT user (H)
keeps increasing its SNAT requests. We measure the rate of SYN
retransmits and the SNAT response time of Ananta at the corre-
sponding HAs. Figure 13 shows the aggregate results over multiple
trials. As seen in the figure, the normal tenants’ connections keep
succeeding at a steady rate without any SYN loss; and its SNAT
port requests are satisfied within 55ms. The heavy user, on the
other hand, starts to see SYN retransmits because Ananta delays its
SNAT requests in favor of N. This shows that Ananta rewards good
behavior by providing faster SNAT response time.

5.1.3 SNAT Optimizations

A key design choice Ananta made is to allocate SNAT ports in
AM and then replicate the port allocations to all Muxes and other
AM replicas to enable scale out and high availability respectively.
Since port allocation takes place for the first packet of a connec-
tion, it can add significant latency to short connections. Ananta
overcomes these limitations by implementing three optimizations
as mentioned in §3.5.1. To measure the impact of these optimiza-
tions we conducted the following experiment. A client continu-
ously makes outbound TCP connections via SNAT to a remote ser-
vice and records the connection establishment time. The resulting
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Figure 13: Impact of heavy SNAT user H on a normal user
N. Heavy user H sees higher latency and higher SYN retransmits.
Normal user N’s performance remains unchanged.
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Figure 14: Connection establishment time experienced by out-
bound connections with and without port demand prediction.

data is partitioned into buckets of 25ms. The minimum connection
establishment time to the remote service (without SNAT) is 75ms.
Figure 14 shows connection establishment times for the following
two optimizations when there is no other load on the system.

Single Port Range: In response to a port request, AM allocates
eight contiguous ports instead of a single port and returns them to
the requesting HA. HA uses these ports for any pending and sub-
sequent connections. The HA keeps any unused ports until a pre-
configured timeout before returning them to AM. By doing this
optimization, only one in every eight outbound connections ever
results in a request to AM. This is evident from Figure 14 — 88%
connections succeed in the minimum possible time of 75ms. The
remaining 12% connections take longer due to the round-trip to
AM. Without the port range optimization every new connection re-
quest that cannot be satisfied using existing already allocated ports
will make a round-trip to AM.

Demand Prediction: When this optimization is turned on, AM
attempts to predict port demand of a DIP based on its recent his-
tory. If a DIP requests new ports within a specified interval from
its previous requests, AM allocates and returns multiple eight-port
port ranges instead of just one. As shown in Figure 14, with this op-
timization 96% of connections are satisfied locally and don’t need
to make a round-trip to AM. Furthermore, since AM handles fewer
requests, its response time is also better than allocating a single port
range for each request.
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Figure 16: Availability of test tenants in seven different data
centers over one month.

5.2 Real World Data

Several instances of Ananta have been deployed in a large pub-
lic cloud with a combined capacity exceeding 1Tbps. It has been
serving Internet and intra-data center traffic needs of very diverse
set of tenants, including blob, table and queue storage services for
over two years. Here we look at some data from real world.

5.2.1 SNAT Response Latency

Based on production data, Ananta serves 99% of the SNAT re-
quests locally by leveraging port reuse and SNAT preallocation as
described above. The remaining requests for tenants initiating a lot
of outbound requests to a few remote destinations require SNAT
port allocation to happen at the AM. Figure 15 shows the distribu-
tion of latency incurred for SNAT port allocation over a 24 hour
window in a production data center for the requests that go to AM.
10% of the responses are within 50ms, 70% within 200ms and 99%
within 2 seconds. This implies that in the worst case, one in every
10000 connections suffers a SYN latency of 2 seconds or higher;
however, very few scenarios require that number of connections to
the same destination.

5.2.2  Availability

As part of ongoing monitoring for our cloud platform, we have
multiple test tenants deployed in each data center. A monitoring
service connects to the VIP of every test tenant from multiple geo-
graphic locations and fetches a web page once every five minutes.

Figure 16 shows average availability of test tenants in seven dif-
ferent data centers. If the availability was less than 100% for any
five minute interval, it makes up a point in the above graph. All
the other intervals had 100% availability. The average availability
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Figure 17: Distribution of VIP configuration time over a 24-hr
period.

over this period across all test tenants was 99.95%, with a mini-
mum of 99.92% for one tenant and greater than 99.99% for two
tenants. Five of the low availability conditions between Jan 21 and
Jan 26 happened due to Mux overload. The Mux overload events
were primarily caused by SYN-flood attacks on some tenants that
are not protected by our DoS protection service. Two availability
drops were due to wide-area network issues while the rest were
false positives due to update of the test tenants.

5.2.3 Scale

For control plane, Ananta ensures that VIP configuration tasks
are not blocked behind other tasks. In a public cloud environ-
ment, VIP configuration tasks happen at a rapid rate as customers
add, delete or scale their services. Therefore, VIP configuration
time is an important metric. Since Ananta needs to configure HAs
and Muxes during each VIP configuration change, its programming
time could be delayed due to slow HAs or Muxes. Figure 17 shows
the distribution of time taken by seven instances Ananta to com-
plete VIP configuration tasks over a 24-hr period. The median con-
figuration time was 75ms, while the maximum was 200seconds.
These time vary based on the size of the tenant and the current
health of Muxes. These times fit within our API SLA for VIP con-
figuration tasks.

For data plane scale, Ananta relies on ECMP at the routers to
spread load across Muxes and RSS at the NIC to spread load across
multiple CPU cores. This design implies that the total upload through-
put achieved by a single flow is limited by what the Mux can achieve
using a single CPU core. On our current production hardware, the
Mux can achieve 800Mbps throughput and 220Kpps using a sin-
gle x64, 2.4GHz core. However, Muxes can achieve much higher
aggregate throughput across multiple flows. In our production de-
ployment, we have been able to achieve more than 100Gbps sus-
tained upload throughput for a single VIP. Figure 18 shows band-
width and CPU usage seen over a typical 24-hr period by 14 Muxes
deployed in one instance of Ananta. Here each Mux is running on
a 12-core 2.4Ghz intel® Xeon CPU. This instance of Ananta is
serving 12 VIPs for blob and table storage service. As seen in the
figure, ECMP is load balancing flows quite evenly across Muxes.
Each Mux is able to achieve 2.4Gbps throughput (for a total of
33.6Gbps) using about 25% of its total processing power.

6. OPERATIONAL EXPERIENCE

We have been offering layer-4 load balancing as part of our cloud
platform for the last three years. The inability of hardware load bal-
ancers to deal with DoS attacks, network elasticity needs, the grow-
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Figure 18: Bandwidth and CPU usage over a 24-hr period for 14 Muxes in one instance of Ananta.

ing bandwidth requirements and increasing price pressure made
us finally give up on hardware load balancers. Having our own
software-based load balancer has not been without any issues ei-
ther, however, we have been able to troubleshoot and fix those is-
sues much faster — in days instead of weeks or months. Here we
look at some of those issues.

Ananta Manager uses Paxos to elect a primary replica that does
all the work. During the initial stages of Ananta, we assumed
that there can never be two replicas claiming to be primary at the
same time. However, we encountered issues where this assumption
was not true. This happens due to old hard disks where the disk
controller would freeze for two minutes or longer on the primary
replica. During this freeze, the secondary replicas would conclude
that the primary is down and elect a new primary. But once the disk
controller on the old primary becomes responsive again, it contin-
ues to do work assuming it is still the primary for a short period
of time. This resulted in customers facing outages because all the
host agents would continue to send health reports to the old primary
while Muxes would only accept commands from the new primary.
We fixed this issue by having the primary perform a Paxos write
transaction whenever a Mux rejected its commands. This change
resulted in the old primary detecting its stale status as soon as it
would try to take any action.

‘We made an explicit design choice to use encapsulation to deliver
packets between the Muxes and hosts so that Muxes could load bal-
ance across layer-2 domains. This lowers the effective MTU avail-
able for transport layer payload. In order to avoid fragmentation
of packets at the Mux, which incurs high CPU overhead, Ananta
Host Agents adjust the MSS value exchanged as part of TCP con-
nection establishment to a lower value — 1440 from 1460 for IPv4.
This technique worked perfectly fine for almost two years and then
we suddenly started seeing connection errors because clients were
sending full-sized packets (1460 byte payload) with IP Don’t Frag-
ment (DF) bit set. After encapsulation at the Muxes the ethernet
frame size (1520) exceeded network MTU of 1500, resulting in
packet drops. This started to happen because of two external bugs.
A specific brand of home routers has a bug in that it always over-
writes the TCP MSS value to be 1460. Therefore, clients never see
the adjusted MSS. Normally this is fine because clients are sup-
posed to retry lost full-sized TCP segments by sending smaller-
sized segments. However, there was a bug in the TCP implementa-
tion of a popular mobile operating system in that TCP retries used
the same full-sized segments. Since we control our entire network,
we increased the MTU on our network to a higher value so that it
can accommodate encapsulated packets without fragmentation.

217

One design decision that has been a subject of many debates is
collocation of data plane and its control via BGP on Mux. An al-
ternative design would be to host BGP in a separate service and
control it from AM. Collocation works better for hard failures as
routers quickly take an unhealthy Mux out of rotation due to BGP
timeout. However, when incoming packet rate exceeds the process-
ing capacity of a Mux, the BGP traffic gets affected along with data
traffic. This causes the Mux to lose BGP connection to the router
and that traffic shifts to another Mux, which in turn gets overloaded
and goes down, and so on. This cascading failure can bring down
all the Muxes in a cluster. There are multiple ways to address this
limitation. One solution is to use two different network interfaces
— one for control plane and the other for data plane. Another solu-
tion is to rate limit data traffic at the router so that there is always
sufficient headroom for control traffic. The same mechanisms will
be required to separate control traffic from data traffic even if BGP
was hosted in a separate service. Overall, we found that collocation
leads to a simpler design in this case.

One of the issues with using hardware load balancers was that
we had to set an aggressive idle connection timeout ( 60 seconds),
otherwise legitimate connections were getting dropped under heavy
load, e.g., under connection state-based attacks. In the initial ver-
sions of Ananta, we kept the same aggressive idle timeout. How-
ever, with the increase in the number of low-power, battery-operated
mobile devices, there was a need to keep connections open for a
long time even where there is no active traffic. For example, a
phone notification service needs to push data immediately to such
devices without requiring them to send frequent keep-alive mes-
sages. We were able to increase idle timeout in Ananta because it
keeps the NAT state on the hosts and, under overload, the Muxes
can continue forwarding traffic using the VIP map (§3.3) without
creating new per-connection state. This makes Ananta significantly
less vulnerable to connection state-based attacks.

7. RELATED WORK

To the best of our knowledge, Ananta takes a new approach to
building layer-4 distributed load balancer and NAT that meets the
requirements of a multi-tenant cloud environment. In this section
we compare it to the state-of-the-art in industry and research. We
recognize that many existing solutions provide more than layer-4
load balancing and their design choices may have been influenced
by those additional features. Ananta’s modular approach can be
used to build application-layer functionality, such as layer-7 load
balancing, on top of the base layer-4 functionality.

Traditional hardware load balancers (e.g., [9, 1]) have a scale



up design instead of a scale out design. Furthermore, they provide
1 + 1 redundancy, which can leave the system with no redundancy
during times of repair and upgrade. Cloud environments need N +1
redundancy to meet the high uptime requirements. Another key
challenge with hardware appliances is their inability to scale up or
down with demand.

Many vendors now provide load balancing software that can run
in virtual machines on general purpose server hardware [17, 15].
Some of these solutions are based on the open source HA Proxy
software [12]. These virtual appliances have two limitations that
made them unsuitable for our cloud environment. First, they pro-
vide 1 4 1 redundancy, similar to hardware load balancers. Opera-
tors work around this limitation by migrating IP addresses from the
failed VM to a spare, which forces them to deploy multiple load
balancers in the same layer-2 domain leading to fragmentation of
capacity. Second, these appliances cannot scale a single VIP be-
yond the capacity of a single VM. With this design, any service
that needs to scale beyond the capacity of a single device uses mul-
tiple VIPs, which has several drawbacks as discussed in §3.7.

Embrane [8] promises the benefits of using software, including
scale out. Ananta differs from Embrane in that it offloads signfi-
cant functionality to the Host Agent and leverages existing routers
for scale out. Egi et al [7] show that high performance routers can
be built using commodity hardware. More recent efforts, such as
RouteBricks [6], have shown that a commodity server can easily
achieve 12.8Gbps for minimum-sized packets on commodity hard-
ware. By carefully partitioning the load balancing workload, we
have reduced the in-network processing to be similar to routing.
Therefore, these results for routing support our approach of imple-
menting data plane on commodity hardware.

ETTM [26] is similar to Ananta in many aspects, e.g., every
end-host participates in packet processing in both designs. How-
ever, a key difference is that Ananta implements in-network routing
in dedicated commodity servers, which enables it to overcome the
limited packet modification options in current hardware.

8. CONCLUSION

Ananta is a distributed layer-4 load balancer and NAT specifi-
cally designed to meet the scale, reliability, tenant isolation and op-
erational requirements of multi-tenant cloud environments. While
its design was heavily influenced by the Windows Azure public
cloud, many design decisions may apply to building other middle-
boxes that require similarly scalable packet processing at low cost,
e.g., intrusion detection systems or virtual private network (VPN).

We started by reexamining the requirements of a large-scale cloud
and concluded that we needed a solution that scales with the size
of the network while maintaining low cost and operational over-
head. These requirements led us to build a scale-out data plane by
leveraging existing routing primitives and offloading some heavy
packet processing tasks to the host. We coordinate state across the
distributed data plane using a highly available control plane. This
design enables direct server return and scalable NAT across layer-
2 domains. Furthermore, within the data center, the load balancer
gets out of the way of normal traffic flow, thereby enabling unfet-
tered network bandwidth between services. Ananta delivers tenant
isolation by throttling and isolating heavy users.

Over a 100 instances of Ananta have been deployed in the Win-
dows Azure public cloud, serving over 100,000 VIPs. Building our
own software solution gives us control over a very important van-
tage point in our network as it sees most incoming and outgoing
traffic and is key to maintaining high availability for our tenants.
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