
This paper is included in the Proceedings of the 
14th USENIX Symposium on Networked Systems  

Design and Implementation (NSDI ’17).
March 27–29, 2017 • Boston, MA, USA

ISBN 978-1-931971-37-9

Open access to the Proceedings of the 
14th USENIX Symposium on Networked 

 Systems Design and Implementation 
is sponsored by USENIX.

Clipper: A Low-Latency Online  
Prediction Serving System

Daniel Crankshaw, Xin Wang, and Guilio Zhou, University of California, Berkeley;  
Michael J. Franklin, University of California, Berkeley, and The University of Chicago;  

Joseph E. Gonzalez and Ion Stoica, University of California, Berkeley

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw



Clipper: A Low-Latency Online Prediction Serving System

Daniel Crankshaw*, Xin Wang*, Giulio Zhou*

Michael J. Franklin*†, Joseph E. Gonzalez*, Ion Stoica*

*UC Berkeley †The University of Chicago

Abstract

Machine learning is being deployed in a growing number

of applications which demand real-time, accurate, and

robust predictions under heavy query load. However, most

machine learning frameworks and systems only address

model training and not deployment.

In this paper, we introduce Clipper, a general-purpose

low-latency prediction serving system. Interposing be-

tween end-user applications and a wide range of machine

learning frameworks, Clipper introduces a modular archi-

tecture to simplify model deployment across frameworks

and applications. Furthermore, by introducing caching,

batching, and adaptive model selection techniques, Clip-

per reduces prediction latency and improves prediction

throughput, accuracy, and robustness without modifying

the underlying machine learning frameworks. We evalu-

ate Clipper on four common machine learning benchmark

datasets and demonstrate its ability to meet the latency,

accuracy, and throughput demands of online serving ap-

plications. Finally, we compare Clipper to the Tensor-

flow Serving system and demonstrate that we are able

to achieve comparable throughput and latency while en-

abling model composition and online learning to improve

accuracy and render more robust predictions.

1 Introduction

The past few years have seen an explosion of applications

driven by machine learning, including recommendation

systems [28, 60], voice assistants [18, 26, 55], and ad-

targeting [3,27]. These applications depend on two stages

of machine learning: training and inference. Training is

the process of building a model from data (e.g., movie

ratings). Inference is the process of using the model to

make a prediction given an input (e.g., predict a user’s

rating for a movie). While training is often computation-

ally expensive, requiring multiple passes over potentially

large datasets, inference is often assumed to be inexpen-

sive. Conversely, while it is acceptable for training to take

hours to days to complete, inference must run in real-time,

often on orders of magnitude more queries than during

training, and is typically part of user-facing applications.

For example, consider an online news organization

that wants to deploy a content recommendation service

to personalize the presentation of content. Ideally, the

service should be able to recommend articles at interac-
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Figure 1: The Clipper Architecture.

tive latencies (<100ms) [64], scale to large and growing

user populations, sustain the throughput demands of flash

crowds driven by breaking news, and provide accurate

predictions as the news cycle and reader interests evolve.

The challenges of developing these services differ be-

tween the training and inference stages. On the training

side, developers must choose from a bewildering array of

machine learning frameworks with diverse APIs, models,

algorithms, and hardware requirements. Furthermore, they

may often need to migrate between models and frame-

works as new, more accurate techniques are developed.

Once trained, models must be deployed to a prediction

serving system to provide low-latency predictions at scale.

Unlike model development, which is supported by so-

phisticated infrastructure, theory, and systems, model de-

ployment and prediction-serving have received relatively

little attention. Developers must cobble together the nec-

essary pieces from various systems components, and must

integrate and support inference across multiple, evolving

frameworks, all while coping with ever-increasing de-

mands for scalability and responsiveness. As a result, the

deployment, optimization, and maintenance of machine

learning services is difficult and error-prone.

To address these challenges, we propose Clipper, a

layered architecture system (Figure 1) that reduces the

complexity of implementing a prediction serving stack

and achieves three crucial properties of a prediction serv-

ing system: low latencies, high throughputs, and improved

accuracy. Clipper is divided into two layers: (1) the model

abstraction layer, and (2) the model selection layer. The

first layer exposes a common API that abstracts away the

heterogeneity of existing ML frameworks and models.
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Consequently, models can be modified or swapped trans-

parently to the application. The model selection layer sits

above the model abstraction layer and dynamically se-

lects and combines predictions across competing models

to provide more accurate and robust predictions.

To achieve low latency, high throughput predictions,

Clipper implements a range of optimizations. In the model

abstraction layer, Clipper caches predictions on a per-

model basis and implements adaptive batching to maxi-

mize throughput given a query latency target. In the model

selection layer, Clipper implements techniques to improve

prediction accuracy and latency. To improve accuracy,

Clipper exploits bandit and ensemble methods to robustly

select and combine predictions from multiple models and

estimate prediction uncertainty. In addition, Clipper is

able to adapt the model selection independently for each

user or session. To improve latency, the model selection

layer adopts a straggler mitigation technique to render

predictions without waiting for slow models. Because of

this layered design, neither the end-user applications nor

the underlying machine learning frameworks need to be

modified to take advantage of these optimizations.

We implemented Clipper in Rust and added support for

several of the most widely used machine learning frame-

works: Apache Spark MLLib [40], Scikit-Learn [51],

Caffe [31], TensorFlow [1], and HTK [63]. While these

frameworks span multiple application domains, program-

ming languages, and system requirements, each was

added using fewer than 25 lines of code.

We evaluate Clipper using four common machine learn-

ing benchmark datasets and demonstrate that Clipper

is able to render low and bounded latency predictions

(<20ms), scale to many deployed models even across

machines, quickly select and adapt the best combination

of models, and dynamically trade-off accuracy and la-

tency under heavy query load. We compare Clipper to the

Google TensorFlow Serving system [59], an industrial

grade prediction serving system tightly integrated with

the TensorFlow training framework. We demonstrate that

Clipper’s modular design and broad functionality impose

minimal performance cost, achieving comparable predic-

tion throughput and latency to TensorFlow Serving while

supporting substantially more functionality. In summary,

our key contributions are:

• A layered architecture that abstracts away the com-

plexity associated with serving predictions in exist-

ing machine learning frameworks (§3).

• A set of novel techniques to reduce and bound la-

tency while maximizing throughput that generalize

across machine learning frameworks (§4).

• A model selection layer that enables online model

selection and composition to provide robust and ac-

curate predictions for interactive applications (§5).
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Figure 2: Machine Learning Lifecycle.

2 Applications and Challenges

The machine learning life-cycle (Figure 2) can be divided

into two distinct phases: training and inference. Training

is the process of estimating a model from data. Training is

often computationally expensive requiring multiple passes

over large datasets and can take hours or even days to

complete [11, 29, 41]. Much of the innovation in systems

for machine learning has focused on model training with

the development of systems like Apache Spark [65], the

Parameter Server [38], PowerGraph [25], and Adam [14].

A wide range of machine learning frameworks have

been developed to address the challenges of training.

Many specialize in particular models such as Tensor-

Flow [1] for deep learning or Vowpal Wabbit [34] for

large linear models. Others are specialized for specific

application domains such as Caffe [31] for computer vi-

sion or HTK [63] for speech recognition. Typically, these

frameworks leverage advances in parallel and distributed

systems to scale the training process.

Inference is the process of evaluating a model to ren-

der predictions. In contrast to training, inference does

not involve complex iterative algorithms and is therefore

generally assumed to be easy. As a consequence, there is

little research studying the process of inference and most

machine learning frameworks provide only basic sup-

port for offline batch inference – often with the singular

goal of evaluating the model training algorithm. How-

ever, scalable, accurate, and reliable inference presents

fundamental system challenges that will likely dominate

the challenges of training as machine learning adoption

increases. In this paper we focus on the less studied but

increasingly important challenges of inference.

2.1 Application Workloads

To illustrate the challenges of inference and provide a

benchmark on which to evaluate Clipper, we describe two

canonical real-world applications of machine learning:

object recognition and speech recognition.

Object Recognition

Advances in deep learning have spurred rapid progress

in computer vision, especially in object recognition prob-
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lems – the task of identifying and labeling the objects

in a picture. Object recognition models form an impor-

tant building block in many computer vision applications

ranging from image search to self-driving cars.

As users interact with these applications, they provide

feedback about the accuracy of the predictions, either

by explicitly labeling images (e.g., tagging a user in an

image) or implicitly by indicating whether the provided

prediction was correct (e.g., clicking on a suggested image

in a search). Incorporating this feedback quickly can be

essential to eliminating failing models and providing a

more personalized experience for users.

Benchmark Applications: We use the well studied

MNIST [35], CIFAR-10 [32], and ImageNet [49] datasets

to evaluate increasingly difficult object recognition tasks

with correspondingly larger inputs. For each dataset, the

prediction task requires identifying the correct label for

an image based on its pixel values. MNIST is a common

baseline dataset used to demonstrate the potential of a

new algorithm or technique, and both deep learning and

more classical machine learning models perform well on

MNIST. On the other hand, for CIFAR-10 and Imagenet,

deep learning significantly outperforms other methods. By

using three different datasets, we evaluate Clipper’s per-

formance when serving models that have a wide variety

of computational requirements and accuracies.

Automatic Speech Recognition

Another successful application of machine learning is au-

tomatic speech recognition. A speech recognition model

is a function from a spoken audio signal to the correspond-

ing sequence of words. Speech recognition models can be

relatively large [10] and are often composed of many com-

plex sub-models trained using specialized speech recog-

nition frameworks (e.g., HTK [63]). Speech recognition

models are also often personalized to individual users to

accommodate variations in dialect and accent.

In most applications, inference is done online as the

user speaks. Providing real-time predictions is essential

to user experience [4] and enables new applications like

real-time translation [56]. However, inference in speech

models can be costly [10] requiring the evaluation of large

tensor products in convolutional neural networks.

As users interact with speech services, they provide

implicit signal about the quality of the speech predictions

which can be used to identify the dialect. Incorporating

this feedback quickly improves user experience by allow-

ing us to choose models specialized for a user’s dialect.

Benchmark Application: To evaluate the benefit of

personalization and online model-selection on a dataset

with real user data, we built a speech recognition ser-

vice with the widely used TIMIT speech corpus [24] and

the HTK [63] machine learning framework. This dataset

consists of voice recordings for 630 speakers in eight di-

alects of English. We randomly drew users from the test

corpus and simulated their interaction with our speech

recognition service using their pre-recorded speech data.

2.2 Challenges

Motivated by the above applications, we outline the key

challenges of prediction serving and describe how Clipper

addresses these challenges.

Complexity of Deploying Machine Learning

There is a large and growing number of machine learning

frameworks [1,7,13,16,31]. Each framework has strengths

and weaknesses and many are optimized for specific mod-

els or application domains (e.g., computer vision). Thus,

there is no dominant framework and often multiple frame-

works may be used for a single application (e.g., speech

recognition and computer vision in automatic captioning).

Furthermore, machine learning is an iterative process and

the best framework may change as an application evolves

over time (e.g., as a training dataset grows to require

distributed model training). Although common model ex-

change formats have been proposed [47, 48], they have

never achieved widespread adoption because of the rapid

and fundamental changes in state-of-the-art techniques

and additional source of errors from parallel implementa-

tions for training and serving. Finally, machine learning

frameworks are often developed by and for machine learn-

ing experts and are therefore heavily optimized towards

model development rather than deployment. As a conse-

quence of these design decisions, application developers

are forced to accept reduced accuracy by forgoing the use

of a model well-suited to the task or to incur the substan-

tially increased complexity of integrating and supporting

multiple machine learning frameworks.

Solution: Clipper introduces a model abstraction layer

and common prediction interface that isolates applications

from variability in machine learning frameworks (§4)

and simplifies the process of deploying a new model or

framework to a running application.

Prediction Latency and Throughput

The prediction latency is the time it takes to render a

prediction given a query. Because prediction serving is

often on the critical path, predictions must both be fast

and have bounded tail latencies to meet service level ob-

jectives [64]. While simple linear models are fast, more

sophisticated and often more accurate models such as

support vector machines, random forests, and deep neu-

ral networks are much more computationally intensive

and can have substantial latencies (50-100ms) [13] (see

Figure 11 for details). In many cases accuracy can be

improved by combining models but at the expense of

stragglers and increased tail latencies. Finally, most ma-

chine learning frameworks are optimized for offline batch

processing and not single-input prediction latency. More-
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over, the low and bounded latency demands of interactive

applications are often at odds with the design goals of

machine learning frameworks.

The computational cost of sophisticated models can

substantially impact prediction throughput. For example,

a relatively fast neural network which is able to render

100 predictions per second is still orders of magnitude

slower than a modern web-server. While batching pre-

diction requests can substantially improve throughput by

exploiting optimized BLAS libraries, SIMD instructions,

and GPU acceleration it can also adversely affect predic-

tion latency. Finally, under heavy query load it is often

preferable to marginally degrade accuracy rather than

substantially increase latency or lose availability [3, 23].

Solution: Clipper automatically and adaptively batches

prediction requests to maximize the use of batch-oriented

system optimizations in machine learning frameworks

while ensuring that prediction latency objectives are still

met (§4.3). In addition, Clipper employs straggler mitiga-

tion techniques to reduce and bound tail latency, enabling

model developers to experiment with complex models

without affecting serving latency (§5.2.2).

Model Selection

Model development is an iterative process producing

many models reflecting different feature representations,

modeling assumptions, and machine learning frameworks.

Typically developers must decide which of these models

to deploy based on offline evaluation using stale datasets

or engage in costly online A/B testing. When predictions

can influence future queries (e.g., content recommenda-

tion), offline evaluation techniques can be heavily biased

by previous modeling results. Alternatively, A/B testing

techniques [2] have been shown to be statistically ineffi-

cient — requiring data to grow exponentially in the num-

ber of candidate models. The resulting choice of model

is typically static and therefore susceptible to changes in

model performance due to factors such as feature corrup-

tion or concept drift [52]. In some cases the best model

may differ depending on the context (e.g., user or region)

in which the query originated. Finally, predictions from

more than one model can often be combined in ensem-

bles to boost prediction accuracy and provide more robust

predictions with confidence bounds.

Solution: Clipper leverages adaptive online model se-

lection and ensembling techniques to incorporate feed-

back and automatically select and combine predictions

from models that can span multiple machine learning

frameworks.

2.3 Experimental Setup

Because we include microbenchmarks of many of Clip-

per’s features as we introduce them, we present the experi-

mental setup now. For each of the three object recognition

Dataset Type Size Features Labels

MNIST [35] Image 70K 28x28 10

CIFAR [32] Image 60k 32x32x3 10

ImageNet [49] Image 1.26M 299x299x3 1000

Speech [24] Sound 6300 5 sec. 39

Table 1: Datasets. The collection of real-world benchmark

datasets used in the experiments.

benchmarks, the prediction task is predicting the correct

label given the raw pixels of an unlabeled image as input.

We used a variety of models on each of the object recogni-

tion benchmarks. For the speech recognition benchmark,

the prediction task is predicting the phonetic transcrip-

tion of the raw audio signal. For this benchmark, we

used the HTK Speech Recognition Toolkit [63] to learn

Hidden Markov Models whose outputs are sequences of

phonemes representing the transcription of the sound. De-

tails about each dataset are presented in Table 1.

Unless otherwise noted, all experiments were con-

ducted on a single server. All machines used in the exper-

iments contain 2 Intel Haswell-EP CPUs and 256 GB of

RAM running Ubuntu 14.04 on Linux 4.2.0. TensorFlow

models were executed on a Nvidia Tesla K20c GPUs with

5 GB of GPU memory and 2496 cores. In the scaling ex-

periment presented in Figure 6, the servers in the cluster

were connected with both a 10Gbps and 1Gbps network.

For each network, all the servers were located on the same

switch. Both network configurations were investigated.

3 System Architecture

Clipper is divided into model selection and model abstrac-

tion layers (see Figure 1). The model abstraction layer

is responsible for providing a common prediction inter-

face, ensuring resource isolation, and optimizing the query

workload for batch oriented machine learning frameworks.

The model selection layer is responsible for dispatching

queries to one or more models and combining their pre-

dictions based on feedback to improve accuracy, estimate

uncertainty, and provide robust predictions.

Before presenting the detailed Clipper system design

we first describe the path of a prediction request through

the system. Applications issue prediction requests to Clip-

per through application facing REST or RPC APIs. Pre-

diction requests are first processed by the model selection

layer. Based on properties of the prediction request and

recent feedback, the model selection layer dispatches the

prediction request to one or more of the models through

the model abstraction layer.

The model abstraction layer first checks the predic-

tion cache for the query before assigning the query to

an adaptive batching queue associated with the desired

model. The adaptive batching queue constructs batches of

queries that are tuned for the machine learning framework

and model. A cross language RPC is used to send the
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batch of queries to a model container hosting the model

in its native machine learning framework. To simplify

deployment, we host each model container in a separate

Docker container. After evaluating the model on the batch

of queries, the predictions are sent back to the model ab-

straction layer which populates the prediction cache and

returns the results to the model selection layer. The model

selection layer then combines one or more of the predic-

tions to render a final prediction and confidence estimate.

The prediction and confidence estimate are then returned

to the end-user application.

Any feedback the application collects about the quality

of the predictions is sent back to the model selection layer

through the same application-facing REST/RPC interface.

The model selection layer joins this feedback with the

corresponding predictions to improve how it selects and

combines future predictions.

We now present the model abstraction layer and the

model selection layer in greater detail.

4 Model Abstraction Layer

The Model Abstraction Layer (Figure 1) provides a

common interface across machine learning frameworks.

It is composed of a prediction cache, an adaptive query-

batching component, and a set of model containers con-

nected to Clipper via a lightweight RPC system. This

modular architecture enables caching and batching mech-

anisms to be shared across frameworks while also scaling

to many concurrent models and simplifying the addition

of new frameworks.

4.1 Overview

At the top of the model abstraction layer is the prediction

cache (§4.2). The prediction caches provides a partial

pre-materialization mechanism for frequent queries and

accelerates the adaptive model selection techniques de-

scribed in §5 by enabling efficient joins between recent

predictions and feedback.

The batching component (§4.3) sits below the predic-

tion cache and aggregates point queries into mini-batches

that are dynamically resized for each model container to

maximize throughput. Once a mini-batch is constructed

for a given model it is dispatched via the RPC system to

the container for evaluation.

Models deployed in Clipper are each encapsulated

within their own lightweight container (§4.4), commu-

nicating with Clipper through an RPC mechanism that

provides a uniform interface to Clipper and simplifies the

deployment of new models. The lightweight RPC system

minimizes the overhead of the container-based architec-

ture and simplifies cross-language integration.

In the following sections we describe each of these

components in greater detail and discuss some of the key

algorithmic innovations associated with each.

4.2 Caching

For many applications (e.g., content recommendation),

predictions concerning popular items are requested fre-

quently. By maintaining a prediction cache, Clipper can

serve these frequent queries without evaluating the model.

This substantially reduces latency and system load by

eliminating the additional cost of model evaluation.

In addition, caching in Clipper serves an important role

in model selection (§5). To select models intelligently

Clipper needs to join the original predictions with any

feedback it receives. Since feedback is likely to return

soon after predictions are rendered [39], even infrequent

or unique queries can benefit from caching.

For example, even with a small ensemble of four mod-

els (a random forest, logistic regression model, and linear

SVM trained in Scikit-Learn and a linear SVM trained in

Spark), prediction caching increased feedback processing

throughput in Clipper by 1.6x from roughly 6K to 11K

observations per second.

The prediction cache acts as a function cache for the

generic prediction function:

Predict(m: ModelId, x: X) -> y: Y

that takes a model id m along with the query x and com-

putes the corresponding model prediction y. The cache

exposes a simple non-blocking request and fetch API.

When a prediction is needed, the request function is in-

voked which notifies the cache to compute the prediction

if it is not already present and returns a boolean indicat-

ing whether the entry is in the cache. The fetch function

checks the cache and returns the query result if present.

Clipper employs an LRU eviction policy for the pre-

diction cache, using the standard CLOCK [17] cache

eviction algorithm. With an adequately sized cache, fre-

quent queries will not be evicted and the cache serves

as a partial pre-materialization mechanism for hot items.

However, because adaptive model selection occurs above

the cache in Clipper, changes in predictions due to model

selection do not invalidate cache entries.

4.3 Batching

The Clipper batching component transforms the concur-

rent stream of prediction queries received by Clipper into

batches that more closely match the workload assump-

tions made by machine learning frameworks while simul-

taneusly amortizing RPC and system overheads. Batching

improves throughput and utilization of often costly physi-

cal resources such as GPUs, but it does so at the expense

of increased latency by requiring all queries in the batch

to complete before returning a single prediction.

We exploit an explicitly stated latency service level ob-

jective (SLO) to increase latency in exchange for substan-

tially improved throughput. By allowing users to specify

a latency objective, Clipper is able to tune batched query
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Figure 3: Model Container Latency Profiles. We measured the batching latency profile of several models trained on the MNIST

benchmark dataset. The models were trained using Scikit-Learn (SKLearn) or Spark and were chosen to represent several of the

most widely used types of models. The No-Op Container measures the system overhead of the model containers and RPC system.
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evaluation to maximize throughput while still meeting the

latency requirements of interactive applications. For ex-

ample, requesting predictions in sufficiently large batches

can improve throughput by up to 26x (the Scikit-Learn

SVM in Figure 4) while meeting a 20ms latency SLO.

Batching increases throughput via two mechanisms.

First, batching amortizes the cost of RPC calls and in-

ternal framework overheads such as copying inputs to

GPU memory. Second, batching enables machine learning

frameworks to exploit existing data-parallel optimizations

by performing batch inference on many inputs simultane-

ously (e.g., by using the GPU or BLAS acceleration).

As the model selection layer dispatches queries for

model evaluation, they are placed on queues associated

with model containers. Each model container has its own

adaptive batching queue tuned to the latency profile of that

container and a corresponding thread to process predic-

tions. Predictions are processed in batches by removing

as many queries as possible from a queue up to the max-

imum batch size for that model container and sending

the queries as a single batch prediction RPC to the con-

tainer for evaluation. Clipper imposes a maximum batch

size to ensure that latency objectives are met and avoid

excessively delaying the first queries in the batch.

Frameworks that leverage GPU acceleration such as

TensorFlow often enforce static batch sizes to maintain

a consistent data layout across evaluations of the model.

These frameworks typically encode the batch size directly

into the model definition in order to fully exploit GPU

parallelism. When rendering fewer predictions than the

batch size, the input must be padded to reach the defined

size, reducing model throughput without any improve-

ment in prediction latency. Careful tuning of the batch

size should be done to maximize inference performance,

but this tuning must be done offline and is fixed by the

time a model is deployed.

However, most machine learning frameworks can ef-

ficiently process variable-sized batches at serving time.

Yet differences between the framework implementation

and choice of model and inference algorithm can lead to

orders of magnitude variation in model throughput and

latency. As a result, the latency profile – the expected time

to evaluate a batch of a given size – varies substantially

between model containers. For example, in Figure 3 we

see that the maximum batch size that can be executed

within a 20ms latency SLO differs by 241x between the

linear SVM which does a very simple vector-vector multi-

ply to perform inference and the kernel SVM which must

perform a sequence of expensive nearest-neighbor calcu-

lations to evaluate the kernel. As a consequence, the linear

SVM can achieve throughput of nearly 30,000 qps while

the kernel SVM is limited to 200 qps under this SLO.

Instead of requiring application developers to manually

tune the batch size for each new model, Clipper employs

a simple adaptive batching scheme to dynamically find

and adapt the maximum batch size.

4.3.1 Dynamic Batch Size

We define the optimal batch size as the batch size that max-

imizes throughput subject to the constraint that the batch

evaluation latency is under the target SLO. To automati-
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cally find the optimal maximum batch size for each model

container we employ an additive-increase-multiplicative-

decrease (AIMD) scheme. Under this scheme, we addi-

tively increase the batch size by a fixed amount until the

latency to process a batch exceeds the latency objective.

At this point, we perform a small multiplicative back-

off, reducing the batch size by 10%. Because the optimal

batch size does not fluctuate substantially, we use a much

smaller backoff constant than other Additive-Increase,

Multiplicative-Decrease schemes [15].

Early performance measurements (Figure 3) suggested

a stable linear relationship between batch size and latency

across several of the modeling frameworks. As a result,

we also explored the use of quantile regression to estimate

the 99th-percentile (P99) latency as a function of batch

size and set the maximum batch size accordingly. We

compared the two approaches on a range of commonly

used Spark and Scikit-Learn models in Figure 4. Both

strategies provide significant performance improvements

over the baseline strategy of no batching, achieving up to

a 26x throughput increase in the case of the Scikit-Learn

linear SVM, demonstrating the performance gains that

batching provides. While the two batching strategies per-

form nearly identically, the AIMD scheme is significantly

simpler and easier to tune. Furthermore, the ongoing adap-

tivity of the AIMD strategy makes it robust to changes

in throughput capacity of a model (e.g., during a garbage

collection pause in Spark). As a result, Clipper employs

the AIMD scheme as the default.

4.3.2 Delayed Batching

Under moderate or bursty loads, the batching queue may

contain less queries than the maximum batch size when

the next batch is ready to be dispatched. For some models,

briefly delaying the dispatch to allow more queries to

arrive can significantly improve throughput under bursty

loads. Similar to the motivation for Nagle’s algorithm [44],

the gain in efficiency is a result of the ratio of the fixed

cost for sending a batch to the variable cost of increasing

the size of a batch.

In Figure 5, we compare the gain in efficiency (mea-

sured as increased throughput) from delayed batching for

two models. Delayed batching provides no increase in

throughput for the Spark SVM because Spark is already

relatively efficient at processing small batch sizes and can

keep up with the moderate serving workload using batches

much smaller than the optimal batch size. In contrast, the

Scikit-Learn SVM has a high fixed cost for processing a

batch but employs BLAS libraries to do efficient parallel

inference on many inputs at once. As a consequence, a

2ms batch delay provides a 3.3x improvement in through-

put and allows the Scikit-Learn model container to keep

up with the throughput demand while remaining well be-

low the 10-20ms latency objectives needed for interactive
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Figure 5: Throughput Increase from Delayed Batching.

interface Predictor <X,Y> {

List <List <Y>> pred_batch(List <X> inputs );

}

Listing 1: Common Batch Prediction Interface for Model

Containers. The batch prediction function is called via the RPC

interface to compute the predictions for a batch of inputs. The

return type is a nested list because each input may produce

multiple outputs.

applications.

4.4 Model Containers

Model containers encapsulate the diversity of machine

learning frameworks and model implementations within

a uniform “narrow waist” remote prediction API. To add

a new type of model to Clipper, model builders only need

to implement the standard batch prediction interface in

Listing 1. Clipper includes language specific container

bindings for C++, Java, and Python. The model container

implementations for most of the models in this paper only

required a few lines of code.

To achieve process isolation, each model is managed in

a separate Docker container. By placing models in sepa-

rate containers, we ensure that variability in performance

and stability of relatively immature state-of-the-art ma-

chine learning frameworks does not interfere with the

overall availability of Clipper. Any state associated with

a model, such as the model parameters, is provided to the

container during initialization and the container itself is

stateless after initialization. As a result, resource intensive

machine learning frameworks can be replicated across

multiple machines or given access to specialized hard-

ware (e.g., GPUs) when needed to meet serving demand.

4.4.1 Container Replica Scaling

Clipper supports replicating model containers, both lo-

cally and across a cluster, to improve prediction through-

put and leverage additional hardware accelerators. Be-

cause different replicas can have different performance

characteristics, particularly when spread across a clus-

ter, Clipper performs adaptive batching independently for
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per-replica throughput.

each replica.

In Figure 6 we demonstrate the linear throughput scal-

ing that Clipper can achieve by replicating model contain-

ers across a cluster. With a four-node GPU cluster con-

nected through a 10Gbps Ethernet switch, Clipper gets a

3.95x throughput increase from 19,500 qps when using a

single model container running on a local GPU to 77,000

qps when using four replicas each running on a different

machine. Because the model containers in this experiment

are computationally intensive and run on the GPU, GPU

throughput is the bottleneck and Clipper’s RPC system

can easily saturate the GPUs. However, when the clus-

ter is connected through a 1Gbps switch, the aggregate

throughput of the GPUs is higher than 1Gbps and so the

network becomes saturated when replicating to a second

remote machine. As machine-learning applications begin

to consume increasingly bigger inputs, scaling from hand-

crafted features to large images, audio signals, or even

video, the network will continue to be a bottleneck to

scaling out prediction serving applications. This suggests

the need for research into efficient networking strategies

for remote predictions on large inputs.

5 Model Selection Layer

The Model Selection Layer uses feedback to dynam-

ically select one or more of the deployed models and

combine their outputs to provide more accurate and ro-

bust predictions. By allowing many candidate models to

be deployed simultaneously and relying on feedback to

adaptively determine the best model or combination of

models, the model selection layer simplifies the deploy-

ment process for new models. By continuously learning

from feedback throughout the lifetime of an application,

the model selection layer automatically compensates for

failing models without human intervention. By combin-

ing predictions from multiple models, the model selection

layer boosts application accuracy and estimates prediction

confidence.

There are a wide range of techniques for model selec-

interface SelectionPolicy <S, X, Y> {

S init ();

List <ModelId > select(S s, X x);

pair <Y, double > combine(S s, X x,

Map <ModelId , Y> pred);

S observe(S s, X x, Y feedback ,

Map <ModelId , Y> pred);

}

Listing 2: Model Selection Policy Interface.

tion and composition that span a tradeoff space of com-

putational overhead and application accuracy. However,

most of these techniques can be expressed with a simple

select, combine, and observe API. We capture this API

in the model selection policy interface (Listing 2) which

governs the behavior of the model selection layer and

allows users to introduce new model selection techniques

themselves.

The model selection policy (Listing 2) defines four es-

sential functions as well as a few basic types. In addition

to the query and prediction types X and Y, the state type S

encodes the learned state of the selection algorithm. The

init function returns an initial instance of the selection pol-

icy state. We isolate the selection policy state and require

an initialization function to enable Clipper to efficiently

instantiate many instances of the selection policy for fine-

grained contextualized model selection (§5.3). The select

and combine functions are responsible for choosing which

models to query and how to combine the results. In addi-

tion, the combine function can compute other information

about the predictions. For example, in §5.2.1 we leverage

the combine function to provide a prediction confidence

score. Finally, the observe function is used to update the

state S based on feedback from front-end applications.

In the current implementation of Clipper we provide

two generic model selection policies based on robust ban-

dit algorithms developed by Auer et al. [6]. These algo-

rithms span a trade-off between computation overhead

and accuracy. The single model selection policy (§5.1)

leverages the Exp3 algorithm to optimally select the best

model based on noisy feedback with minimal computa-

tional overhead. The ensemble model selection policy

(§5.2) is based on the Exp4 algorithm which adaptively

combines the predictions to improve prediction accuracy

and estimate confidence at the expense of increased com-

putational cost from evaluating all models for each query.

By implementing model selection policies that provide

different cost-accuracy tradeoffs, as well as an API for

users to implement their own policies, Clipper provides

a mechanism to easily navigate the tradeoffs between ac-

curacy and computational cost on a per-application basis.

Furthermore, users can modify this choice over time as

application workloads evolve and resources become more

or less constrained.
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Framework Model Size (Layers)

Caffe VGG [54] 13 Conv. and 3 FC

Caffe GoogLeNet [57] 96 Conv. and 5 FC

Caffe ResNet [29] 151 Conv. and 1 FC

Caffe CaffeNet [22] 5 Conv. and 3 FC

TensorFlow Inception [58] 6 Conv, 1 FC, & 3 Incept.

Table 2: Deep Learning Models. The set of deep learning mod-

els used to evaluate the ImageNet ensemble selection policy.

5.1 Single Model Selection Policy

We can cast the model-selection process as a multi-armed

bandit problem [43]. The multi-armed bandit1 problem

refers the task of optimally choosing between k possi-

ble actions (e.g., models) each with a stochastic reward

(e.g., feedback). Because only the reward for the selected

action can be observed, solutions to the multi-armed ban-

dit problem must address the trade-off between exploring

possible actions and exploiting the estimated best action.

There are numerous algorithms for the multi-armed

bandits problem with a wide range of trade-offs. In this

work we first explore the use of the simple randomized

Exp3 [6] algorithm which makes few assumptions about

the problem setting and has strong optimality guaran-

tees. The Exp3 algorithm associates a weight si = 1

for each of the k deployed models and then randomly

selects model i with probability pi = si/∑
k
j=1 s j. For

each prediction ŷ, Clipper observes a loss L(y, ŷ) ∈ [0,1]
with respect to the true value y (e.g., the fraction of

words that were transcribed correctly during speech recog-

nition). The Exp3 algorithm then updates the weight,

si← si exp(−ηL(y, ŷ)/pi), corresponding to the selected

model i. The constant η determines how quickly Clipper

responds to recent feedback.

The Exp3 algorithm provides several benefits over man-

ual experimentation and A/B testing, two common ways

of performing model-selection in practice. Exp3 is both

simple and robust, scaling well to model selection over

a large number of models. It is a lightweight algorithm

that requires only a single model evaluation for each pre-

diction and thus performs well under heavy loads with

negligible computational overhead. And Exp3 has strong

theoretical guarantees that ensure it will quickly converge

to an optimal solution.

5.2 Ensemble Model Selection Policies

It is a well-known result in machine learning [8,12,30,43]

that prediction accuracy can be improved by combining

predictions from multiple models. For example, bootstrap

aggregation [9] (a.k.a., bagging) is used widely to reduce

variance and thereby improve generalization performance.

More recently, ensembles were used to win the Netflix

challenge [53], and a carefully crafted ensemble of deep

neural networks was used to achieve state-of-the-art ac-

1The term bandits refers to pull-lever slot machines found in casinos.
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Figure 7: Ensemble Prediction Accuracy. The linear ensem-

bles are composed of five computer vision models (Table 2)

applied to the CIFAR and ImageNet benchmarks. The 4-agree

and 5-agree groups correspond to ensemble predictions in which

the queries have been separated by the ensemble prediction con-

fidence (four or five models agree) and the width of each bar

defines the proportion of examples in that category.

curacy on the speech recognition corpus Google uses to

power their acoustic models [30]. The ensemble model se-

lection policies adaptively combine the predictions from

all available models to improve accuracy, rather than se-

lect individual models.

In Clipper we use linear ensemble methods which com-

pute a weighted average of the base model predictions.

In Figure 7, we show the prediction error rate of linear

ensembles on two benchmarks. In both cases linear ensem-

bles are able to marginally reduce the overall error rate.

In the ImageNet benchmark, the ensemble formulation

achieves a 5.2% relative reduction in the error rate simply

by combining off-the-shelf models (Table 2). While this

may seem small, on the difficult computer vision tasks for

which these models are used, a lot of time and energy is

spent trying to achieve even small reductions in error, and

marginal improvements are considered significant [49].

There are many methods for estimating the ensemble

weights including linear regression, boosting [43], and

bandit formulations. We adopt the bandits approach and

use the Exp4 algorithm [6] to learn the weights. Unlike

Exp3, Exp4 constructs a weighted combination of all base

model predictions and updates weights based on the indi-

vidual model prediction error. Exp4 confers many of the

same theoretical guarantees as Exp3. But while the accu-

racy when using Exp3 is bounded by the accuracy of the

single best model, Exp4 can further improve prediction

accuracy as the number of models increases. The extent to

which accuracy increases depends on the relative accura-

cies of the set of base models, as well as the independence

of their predictions. This increased accuracy comes at the

cost of increased computational resources consumed by

each prediction in order to evaluate all the base models.
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Figure 8: Behavior of Exp3 and Exp4 Under Model Failure.

After 5K queries the performance of the lowest-error model is

severely degraded, and after 10k queries performance recovers.

Exp3 and Exp4 quickly compensate for the failure and achieve

lower error than any static model selection.

The accuracy of a deployed model can silently degrade

over time. Clipper’s online selection policies can automat-

ically detect these failures using feedback and compensate

by switching to another model (Exp3) or down-weighting

the failing model (Exp4). To evaluate how quickly and

effectively the model selection policies react in the pres-

ence of changes in model accuracy, we simulated a severe

model degradation while receiving real-time feedback.

Using the CIFAR dataset we trained five different Caffe

models with varying levels of accuracy to perform object

recognition. During a simulated run of 20K sequential

queries with immediate feedback, we degraded the accu-

racy of the best-performing model after 5K queries and

then allowed the model to recover after 10K queries.

In Figure 8 we plot the cumulative average error rate

for each of the five base models as well as the single

(Exp3) and ensemble (Exp4) model selection policies. In

the first 5K queries both model selection policies quickly

converge to an error rate near the best performing model

(model 5). When we degrade the predictions from model

5 its cumulative error rate spikes. The model selection

policies are able to quickly mitigate the consequences of

the increase in errors by learning to divert queries to the

other models. When model 5 recovers after 10K queries

the model selection policies also begin to improve by

gradually sending queries back to model 5.

5.2.1 Robust Predictions

The advantages of online model selection go beyond de-

tecting and mitigating model failures to leveraging new

opportunities to improve application accuracy and perfor-

mance. For many real-time decision-making applications,

knowing the confidence of the prediction can significantly

improve the end-user experience of the application.

For example, in many settings, applications have a

sensible default action they can take when a prediction is

unavailable. This is critical for building highly available

applications that can survive partial system failures or

when building applications where a mistake can be costly.

Rather than blindly using all predictions regardless of the

confidence in the result, applications can choose to only

accept predictions above a confidence threshold by using

the robust model selection policy. When the confidence

in a prediction for a query falls below the confidence

threshold, the application can instead use the sensible

default decision for the query and avoid a costly mistake.

By evaluating predictions from multiple competing

models concurrently we can obtain an estimator of the

confidence in our predictions. In settings where models

have high variance or are trained on random samples from

the training data (e.g., bagging), agreement in model pre-

dictions is an indicator of prediction confidence. When

evaluating the combine function in the ensemble selection

policy we compute a measure of confidence by calculating

the number of models that agree with the final prediction.

End user applications can use this confidence score to

decide whether to rely on the prediction. If we only con-

sider predictions where multiple models agree, we can

substantially reduce the error rate (see Figure 7) while

declining to predict a small fraction of queries.

5.2.2 Straggler Mitigation

While the ensemble model selection policy can improve

prediction accuracy and help quantify uncertainty, it in-

troduces additional system costs. As we increase the size

of the ensemble the computational cost of rendering a

prediction increases. Fortunately, we can compensate for

the increased prediction cost by scaling-out the model ab-

straction layer. Unfortunately, as we add model containers

we increase the chance of stragglers adversely affecting

tail latencies.

To evaluate the cost of stragglers, we deployed ensem-

bles of increasing size and measured the resulting predic-

tion latency (Figure 9a) under moderate query load. Even

with small ensembles we observe the effect of stragglers

on the P99 tail latency, which rise sharply to well beyond

the 20ms latency objective. As the size of the ensemble

increases and the system becomes more heavily loaded,

stragglers begin to affect the mean latency.

To address stragglers, Clipper introduces a simple best-

effort straggler-mitigation strategy motivated by the de-

sign choice that rendering a late prediction is worse than

rendering an inaccurate prediction. For each query the

model selection layer maintains a latency deadline de-

termined by the latency SLO. At the latency deadline

the combine function of the model selection policy is in-

voked with the subset of the predictions that are available.

The model selection policy must render a final predic-

tion using only the available base model predictions and

communicate the potential loss in accuracy in its confi-

dence score. Currently, we substitute missing predictions

with their average value and define the confidence as the

622    14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



2 4 6 8 10 12 14 16
Size of ensemble 

0
50

100
150
200
250
300

La
te

nc
y 

(m
s) Straggler Mitigation P99

Straggler Mitigation Mean
Stragglers P99
Stragglers Mean

(a) Latency

2 4 6 8 10 12 14 16
Size of ensemble

0

20

40

60

80

100

%
 E

ns
em

bl
e 

M
is

si
ng

P99
Mean

(b) Missing Predictions

0 2 4 6 8 10 12 14 16
Size of ensemble

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

(c) Accuracy
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Figure 10: Personalized Model Selection. Accuracy of the

ensemble selection policy on the speech recognition benchmark.

fraction of models that agree on the prediction.

The best-effort straggler-mitigation strategy prevents

model container tail latencies from propagating to front-

end applications by maintaining the latency objective as

additional models are deployed. However, the straggler

mitigation strategy reduces the size of the ensemble. In

Figure 9b we plot the reduction in ensemble size and find

that while tail latencies increase significantly with even

small ensembles, most of the predictions arrive by the

latency deadline. In Figure 9c we plot the effect of ensem-

ble size on accuracy and observe that this ensemble can

tolerate the loss of small numbers of component models

with only a slight reduction in accuracy.

5.3 Contextualization

In many prediction tasks the accuracy of a particular

model may depend heavily on context. For example, in

speech recognition a model trained for one dialect may

perform well for some users and poorly for others. How-

ever, selecting the right model or composition of models

can be difficult and is best accomplished online in the

model selection layer through feedback. To support con-

text specific model selection, the model selection layer

can be configured to instantiate a unique model selec-

tion state for each user, context, or session. The context

specific session state is managed in an external database

system. In our current implementation we use Redis.

To demonstrate the potential gains from personalized

model selection we hosted a collection of TIMIT [24]

voice recognition models each trained for a different di-

alect. We then evaluated (Figure 10) the prediction error

rates using a single model trained across all dialects, the

users’ reported dialect model, and the Clipper ensemble

selection policy. We first observe that the dialect-specific

models out-perform the dialect-oblivious model, demon-

strating the value of context to improve prediction accu-

racy. We also observe that the ensemble selection policy

is able to quickly identify a combination of models that

out-performs even the users’ designated dialect model by

using feedback from the serving workload.

6 System Comparison

In addition to the microbenchmarks presented in §4 and

§5, we compared Clipper’s performance to TensorFlow

Serving and evaluate latency and throughput on three

object recognition benchmarks.

TensorFlow Serving [59] is a recently released predic-

tion serving system created by Google to accompany their

TensorFlow machine learning training framework. Simi-

lar to Clipper, TensorFlow Serving is designed for serving

machine learning models in production environments and

provides a high-performance prediction API to simplify

deploying new algorithms and experimenting with new

models without modifying frontend applications. Tensor-

Flow Serving supports general TensorFlow models with

GPU acceleration through direct integration with the Ten-

sorFlow machine learning framework and tightly couples

the model and serving components in the same process.

TensorFlow Serving also employs batching to acceler-

ate prediction serving. Batch sizes in TensorFlow Serving

are static and rely on a purely timeout based mechanism to

avoid starvation. TensorFlow Serving does not explicitly

incorporate prediction latency objectives which must be

achieved by manually tuning the batch size. Furthermore,

TensorFlow Serving was designed to serve one model at

a time and therefore does not directly support feedback,

dynamic model selection, or composition.

To better understand the performance overheads intro-
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duced by Clipper’s layered architecture and decoupled

model containers, we compared the serving performance

of Clipper and TensorFlow Serving on three TensorFlow

object recognition deep networks of varying computa-

tional cost: a 4-layer convolutional neural network trained

on the MNIST dataset [42], the 8-layer AlexNet [33]

architecture trained on CIFAR-10 [32], and Google’s 22-

layer Inception-v3 network [58] trained on ImageNet.

We implemented two Clipper model containers for each

TensorFlow model, one that calls TensorFlow from the

more standard and widely used Python API and one that

calls TensorFlow from the more efficient C++ API. All

models were run on a GPU using hand-tuned batch sizes

(MNIST: 512, CIFAR: 128, ImageNet: 16) to maximize

the throughput of TensorFlow Serving. The serving work-

load measured the maximum sustained throughput and

corresponding prediction latency for each system.

Despite Clipper’s modular design, we are able to

achieve comparable throughput to TensorFlow Serving

across all three models (Figure 11). The Python model

containers suffer a 15-18% performance hit compared

to the throughput of TensorFlow Serving, but the C++

model containers achieve nearly identical performance.

This suggests that the high-level Python API for Ten-

sorFlow imposes a significant performance cost in the

context of low-latency prediction-serving but that Clipper

does not impose any additional performance degradation.

For these serving workloads, the throughput bottleneck

is inference on the GPU. Both systems utilize additional

queuing in order to saturate the GPU and therefore max-

imize throughput. For the Clipper model containers, we

decomposed the prediction latency into component func-

tions to demonstrate the overhead of the modular system

design. The predict bar is the time spent performing infer-

ence within TensorFlow framework code. The queue bar

is time spent queued within the model container waiting

for the GPU to become available. The top bar includes

the remaining system overhead, including query serializa-

tion and deserialization as well as copying into and out

of the network stack. As Figure 11 illustrates, the RPC

overheads are minimal on these workloads and the next

prediction batch is queued as soon as the current batch is

dispatched to the GPU for inference. TensorFlow Serving

utilizes a similar queueing method to saturate the GPU,

but because of the tight integration between TensorFlow

Serving and the TensorFlow inference code, they are able

to push the queueing into the TensorFlow framework code

itself running in the same process.

By achieving comparable performance across this

range of models, we have demonstrated that through care-

ful design and implementation of the system, the modular

architecture and substantially broader set of features in

Clipper do not come at a cost of reduced performance on

core prediction-serving tasks.
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Figure 11: TensorFlow Serving Comparison. Comparison of

peak throughput and latency (p99 latencies shown in error bars)

on three TensorFlow models of varying inference cost. TF-C++

uses TensorFlow’s C++ API and TF-Python the Python API.

7 Limitations

While Clipper attempts to address many challenges in the

context of prediction serving there are a few key limita-

tions when compared to other designs like TensorFlow

Serving. Most of these limitations follow directly from

the design of the Clipper architecture which assumes mod-

els are below Clipper in the software stack, and thus are

treated as black-box components.

Clipper does not optimize the execution of the mod-

els within their respective machine learning frameworks.

Slow models will remain slow when served from Clip-

per. In contrast, TensorFlow Serving is tightly integrated

with model evaluation, and hence is able to leverage GPU

acceleration and compilation techniques to speedup infer-

ence on models created with TensorFlow.

Similarly, Clipper does not manage the training or re-

training of the base models within their respective frame-

works. As a consequence, if all models are out-of-date

or inaccurate Clipper will be unable to improve accuracy

beyond what can be accomplished through ensembles.

8 Related Work

The closest projects to Clipper are LASER [3], Velox [19],

and TensorFlow Serving [59]. The LASER system was

developed at LinkedIn to support linear models for ad-

targeting applications. Velox is a UC Berkeley research

project to study personalized prediction serving with

Apache Spark. TensorFlow Serving is the open-source

prediction serving system developed by Google for Ten-

sorFlow models. In our experiments we only compare

against TensorFlow Serving, because LASER is not pub-

licly available, and the current prototype of Velox has

very limited functionality.

All three systems propose mechanisms to address la-

tency and throughput. Both LASER and Velox utilize
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caching at various levels in their systems. In addition,

LASER also uses a straggler mitigation strategy to ad-

dress slow feature evaluation. Neither LASER or Velox

discuss batching. Conversely, TensorFlow Serving does

not employ caching and instead leverages batching and

hardware acceleration to improve throughput.

LASER and Velox both exploit a form of model de-

composition to incorporate feedback and context similar

to the linear ensembles in Clipper. However, LASER does

not incorporate feedback in real-time, Velox does not

support bandits and neither system supports cross frame-

work learning. Moreover, the techniques used for online

learning and contextualization in both of these systems

are captured in the more general Clipper selection policy.

In contrast, TensorFlow Serving has no mechanism to

achieve personalization or adapt to real-time feedback.

Finally, LASER, Velox, and TensorFlow Serving are

all vertically integrated; they focused on serving predic-

tions from a single model or framework. In contrast, Clip-

per supports a wide range of machine learning models

and frameworks and simultaneously addresses latency,

throughput, and accuracy in a single serving system.

Application Specific Prediction Serving: There has

been considerable prior work in application and model

specific prediction-serving. Much of this work has fo-

cused on content recommendation, including video-

recommendation [20], ad-targeting [27, 39], and product-

recommendations [37]. Outside of content recommen-

dation, there has been recent success in speech recogni-

tion [36, 55] and internet-scale resource allocation [23].

While many of these applications require real-time pre-

dictions, the solutions described are highly application-

specific and tightly coupled to the model and workload

characteristics. As a consequence, much of this work

solves the same systems challenges in different applica-

tion areas. In contrast, Clipper is a general-purpose system

capable of serving many of these applications.

Parameter Server: There has been considerable

work in the learning systems community on parameter-

servers [5, 21, 38, 62]. While parameter-servers do focus

on reduced latency and caching, they do so in the context

of model training. In particular they are a specialized type

of key-value store used to coordinate updates to model

parameters in a distributed training system. They are not

typically used to serve predictions.

General Serving Systems: The high-performance

serving architecture of Clipper draws from prior work

on highly-concurrent serving systems [45,46,50,61]. The

division of functionality into vertical stages introduced

by [61] is similar to the division of Clipper’s architecture

into independent layers. Notably, while the dominant cost

in data-serving systems tends to be IO, in prediction serv-

ing it is computation. This changes both physical resource

allocation and batching and latency-hiding strategies.

9 Conclusion

In this work we identified three key challenges of pre-

diction serving: latency, throughput, and accuracy, and

proposed a new layered architecture that addresses these

challenges by interposing between end-user applications

and existing machine learning frameworks.

As an instantiation of this architecture, we introduced

the Clipper prediction serving system. Clipper isolates

end-user applications from the variability and diversity in

machine learning frameworks by providing a common pre-

diction interface. As a consequence, new machine learn-

ing frameworks and models can be introduced without

modifying end-user applications.

We addressed the challenges of prediction serving la-

tency and throughput within the Clipper Model Abstrac-

tion layer. The model abstraction layer lifts caching and

adaptive batching strategies above the machine learn-

ing frameworks to achieve up to a 26x improvement in

throughput while maintaining strict bounds on tail latency

and providing mechanisms to scale serving across a clus-

ter. We addressed the challenges of accuracy in the Clipper

Model Selection Layer. The model selection layer enables

many models to be deployed concurrently and then dy-

namically selects and combines predictions from each

model to render more robust, accurate, and contextualized

predictions while mitigating the cost of stragglers.

We evaluated Clipper using four standard machine-

learning benchmark datasets spanning computer vision

and speech recognition applications. We demonstrated

Clipper’s capacity to bound latency, scale heavy work-

loads across nodes, and provide accurate, robust, and con-

textual predictions. We compared Clipper to Google’s

TensorFlow Serving system and achieved parity on

throughput and latency performance, demonstrating that

the modular container-based architecture and substantial

additional functionality in Clipper can be achieved with

minimal performance penalty.
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