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Abstract
Improving performance is a central concern for software

developers. To locate optimization opportunities, developers

rely on software profilers. However, these profilers only report

where programs spent their time: optimizing that code may

have no impact on performance. Past profilers thus both waste

developer time and make it difficult for them to uncover

significant optimization opportunities.

This paper introduces causal profiling. Unlike past pro-

filing approaches, causal profiling indicates exactly where

programmers should focus their optimization efforts, and

quantifies their potential impact. Causal profiling works by

running performance experiments during program execution.

Each experiment calculates the impact of any potential op-

timization by virtually speeding up code: inserting pauses

that slow down all other code running concurrently. The key

insight is that this slowdown has the same relative effect as

running that line faster, thus “virtually” speeding it up.

We present COZ, a causal profiler, which we evaluate on

a range of highly-tuned applications: Memcached, SQLite,

and the PARSEC benchmark suite. COZ identifies previously

unknown optimization opportunities that are both significant

and targeted. Guided by COZ, we improve the performance

of Memcached by 9%, SQLite by 25%, and accelerate six

PARSEC applications by as much as 68%; in most cases,

these optimizations involve modifying under 10 lines of code.

1. Introduction
Improving performance is a central concern for software

developers. While compiler optimizations are of some assis-
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tance, they often do not have enough of an impact on perfor-

mance to meet programmers’ demands [10]. Programmers

seeking to increase the throughput or responsiveness of their

applications thus must resort to manual performance tuning.

Manually inspecting a program to find optimization op-

portunities is impractical, so developers use profilers. Con-

ventional profilers rank code by its contribution to total exe-

cution time. Prominent examples include oprofile, perf, and

gprof [17, 27, 29]. Unfortunately, even when a profiler ac-

curately reports where a program spends its time, this infor-

mation can lead programmers astray. Code that runs for a

long time is not necessarily a good choice for optimization.

For example, optimizing code that draws a loading animation

during a file download will not make the program run faster,

even though this code runs just as long as the download.

This phenomenon is not limited to I/O operations. Figure 1

shows a simple program that illustrates the shortcomings of

existing profilers, along with its gprof profile in Figure 2a.

This program spawns two threads, which invoke functions

fa and fb respectively. Most profilers will report that these

functions comprise roughly half of the total execution time.

Other profilers may report that fa is on the critical path, or that

the main thread spends roughly equal time waiting for fa and

fb [23]. While accurate, all of this information is potentially

misleading. Optimizing fa away entirely will only speed up

the program by 4.5% because fb becomes the new critical

path.

example.cpp

1 void a() { // ˜6.7 seconds
2 for(volatile size_t x=0; x<2000000000; x++) {}
3 }
4 void b() { // ˜6.4 seconds
5 for(volatile size_t y=0; y<1900000000; y++) {}
6 }
7 int main() {
8 // Spawn both threads and wait for them.
9 thread a_thread(a), b_thread(b);

10 a_thread.join(); b_thread.join();
11 }

Figure 1: A simple multithreaded program that illustrates the

shortcomings of existing profilers. Optimizing fa will improve

performance by no more than 4.5%, while optimizing fb would

have no effect on performance.
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Conventional Profile for example.cpp

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
55.20 7.20 7.20 1 a()
45.19 13.09 5.89 1 b()

% time self children called name
<spontaneous>

55.0 7.20 0.00 a()
--------------------------------------------------

<spontaneous>
45.0 5.89 0.00 b()

(a) A conventional profile for example.cpp, collected with gprof

Causal Profile For example.cpp
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(b) Causal profile for example.cpp

Figure 2: The gprof and causal profiles for the code in Figure 1. In the causal profile, the y-axis shows the program speedup that would be

achieved by speeding up each line of code by the percentage on the x-axis. The gray area shows standard error. Gprof reports that fa and fb
comprise similar fractions of total runtime, but optimizing fa will improve performance by at most 4.5%, and optimizing fb would have no

effect on performance. The causal profile predicts both outcomes within 0.5%.

Conventional profilers do not report the potential impact of

optimizations; developers are left to make these predictions

based on their understanding of the program. While these

predictions may be easy for programs as simple as the one

in Figure 1, accurately predicting the effect of a proposed

optimization is nearly impossible for programmers attempting

to optimize large applications.

This paper introduces causal profiling, an approach that

accurately and precisely indicates where programmers should

focus their optimization efforts, and quantifies their potential

impact. Figure 2b shows the results of running COZ, our

prototype causal profiler. This profile plots the hypothetical

speedup of a line of code (x-axis) versus its impact on

execution time (y-axis). The graph correctly shows that

optimizing either fa or fb in isolation would have little effect.

A causal profiler conducts a series of performance exper-
iments to empirically observe the effect of a potential opti-

mization. Of course it is not possible to automatically speed

up any line of code by an arbitrary amount. Instead, a causal

profiler uses the novel technique of virtual speedups to mimic

the effect of optimizing a specific line of code by a fixed

amount. A line is virtually sped up by inserting pauses to

slow all other threads each time the line runs. The key insight

is that this slowdown has the same relative effect as running

that line faster, thus “virtually” speeding it up. Figure 3 shows

the equivalence of virtual and actual speedups.

Each performance experiment measures the effect of vir-

tually speeding up one line by a specific amount. By conduct-

ing many performance experiments over the range of virtual

speedup from between 0% (no change) and 100% (the line is

completely eliminated), a causal profiler can predict the effect

of any potential optimization on a program’s performance.

Causal profiling further departs from conventional profil-

ing by making it possible to view the effect of optimizations

on both throughput and latency. To profile throughput, devel-

opers specify a progress point, indicating a line in the code

that corresponds to the end of a unit of work. For example, a

progress point could be the point at which a transaction con-

cludes, when a web page finishes rendering, or when a query

completes. A causal profiler then measures the rate of visits to

each progress point to determine any potential optimization’s

effect on throughput. To profile latency, programmers instead

place two progress points that correspond to the start and

end of an event of interest, such as when a transaction begins

and completes. A causal profiler then reports the effect of

potential optimizations on the average latency between those

two progress points.

To demonstrate the effectiveness of causal profiling, we

have developed COZ, a causal profiler for Linux. We show

that COZ imposes low execution time overhead (mean: 17%,

min: 0.1%, max: 65%), making it substantially faster than

gprof (up to 6× overhead).

We show that causal profiling accurately predicts optimiza-

tion opportunities, and that it is effective at guiding optimiza-

tion efforts. We apply COZ to Memcached, SQLite, and the

extensively studied PARSEC benchmark suite. Guided by

COZ’s output, we optimized the performance of Memcached

by 9%, SQLite by 25%, and six PARSEC applications by as

much as 68%. These optimizations typically involved mod-

ifying under 10 lines of code. When possible to accurately

measure the size of our optimizations on the line(s) identified

by COZ, we compare the observed performance improve-

ments to COZ’s predictions: in each case, we find that the real

effect of our optimization matches COZ’s prediction.

Contributions
This paper makes the following contributions:

1. It presents causal profiling, which identifies code where

optimizations will have the largest impact. Using virtual
speedups and progress points, causal profiling directly

measures the effect of potential optimizations on both

throughput and latency (§2).

2. It presents COZ, a causal profiler that works on unmod-

ified Linux binaries. It describes COZ’s implementation

(§3), and demonstrates its efficiency and effectiveness at

identifying optimization opportunities (§4).
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2. Causal Profiling Overview
This section describes the major steps in collecting, process-

ing, and interpreting a causal profile with COZ, our prototype

causal profiler.

Profiler startup. A user invokes COZ using a command of

the form coz run --- <program> <args>. At the

beginning of the program’s execution, COZ collects debug

information for the executable and all loaded libraries. Users

may specify file and binary scope, which restricts COZ’s

experiments to speedups in the specified files. By default,

COZ will consider speedups in any source file from the main

executable. COZ builds a map from instructions to source

lines using the program’s debug information and the specified

scope. Once the source map is constructed, COZ creates a

profiler thread and resumes normal execution.

Experiment initialization. COZ’s profiler thread begins an

experiment by selecting a line to virtually speed up, and a

randomly-chosen percent speedup. Both parameters must be

selected randomly; any systematic method of exploring lines

or speedups could lead to systematic bias in profile results.

One might assume that COZ could exclude lines or virtual

speedup amounts that have not shown a performance effect

early in previous experiments, but prioritizing experiments

based on past results would prevent COZ from identifying

an important line if its performance only matters after some

warmup period. Once a line and speedup have been selected,

the profiler thread saves the number of visits to each progress

point and begins the experiment.

Applying a virtual speedup. Every time the profiled pro-

gram creates a thread, COZ begins sampling the instruction

pointer from this thread. COZ processes samples within each

thread to implement a sampling version of virtual speedups.

In Section 3.4, we show the equivalence between the virtual

speedup mechanism shown in Figure 3 and the sampling

approach used by COZ. Every time a sample is available, a

thread checks whether the sample falls in the line of code

selected for virtual speedup. If so, it forces other threads to

pause. This process continues until the profiler thread indi-

cates that the experiment has completed.

Ending an experiment. COZ ends the experiment after a

pre-determined time has elapsed. If there were too few visits

to progress points during the experiment—five is the default

minimum—COZ doubles the experiment time for the rest

of the execution. Once the experiment has completed, the

profiler thread logs the results of the experiment, including

the effective duration of the experiment (runtime minus the

total inserted delay), the selected line and speedup, and the

number of visits to all progress points. Before beginning the

next experiment, COZ will pause for a brief cooloff period to

allow any remaining samples to be processed before the next

experiment begins.

Illustration of Virtual Speedup
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Figure 3: An illustration of virtual speedup: (a) shows the original

execution of two threads running functions f and g; (b) shows the

effect of a actually speeding up f by 40%; (c) shows the effect of

virtually speeding up f by 40%. Each time f runs in one thread, all

other threads pause for 40% of f’s original execution time (shown as

ellipsis). The difference between the runtime in (c) and the original

runtime plus nf · d—the number of times f ran times the delay

size—is the same as the effect of actually optimizing f.

Producing a causal profile. After an application has been

profiled with COZ, the results of all the performance exper-

iments can be combined to produce a causal profile. Each

experiment has two independent variables: the line chosen

for virtual speedup and the amount of virtual speedup. COZ

records the dependent variable, the rate of visits to each

progress point, in two numbers: the total number of visits

to each progress point and the effective duration of the exper-

iment (the real runtime minus the total length of all pauses).

Experiments with the same independent variables can be

combined by adding the progress point visits and experiment

durations.

Once experiments have been combined, COZ groups ex-

periments by the line that was virtually sped up. Any lines

that do not have a measurement of 0% virtual speedup are

discarded; without this baseline measurement we cannot com-

pute a percent speedup relative to the original program. Mea-

suring this baseline separately for each line guarantees that

any line-dependent overhead from virtual speedups, such as

the additional cross-thread communication required to insert

delays when a frequently-executed line runs, will not skew

profile results. By default, COZ will also discard any lines

with fewer than 5 different virtual speedup amounts (a plot

that only shows the effect of a 75% virtual speedup is not

particularly useful). Finally, we compute the percent program
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speedup for each grouped experiment as the percent change in

rate of visits to each progress point over the baseline (virtual

speedup of 0%). COZ then plots the resulting table of line

and program speedups for each line, producing the profile

graphs shown in this paper.

Interpreting a causal profile. Once causal profile graphs

have been generated, it is up to the user to interpret them and

make an educated choice about which lines may be possible

to optimize. To help the user identify important lines, COZ

sorts the graphs by the slope of their linear regression. Steep

upward slopes indicate a line where optimizations will gen-

erally have a positive impact, while a flat line indicates that

optimizing this line will not improve program performance.

COZ also finds lines with a steep downward slope, meaning

any optimization to this line will actually hurt performance.

This downward sloping profile is a strong indication of con-

tention; the line that was virtually sped up interferes with the

program’s critical path, and optimizing this line increases the

amount of interference. This phenomenon is surprisingly com-

mon, and can often result in significant optimization opportu-

nities. In our evaluation we identify and fix contention issues

in three applications: fluidanimate, streamcluster,

and memcached, resulting in speedups of 37.5%, 68.4%,

and 9.4% respectively.

3. Implementation
This section describes COZ’s basic functionality and imple-

mentation. We briefly discuss the core mechanisms required

to support profiling unmodified Linux x86-64 executables,

along with implementation details for each of the key compo-

nents of a causal profiler: performance experiments, progress

points, and virtual speedups.

3.1 Core Mechanisms
COZ uses sampling to implement both virtual speedups

and progress points. When a user starts a program with

the coz command, COZ injects a profiling runtime library

into the program’s address space using LD PRELOAD. This

runtime library creates a dedicated profiler thread to run

performance experiments, but also intercepts each thread

startup and shutdown to start and stop sampling in the thread

using the perf even API. Using the perf event API,

COZ collects both the current program counter and user-space

call stack from each thread every 1ms. To keep overhead low,

COZ processes samples in batches of ten by default (every

10ms). Processing samples more frequently is unlikely to

improve accuracy, as the additional overhead would distort

program execution.

Attributing samples to source locations. COZ uses DWARF

debug information to map sampled program counter values to

source locations. The profiled program does not need to con-

tain DWARF line information; COZ will use the same search

procedure as GDB to locate external debug information if

necessary [14]. Note that debug information is available

even for optimized code, and most Linux distributions offer

packages that include this information for common libraries.

By default, COZ will only collect debug information for

the main executable. This means COZ will only test potential

optimizations in the main program’s source files. Users can

specify a source scope to control which source files COZ will

select lines from to evaluate potential optimizations. Likewise,

users can specify a binary scope to control which executables

and libraries will be profiled. Users should use these scope

options to specify exactly which code they are willing or able

to change to improve their program’s performance.

3.2 Performance Experiment Implementation
COZ uses a dedicated profiler thread to coordinate perfor-

mance experiments. This thread is responsible for select-

ing a line to virtually speed up, selecting the size of the vir-

tual speedup, measuring the effect of the virtual speedup on

progress points, and writing profiler output.

Starting a performance experiment. A single profiler

thread, created during program initialization, coordinates

performance experiments. Before an experiment can begin,

the profiler selects a source line to virtually speed up. To do

this, all program threads sample their instruction pointers

and map these addresses to source lines. The first thread to

sample a source line that falls within the specified profiling

scope sets this as the line selected for virtual speedup.

Once the profiler receives a valid line from one of the

program’s threads, it chooses a random virtual speedup be-

tween 0% and 100%, in multiples of 5%. For any given virtual

speedup, the effect on program performance is 1− ps

p0
, where

p0 is the period between progress point visits with no virtual

speedup, and ps is the same period measured with some vir-

tual speedup s. Because p0 is required to compute program

speedup for every ps, a virtual speedup of 0 is selected with

50% probability. The remaining 50% is distributed evenly

over the other virtual speedup amounts.

Lines for virtual speedup must be selected randomly to

prevent bias in the results of performance experiments. A

seemingly reasonably (but invalid) approach would be to

begin conducting performance experiments with small vir-

tual speedups, gradually increasing the speedup until it no

longer has an effect on program performance. However, this

approach may both over- and under-state the impact of opti-

mizing a particular line if its impact varies over time.

For example, a line that has no performance impact during

a program’s initialization would not be measured later in exe-

cution, when optimizing it could have significant performance

benefit. Conversely, a line that only affects performance dur-

ing initialization would have exaggerated performance impact

unless future experiments re-evaluate virtual speedup values

for this line during normal execution. Any systematic ap-

proach to exploring the space of virtual speedup values could

potentially lead to systematic bias in the profile output.
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Once a line and speedup amount have been selected, COZ

saves the current values of all progress point counters and

begins the performance experiment.

Running a performance experiment. Once a performance

experiment has started, each of the program’s threads pro-

cesses samples and inserts delays to perform virtual speedups.

After the pre-determined experiment time has elapsed, the

profiler thread logs the end of the experiment, including the

current time, the number and size of delays inserted for vir-

tual speedup, the running count of samples in the selected

line, and the values for all progress point counters. After a

performance experiment has finished, COZ waits until all

samples collected during the current experiment have been

processed. By default, COZ will process samples in groups

of ten, so this pause time is just ten times the sampling rate

of 1ms. Lengthening this cooloff period will reduce COZ’s

overhead by inserting fewer delays at the cost of increased

profiling time to conduct the same number of performance

experiments.

3.3 Progress Point Implementation
COZ supports three mechanisms for monitoring progress

points: source-level, breakpoint, and sampled.

Source-level progress points. Source-level progress points

are the only progress points that require program modification.

To indicate a source-level progress point, a developer simply

inserts the COZ PROGRESS macro in the program’s source

code at the appropriate location.

Breakpoint progress points. Breakpoint progress points

are specified at the command line. COZ uses the Linux

perf event API to set a breakpoint at the first instruction

in a line specified in the profiler arguments.

Sampled progress points. Sampled progress points are

specified on the command line. However, unlike source-level

and breakpoint progress points, sampled progress points do

not keep a count of the number of visits to the progress point.

Instead, sampled progress points count the number of samples

that fall within the specified line. As with virtual speedups,

the percent change in visits to a sampled progress point can

be computed even when exact counts are unknown.

Measuring latency. Source-level and breakpoint progress

points can also be used to measure the impact of an optimiza-

tion on latency rather than throughput. To measure latency, a

developer must specify two progress points: one at the start of

some operation, and the other at the end. The rate of visits to

the starting progress point measures the arrival rate, and the

difference between the counts at the start and end points tells

us how many requests are currently in progress. By denoting

L as the number of requests in progress and λ as the arrival

rate, we can solve for the average latency W via Little’s Law,

which holds for nearly any queuing system: L = λW [30].

Rewriting Little’s Law, we then compute the average latency

as L/λ.

Little’s Law holds under a wide variety of circumstances,

and is independent of the distributions of the arrival rate and

service time. The key requirement is that Little’s Law only

holds when the system is stable: the arrival rate cannot exceed

the service rate. Note that all usable systems are stable: if a

system is unstable, its latency will grow without bound since

the system will not be able to keep up with arrivals.

3.4 Virtual Speedup Implementation
A critical component of any causal profiler is the ability to

virtually speed up any fragment of code. A naive implemen-

tation of virtual speedups is shown in Figure 3; each time the

function f runs, all other threads are paused briefly. If f has

an average runtime of t̄f each time it is called and threads are

paused for time d each time f runs, then f has an effective
average runtime of t̄f − d.

If the real runtime of f was t̄f − d, but we forced every

thread in the program to pause for time d after f ran (in-

cluding the thread that just executed f) we would measure

the same total runtime as with a virtual speedup. The only

difference between virtual speedup and a real speedup with

these additional pauses is that we use the time d to allow one

thread to finish executing f. The pauses inserted for virtual

speedup increase the total runtime by nf · d, where nf is the

total number of times f by any thread. Subtracting nf ·d from

the total runtime with virtual speedup gives us the execution

time we would measure if f had runtime tf − d.

Implementing virtual speedup with sampling. The previ-

ous discussion of virtual speedups assumes an implementa-

tion where every time a specific line of code executes all other

threads instantaneously pause for a very brief time (a fraction

of the time require to run a single line). Unfortunately, this

approach would incur prohibitively high overhead that would

distort program execution, making the profile useless. Instead,

COZ periodically samples the program counter and counts

samples that fall in the line selected for virtual speedup. Then,

other threads are delayed proportionally to the number of

samples. The number of samples in the selected line, s, is

approximately

s ≈ n · t̄
P

(1)

where P is the period of time between samples, t̄ is the

average time required to run the selected line once, and n
is the number of times the selected line is executed.

In our original model of virtual speedups, delaying other

threads by time d each time the selected line is executed

has the effect of shortening this line’s runtime by d. With

sampling, only some executions of the selected line will result

in delays. The effective runtime of the selected line when
sampled is t̄−d, while executions of the selected line that are

not sampled simply take time t̄. The effective average time to

run the selected line is

t̄e =
(n− s) · t̄+ s · (t̄− d)

n
. (2)

188



Using (1), this reduces to

t̄e =
n · t̄ · (1− t̄

P ) + n·t̄
P · (t̄− d)

n
= t̄ · (1− d

P
) (3)

The relative difference between t and t̄e, the amount of virtual

speedup, is simply

Δt̄ = 1− t̄e
t̄
=

d

P
. (4)

This result lets COZ virtually speed up selected lines by

a specific amount without instrumentation. Inserting a delay

that is one quarter of the sampling period will virtually speed

up the selected line by 25%.

Pausing other threads. When one thread receives a sample

in the line selected for virtual speedup, all other threads must

pause. Rather than using POSIX signals, which would have

prohibitively high overhead, COZ controls inter-thread paus-

ing using counters. The first counter, shared by all threads,

records the number of times each thread should have paused

so far. Each thread has a local counter of the number of times

that thread has already paused. Whenever a thread’s local

count of pauses is less than the number of required pauses

in the global counter, a thread must pause (and increment its

local counter). To signal all other threads to pause, a thread

simply increments both the global counter and its own lo-

cal counter. Every thread checks if pauses are required after

processing its own samples.

Ensuring accurate timing. COZ uses the nanosleep
POSIX function to insert delays. This function only guaran-

tees that the thread will pause for at least the requested time,

but the pause may be longer than requested. COZ tracks any

excess pause time, which is subtracted from future pauses.

Thread creation. To start sampling and adjust delays, COZ

interposes on the pthread create function. COZ first

initiates perf event sampling in the new thread. It then

inherits the parent thread’s local delay count; any previously

inserted delays to the parent thread also delayed the creation

of the new thread.

3.4.1 Handling Suspended Threads
COZ only collects samples and inserts delays in a thread while

that thread is actually executing. This means that required

delays will accumulate in a thread while it is suspended.

When a thread is suspended on a blocking I/O operation, this

is the desired behavior; pausing the thread while it is already

suspended on I/O would not delay the thread’s progress. COZ

simply adds these delays after the thread unblocks.

However, a thread can also be suspended while waiting

for a mutex or other POSIX synchronization primitive. As

with blocking I/O, required delays will accumulate while

the thread is suspended, but COZ may not need to insert all

of these delays when the thread resumes. When one thread

resumes after waiting for a mutex, another thread must have

Potentially unblocking calls
pthread mutex unlock unlock a mutex

pthread cond signal wake one waiter on a c.v.

pthread cond broadcast wake all waiters on c.v.

pthread barrier wait wait at a barrier

pthread kill send signal to a thread

pthread exit terminate this thread

Table 1: COZ intercepts POSIX functions that could wake a blocked

thread. To ensure correctness of virtual speedups, COZ forces threads

to execute any unconsumed delays before invoking any of these

functions and potentially waking another thread.

Potentially blocking calls
pthread mutex lock lock a mutex

pthread cond wait wait on a condition variable

pthread barrier wait wait at a barrier

pthread join wait for a thread to complete

sigwait wait for a signal

sigwaitinfo wait for a signal

sigtimedwait wait for a signal (with timeout)

sigsuspend wait for a signal

Table 2: COZ intercepts POSIX functions that could block waiting

for a thread, instrumenting them to update delay counts before and

after blocking.

unlocked that mutex. If the unlocking thread has executed all

the required delays, then the blocked thread has effectively

already been delayed; it should not insert any additional

delays after unblocking.

To correctly handle suspended threads, a causal profiler

must follow a simple rule: If a suspended thread resumes

execution because of another thread, the suspended thread

should be “credited” for any delays inserted in the thread

responsible for waking it up. Otherwise, the thread should

insert all the necessary delays that accumulated during the

time the thread was suspended. To simplify the implementa-

tion of this policy, COZ forces a thread to execute all required

delays before it does anything that could block that thread

(see Table 2) or wake a suspended thread (shown in Table 1).

This means that any resumed thread can skip any required

delays after returning from a call which may have blocked

the thread. Note that this special handling is only required for

operations that can suspend a thread. COZ can accommodate

programs with ad-hoc synchronization that does not suspend

threads with no special handling.

3.4.2 Attributing Samples to Source Lines
Samples are attributed to source lines using the source map

constructed at startup. When a sample does not fall in any

in-scope source line, the profiler walks the sampled callchain

to find the first in-scope address. This has the effect of at-

tributing all out-of-scope execution to the last in-scope call-

site responsible. For example, a program may call printf,

which calls vfprintf, which in turn calls strlen. Any

samples collected during this chain of calls will be attributed

to the source line that issues the original printf call.
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3.4.3 Optimization: Minimizing Delays
If every thread executes the selected line, forcing each thread

to delay num threads−1 times unnecessarily slows execution.

If all but one thread executes the selected line, only that thread

needs to pause. The invariant that must be preserved is the

following: for each thread, the number of pauses plus the

number of samples in the selected line must be equal. When

a sample falls in the selected line, COZ increments only the

local delay count. If the local delay count is still less than the

global delay count after processing all available samples, COZ

inserts pauses. If the local delay count is larger than global

delay count, the thread increases the global delay count.

Adjusting for phases
COZ randomly selects a recently-executed line of code at

the start of each performance experiment. This increases the

likelihood that experiments will yield useful information—

a virtual speedup would have no effect on lines that never

run—but could bias results for programs with phases.

If a program runs in phases, optimizing a line will not

have any effect on progress rate during periods when the line

is not being run. However, COZ will not run performance

experiments for the line during these periods because only

currently-executing lines are selected. If left uncorrected, this

bias would lead COZ to overstate the effect of optimizing

lines that run in phases.

To eliminate this bias, we break the program’s execution

into two logical phases: phase A, during which the selected

line runs, and phase B, when it does not. These phases need

not be contiguous. The total runtime T = tA + tB is the sum

of the durations of the two phases. The average progress rate

during the entire execution is:

P =
T

N
=

tA + tB
N

. (5)

COZ collects samples during the entire execution, record-

ing the number of samples in each line. We define s to be

the number of samples in the selected line, of which sobs
occur during a performance experiment with duration tobs.

The expected number of samples during the experiment is:

E[sobs] = s · tobs
tA

, therefore tA ≈ s · tobs
sobs

. (6)

COZ measures the effect of a virtual speedup during phase

A,

ΔpA =
pA − pA

′

pA

where pA
′ and pA are the average progress periods with and

without a virtual speedup; this can be rewritten as:

ΔpA =
tA
nA

− tA
′

nA

tA
nA

=
tA − tA

′

tA
(7)

Summary of Optimization Results
Application Speedup Diff Size LOC

blackscholes 2.56%± 0.41% −61, +4 342

dedup 8.95%± 0.27% −3, +3 2,570

ferret 21.27%± 0.17% −4, +4 5,937

fluidanimate 37.5%± 0.56% −1, +0 1,015

streamcluster 68.4%± 1.12% −1, +0 1,779

swaptions 15.8%± 1.10% −10, +16 970

Memcached 9.39%± 0.95% −6, +2 10,475

SQLite 25.60%± 1.00% −7, +7 92,635

Table 3: All benchmarks were run ten times before and after

optimization. Standard error for speedup was computed using

Efron’s bootstrap method, where speedup is defined as
t0−topt

t0
.

All speedups are statistically significant at the 99.9% confidence

level (α = 0.001) using the one-tailed Mann-Whitney U test, which

does not rely on any assumptions about the distribution of execution

times. Lines of code do not include blank or comment-only lines.

where nA is the number of progress point visits during phase

A. Using (5), the new value for P with the virtual speedup is

P ′ =
tA

′ + tB
N

and the percent change in P is

ΔP =
P − P ′

P
=

tA+tB
N − tA

′+tB
N

T
N

=
tA − tA

′

T
.

Finally, using (6) and (7),

ΔP = ΔpA
tA
T

≈ ΔpA · tobs
sobs

· s
T
. (8)

COZ multiplies all measured speedups, ΔpA, by the cor-

rection factor tobs
sobs

· s
T in its final report.

4. Evaluation
Our evaluation answers the following questions: (1) Does

causal profiling enable effective performance tuning? (2)

Are COZ’s performance predictions accurate? (3) Is COZ’s

overhead low enough to be practical?

4.1 Experimental Setup
We perform all experiments on a 64 core, four socket AMD

Opteron machine with 60GB of memory, running Linux 3.14

with no modifications. All applications are compiled using

GCC version 4.9.1 at the -O3 optimization level and debug

information generated with -g. We disable frame pointer

elimination with the -fno-omit-frame-pointer flag

so the Linux can collect accurate call stacks with each sample.

COZ is run with the default sampling period of 1ms, with

sample processing set to occur after every 10 samples. Each

performance experiment runs with a cooling-off period of

10ms after each experiment to allow any remaining samples

to be processed before the next experiment begins. Due to

space limitations, we only profile throughput (and not latency)

in this evaluation.
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Hash Bucket Collisions in dedup
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Figure 4: In the dedup benchmark, COZ identified hash bucket

traversal as a bottleneck. These plots show collisions per-bucket

before, mid-way through, and after optimization of the dedup bench-

mark (note different y-axes). The dashed horizontal line shows aver-

age collisions per-utilized bucket for each version. Fixing dedup’s

hash function improved performance by 8.9%.

4.2 Effectiveness
We demonstrate causal profiling’s effectiveness through case

studies. Using COZ, we collect causal profiles for Mem-

cached, SQLite, and the PARSEC benchmark suite. Using

these causal profiles, we were able to make small changes

to two of the real applications and six PARSEC benchmarks,

resulting in performance improvements as large as 68%. Ta-

ble 3 summarizes the results of our optimization efforts. We

describe our experience using COZ below, with three gen-

eral outcomes: (1) cases where COZ found optimization op-

portunities that gprof and perf did not (dedup, ferret, and

SQLite); (2) cases where COZ identified contention (fluidani-

mate, streamcluster, and Memcached); and (3) cases where

both COZ and a conventional profiler identified the optimiza-

tion we implemented (blackscholes and swaptions).

4.2.1 Case Study: dedup
The dedup application performs parallel file compression

via deduplication. This process is divided into three main

stages: fine-grained fragmentation, hash computation, and

compression. We placed a progress point immediately after

dedup completes compression of a single block of data

(encoder.c:189).

COZ identifies the source line hashtable.c:217 as

the best opportunity for optimization. This code is the top

of the while loop in hashtable search that traverses

the linked list of entries that have been assigned to the same

hash bucket. This suggests that dedup’s shared hash table has

a significant number of collisions. Increasing the hash table

size had no effect on performance. This led us to examine

dedup’s hash function, which could also be responsible for

the large number of hash table collisions. We discovered that

dedup’s hash function maps keys to just 2.3% of the available
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Figure 5: Ferret’s pipeline. The middle four stages each have an

associated thread pool; the input and output stages each consist of

one thread. The colors represent the impact on throughput of each

stage, as identified by COZ: green is low impact, orange is medium

impact, and red is high impact.

buckets; over 97% of buckets were never used during the

entire execution.

The original hash function adds characters of the hash table

key, which leads to virtually no high order bits being set. The

resulting hash output is then passed to a bit shifting procedure

intended to compensate for poor hash functions. We removed

the bit shifting step, which increased hash table utilization to

54.4%. We then changed the hash function to bitwise XOR

32 bit chunks of the key. This increased hash table utilization

to 82.0% and resulted in an 8.95% ± 0.27% performance

improvement. Figure 4 shows the rate of bucket collisions of

the original hash function, the same hash function without

the bit shifting “improvement”, and our final hash function.

The entire optimization required changing just three lines of

code. As with ferret, this result was achieved by one graduate

student who was initially unfamiliar with the code; the entire

profiling and tuning effort took just two hours.

Comparison with gprof. We ran both the original and op-

timized versions of dedup with gprof. As with ferret, the

optimization opportunities identified by COZ were not obvi-

ous in gprof’s output. Overall, hashtable search had

the largest share of highest execution time at 14.38%, but

calls to hashtable search from the hash computation

stage accounted for just 0.48% of execution time; Gprof’s

call graph actually obscured the importance of this code. Af-

ter optimization, hashtable search’s share of execution

time reduced to 1.1%.

4.2.2 Case Study: ferret
The ferret benchmark performs a content-based image simi-

larity search. Ferret consists of a pipeline with six stages: the

first and the last stages are for input and output. The middle

four stages perform image segmentation, feature extraction,

indexing, and ranking. Ferret takes two arguments: an in-

put file and a desired number of threads, which are divided

equally across the four middle stages. We first inserted a

progress point in the final stage of the image search pipeline

to measure throughput (ferret-parallel.c:398). We

then ran COZ with the source scope set to evaluate optimiza-

tions only in ferret-parallel.c, rather than across the

entire ferret toolkit.
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Causal Profile for ferret
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Figure 6: COZ output for the unmodified ferret application. The

x-axis shows the amount of virtual speedup applied to each line,

versus the resulting change in throughput on the y-axis. The top two

lines are executed by the indexing and ranking stages; the third line

is executed during image segmentation.

Figure 6 shows the top three lines identified by COZ, using

its default ranking metric. Lines 320 and 358 are calls to

cass table query from the indexing and ranking stages.

Line 255 is a call to image segment in the segmentation

stage. Figure 5 depicts ferret’s pipeline with the associated

thread pools (colors indicate COZ’s computed impact on

throughput of optimizing these stages).

Because each important line falls in a different pipeline

stage, and because COZ did not find any important lines in the

queues shared by adjacent stages, we can easily “optimize”

a specific line by shifting threads to that stage. We modified

ferret to let us specify the number of threads assigned to each

stage separately, a four-line change.

COZ did not find any important lines in the feature extrac-

tion stage, so we shifted threads from this stage to the three

other main stages. After three rounds of profiling and adjust-

ing thread assignments, we arrived at a final thread allocation

of 20, 1, 22, and 21 to segmentation, feature extraction, index-

ing, and ranking respectively. The reallocation of threads led

to a 21.27%±0.17% speedup over the original configuration,

using the same number of threads.

Comparison with gprof. We also ran ferret with gprof in

both the initial and final configurations. Optimization oppor-

tunities are not immediately obvious from that profile. For ex-

ample, in the flat profile, the function cass table query
appears near the bottom of the ranking, and is tied with 56

other functions for most cumulative time.

Gprof also offers little guidance for optimizing ferret. In

fact, its output was virtually unchanged before and after our

optimization, despite a large performance change.

4.2.3 Case Study: SQLite
The SQLite database library is widely used by many ap-

plications to store relational data. The embedded database,

which can be included as a single large C file, is used for

many applications including Firefox, Chrome, Safari, Opera,

Skype, iTunes, and is a standard component of Android, iOS,

Blackberry 10 OS, and Windows Phone 8. We evaluated

SQLite performance using a write-intensive parallel work-

Causal and Perf Profiles for SQLite
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(a) COZ’s output for SQLite before optimizations.

% Runtime Symbol
85.55% _raw_spin_lock
1.76% x86_pmu_enable_all

... 30 lines ...
0.10% rcu_irq_enter
0.09% sqlite3MemSize
0.09% source_load
... 26 lines ...

0.03% __queue_work
0.03% pcache1Fetch
0.03% kmem_cache_free
0.03% update_cfs_rq_blocked_load
0.03% pthreadMutexLeave
0.03% sqlite3MemMalloc

(b) Perf’s output for SQLite before optimizations.

Figure 7: COZ and perf output for SQLite before optimizations.

The three lines in the causal profile correspond to the function

prologues for sqlite3MemSize, pthreadMutexLeave, and

pcache1Fetch. A small optimization to each of these lines will

improve program performance, but beyond about a 25% speedup,

COZ predicts that the optimization would actually lead to a slow-

down. Changing indirect calls into direct calls for these functions

improved overall performance by 25.6%± 1.0%.

load, where each thread rapidly inserts rows to its own private

table. While this benchmark is synthetic, it exposes any scal-

ability bottlenecks in the database engine itself because all

threads should theoretically operate independently. We placed

a progress point in the benchmark itself (which is linked with

the database), which executes after each insertion.

COZ identified three important optimization opportunities,

shown in Figure 7a. At startup, SQLite populates a large

number of structs with function pointers to implementation-

specific functions, but most of these functions are only ever

given a default value determined by compile-time options.

The three functions COZ identified unlock a standard pthread

mutex, retrieve the next item from a shared page cache, and

get the size of an allocated object. These simple functions do

very little work, so the overhead of the indirect function call

is relatively high. Replacing these indirect calls with direct

calls resulted in a 25.60%± 1.00% speedup.

Comparison with conventional profilers. Unfortunately,

running SQLite with gprof segfaults immediately. The ap-

plication does run with the Linux perf tool, which reports

that the three functions COZ identified account for a total of

just 0.15% of total runtime (shown in Figure 7b). Using perf,
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a developer would be misled into thinking that optimizing

these functions would be a waste of time. COZ accurately

shows that the opposite is true: optimizing these functions

has a dramatic impact on performance.

4.2.4 Case Study: fluidanimate
The fluidanimate benchmark, also provided by Intel, is a phys-

ical simulation of an incompressible fluid for animation. The

application spawns worker threads that execute in eight con-

current phases, separated by a barrier. We placed a progress

point immediately after the barrier, so it executes each time

all threads complete a phase of the computation.

COZ identifies a single modest potential speedup in the

thread creation code, but there was no obvious way to speed

up this code. However, COZ also identified two significant

points of contention, indicated by a downward sloping causal

profile. Figure 8 shows COZ’s output for these two lines.

This result tells us that optimizing the indicated line of code

would actually slow down the program, rather than speed

it up. Both lines COZ identifies are in a custom barrier

implementation, immediately before entering a loop that

repeatedly calls pthread mutex trylock. Removing

this spinning from the barrier would reduce the contention,

but it was simpler to replace the custom barrier with the

default pthread barrier implementation. This one line

change led to a 37.5%± 0.56% speedup.

4.2.5 Case Study: streamcluster
The streamcluster benchmark performs online clustering of

streaming data. As with fluidanimate, worker threads execute

in concurrent phases separated by a custom barrier, where

we placed a progress point. COZ identified a call to a ran-

dom number generator as a potential line for optimization.

Replacing this call with a lightweight random number gen-

erator had a modest effect on performance (˜2% speedup).

As with fluidanimate, COZ highlighted the custom barrier

implementation as a major source of contention. Replacing

this barrier with the default pthread barrier led to a

68.4%± 1.12% speedup.

4.2.6 Case Study: Memcached
Memcached is a widely-used in-memory caching system. To

evaluate cache performance, we ran a benchmark ported from

the Redis performance benchmark. This program spawns 50

parallel clients that collectively issue 100,000 SET and GET
requests for randomly chosen keys. We placed a progress

point at the end of the process command function, which

handles each client request.

Most of the lines COZ identifies are cases of contention,

with a characteristic downward-sloping causal profile plot.

One such line is at the start of item remove, which locks

an item in the cache and then decrements its reference

count, freeing it if the count goes to zero. To reduce lock

initialization overhead, Memcached uses a static array of

locks to protect items, where each item selects its lock

Causal Profile for fluidanimate
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Figure 8: COZ output for fluidanimate, prior to optimiza-

tion. COZ finds evidence of contention in two lines in

parsec barrier.cpp, the custom barrier implementation used

by both fluidanimate and streamcluster. This causal profile reports

that optimizing either line will slow down the application, not speed

it up. These lines precede calls to pthread mutex trylock on

a contended mutex. Optimizing this code would increase contention

on the mutex and interfere with the application’s progress. Replac-

ing this inefficient barrier implementation sped up fluidanimate and

streamcluster by 37.5% and 68.4% respectively.

using a hash of its key. Consequently, locking any one item

can potentially contend with independent accesses to other

items whose keys happen to hash to the same lock index.

Because reference counts are updated atomically, we can

safely remove the lock from this function, which resulted in

a 9.39%± 0.95% speedup.

4.2.7 Case Study: blackscholes
The blackscholes benchmark, provided by Intel, solves the

Black–Scholes differential equation to price a portfolio of

stock options. We placed a progress point after each thread

completes one round of the iterative approximation to the dif-

ferential equation (blackscholes.c:259). COZ identi-

fies many lines in the CNDF and BlkSchlsEqEuroNoDiv
functions that would have a small impact if optimized. This

same code was identified as a bottleneck by ParaShares [26];

this is the only optimization we describe here that was pre-

viously reported. This block of code performs the main

numerical work of the program, and uses many temporary

variables to break apart the complex computation. Manu-

ally eliminating common subexpressions and combining 61

piecewise calculations into 4 larger expressions resulted in a

2.56%± 0.41% program speedup.

4.2.8 Case Study: swaptions
The swaptions benchmark is a Monte Carlo pricing algorithm

for swaptions, a type of financial derivative. Like blackscholes

and fluidanimate, this program was developed by Intel. We

placed a progress point after each iteration of the main loop ex-

ecuted by worker threads (HJM Securities.cpp:99).

COZ identified three significant optimization opportunities,

all inside nested loops over a large multidimensional array.

One of these loops zeroed out consecutive values. A second

loop filled part of the same large array with values from

a distribution function, with no obvious opportunities for
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Results for Unoptimized Applications
Benchmark Progress Point Top Optimization

bodytrack TicketDispenser.h:106 ParticleFilter.h:262

canneal annealer thread.cpp:87 netlist elem.cpp:82

facesim taskQDistCommon.c:109 MATRIX 3X3.h:136

freqmine fp tree.cpp:383 fp tree.cpp:301

raytrace BinnedAllDims...:98 RTEmulatedSSE.hxx:784

vips threadgroup.c:360 im Lab2LabQ.c:98

x264 encoder.c:1165 common.c:687

Table 4: The locations of inserted progress points for the remaining

PARSEC benchmarks, and the top optimization opportunities that

COZ identifies. The progress point for raytrace was placed on line

98 of BinnedAllDimsSaveSpace.cxx.

optimization. The third nested loop iterated over the same

array again, but traversed the dimensions in an irregular order.

Reordering these loops and replacing the first loop with a call

to memset sped execution by 15.8%± 1.10%.

Effectiveness Summary. Our case studies confirm that

COZ is effective at identifying optimization opportunities

and guiding performance tuning. In every case, the informa-

tion COZ provided led us directly to the optimization we

implemented. In most cases, COZ identified around 20 lines

of interest, with as many as 50 for larger programs (Mem-

cached and x264). COZ identified optimization opportunities

in all of the PARSEC benchmarks, but some required more

invasive changes that are out of scope for this paper. Table 4

summarizes our findings for the remaining PARSEC bench-

marks. We have submitted patches to the developers of all

the applications we optimized.

4.3 Accuracy
For most of the optimizations described above, it is not

possible to quantify the effect our optimization had on the

specific lines that COZ identified. However, for two of our

case studies—ferret and dedup—we can directly compute

the effect our optimization had on the line COZ identified

and compare the resulting speedup to COZ’s predictions. Our

results show that COZ’s predictions are highly accurate.

To optimize ferret, we increased the number of threads

for the indexing stage from 16 to 22, which increases the

throughput of line 320 by 27%. COZ predicted that this

improvement would result in a 21.4% program speedup,

which is nearly the same as the 21.2% we observe.

For dedup, COZ identified the top of the while loop

that traverses a hash bucket’s linked list. By replacing the

degenerate hash function, we reduced the average number

of elements in each hash bucket from 76.7 to just 2.09. This

change reduces the number of iterations from 77.7 to 3.09
(accounting for the final trip through the loop). This reduction

corresponds to a speedup of the line COZ identified by 96%.

For this speedup, COZ predicted a performance improvement

of 9%, very close to our observed speedup of 8.95%.
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Figure 9: Percent overhead for each of COZ’s possible sources of

overhead. Delays are the overhead due to adding delays for virtual

speedups, Sampling is the cost of collecting and processing samples,

and Startup is the initial cost of processing debugging information.

Note that sampling results in slight performance improvements for

swaptions, vips, and x264.

4.4 Efficiency
We measure COZ’s profiling overhead on the PARSEC bench-

marks running with the native inputs. The sole exception is

streamcluster, where we use the test inputs because execution

time was excessive with the native inputs.

Figure 9 breaks down the total overhead of running COZ

on each of the PARSEC benchmarks by category. The average

overhead with COZ is 17.6%. COZ collects debug information

at startup, which contributes 2.6% to the average overhead.

Sampling during program execution and attributing these

samples to lines using debug information is responsible

for 4.8% of the average overhead. The remaining overhead

(10.2%) comes from the delays COZ inserts to perform virtual

speedups.

These results were collected by running each benchmark

in four configurations. First, each program was run without

COZ to measure a baseline execution time. In the second

configuration, each program was run with COZ, but execution

terminated immediately after startup work was completed.

Third, programs were run with COZ configured to sample

the program’s execution but not to insert delays (effectively

testing only virtual speedups of size zero). Finally, each

program was run with COZ fully enabled. The difference

in execution time between each successive configuration give

us the startup, sampling, and delay overheads, respectively.

Reducing overhead. Most programs have sufficiently long

running times (mean: 103s) to amortize the cost of processing

debug information, but especially large executables can be

expensive to process at startup (x264 and vips, for exam-

ple). COZ could be modified to collect and process debug

information lazily to reduce startup overhead. Sampling over-

head comes mainly from starting and stopping sampling with

the perf event API at thread creation and exit. This cost

could be amortized by sampling globally instead of per-thread,
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which would require root permissions on most machines. If

the perf event API supported sampling all threads in a

process this overhead could be eliminated. Delay overhead,

the largest component of COZ’s total overhead, could be re-

duced by allowing programs to execute normally for some

time between each experiment. Increasing the time between

experiments would significantly reduce overhead, but a longer

profiling run would be required to collect a usable profile.

Efficiency summary. COZ’s profiling overhead is on aver-

age 17.6% (minimum: 0.1%, maximum: 65%). For all but

three of the benchmarks, its overhead was under 30%. Given

that the widely used gprof profiler can impose much higher

overhead (e.g., 6× for ferret, versus 6% with COZ), these

results confirm that COZ has sufficiently low overhead to be

used in practice.

5. Related Work
Causal profiling identifies and quantifies optimization oppor-

tunities, while most past work on profilers has focused on

collecting detailed (though not necessarily actionable) infor-

mation with low overhead.

5.1 General-Purpose Profilers
General-purpose profilers are typically implemented using

instrumentation, sampling, or both. Systems based on sam-

pling (including causal profiling) can arbitrarily reduce probe
effect, although sampling must be unbiased [35].

The UNIX prof tool and oprofile both use sampling ex-

clusively [29, 42]. Oprofile can sample using a variety of

hardware performance counters, which can be used to iden-

tify cache-hostile code, poorly predicted branches, and other

hardware bottlenecks. Gprof combines instrumentation and

sampling to measure execution time [17]. Gprof produces

a call graph profile, which counts invocations of functions

segregated by caller. Cho, Moseley, et al. reduce the overhead

of Gprof’s call-graph profiling by interleaving instrumented

and un-instrumented execution [9]. Path profilers add further

detail, counting executions of each path through a procedure,

or across procedures [2, 6].

5.2 Parallel Profilers
Past work on parallel profiling has focused on identifying

the critical path or bottlenecks, although optimizing the crit-

ical path or removing the bottleneck may not significantly

improve program performance.

Critical path profiling. IPS uses traces from message-

passing programs to identify the critical path, and reports

the amount of time each procedure contributes to the critical

path [34]. IPS-2 extends this approach with limited sup-

port for shared memory parallelism [33, 44]. Other critical

path profilers rely on languages with first-class threads and

synchronization to identify the critical path [21, 37, 40]. Iden-

tifying the critical path helps developers find code where

optimizations will have some impact, but these approaches

to not give developers any information about how much per-

formance gain is possible before the critical path changes.

Hollingsworth and Miller introduce two new metrics to ap-

proximate optimization potential: slack, how much a proce-

dure can be improved before the critical path changes; and

logical zeroing, the reduction in critical path length when

a procedure is completely removed [22]. These metrics are

similar to the optimization potential measured by a causal

profiler, but can only be computed with a complete program

activity graph. Collection of a program activity graph is

costly, and could introduce significant probe effect.

Bottleneck identification. Several approaches have used

hardware performance counters to identify hardware-level

performance bottlenecks [8, 12, 32]. Techniques based on

binary instrumentation can identify cache and heap perfor-

mance issues, contended locks, and other program hotspots [5,

31, 36]. ParaShares and Harmony identify basic blocks that

run during periods with little or no parallelism [25, 26]. Code

identified by these tools is a good candidate for parallelization

or classic serial optimizations. Bottlenecks, a profile analysis

tool, uses heuristics to identify bottlenecks using call-tree

profiles [3]. Given call-tree profiles for different executions,

Bottlenecks can pinpoint which procedures are responsible

for the difference in performance. The FreeLunch profiler

and Visual Studio’s contention profiler identify locks that are

responsible for significant thread blocking time [11, 16]. BIS

uses similar techniques to identify highly contended critical

sections on asymmetric multiprocessors, and automatically

migrates performance-critical code to faster cores [24]. Bottle

graphs present thread execution time and parallelism in a vi-

sual format that highlights program bottlenecks [13]. Unlike

causal profiling, these tools do not predict the performance

impact of removing bottlenecks. All these systems can only

identify bottlenecks that arise from explicit thread commu-

nication, while causal profiling can measure parallel perfor-

mance problems from any source, including cache coherence

protocols, scheduling dependencies, and I/O.

Profiling for parallelization and scalability. Several sys-

tems have been developed to measure potential parallelism in

serial programs [15, 43, 45]. Like causal profiling, these sys-

tems identify code that will benefit from developer time. Un-

like causal profiling, these tools are not aimed at diagnosing

performance issues in code that has already been parallelized.

Kulkarni, Pai, and Schuff present general metrics for avail-

able parallelism and scalability [28]. The Cilkview scalabil-

ity analyzer uses performance models for Cilk’s constrained

parallelism to estimate the performance effect of adding ad-

ditional hardware threads [20]. Causal profiling can detect

performance problems that result from poor scaling on the

current hardware platform.

Time attribution profilers. Time attribution profilers assign

“blame” to concurrently executing code based on what other
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threads are doing. Quartz introduces the notion of “normal-

ized processor time,” which assigns high cost to code that

runs while a large fraction of other threads are blocked [4].

CPPROFJ extends this approach to Java programs with as-

pects [19]. CPPROFJ uses finer categories for time: running,

blocked for a higher-priority thread, waiting on a monitor,

and blocked on other events. Tallent and Mellor-Crummey

extend this approach further to support Cilk programs, with

an added category for time spent managing parallelism [41].

The WAIT tool adds fine-grained categorization to identify

bottlenecks in large-scale production Java systems [1]. Unlike

causal profiling, these profilers can only capture interference

between threads that directly affects their scheduler state.

5.3 Performance Guidance and Experimentation
Several systems have employed delays to extract informa-

tion about program execution times. Mytkowicz et al. use

delays to validate the output of profilers on single-threaded

Java programs [35]. Snelick, JáJá et al. use delays to profile

parallel programs [38]. This approach measures the effect of

slowdowns in combination, which requires a complete exe-

cution of the program for each of an exponential number of

configurations. Active Dependence Discovery (ADD) intro-

duces performance perturbations to distributed systems and

measures their impact on response time [7]. ADD requires a

complete enumeration of system components, and requires

developers to insert performance perturbations manually. Gu-

nawi, Agrawal et al. use delays to identify causal dependen-

cies between events in the EMC Centera storage system to

analyze Centera’s protocols and policies [18]. Song and Lu

use machine learning to identify performance anti-patterns in

source code [39]. Unlike causal profiling, these approaches

do not predict the effect of potential optimizations.

6. Conclusion
Profilers are the primary tool in the programmer’s toolbox for

identifying performance tuning opportunities. Previous pro-

filers only observe actual executions and correlate code with

execution time or performance counters. This information

can be of limited use because the amount of time spent does

not necessarily correspond to where programmers should fo-

cus their optimization efforts. Past profilers are also limited to

reporting end-to-end execution time, an unimportant quantity

for servers and interactive applications whose key metrics of

interest are throughput and latency. Causal profiling is a new,

experiment-based approach that establishes causal relation-

ships between hypothetical optimizations and their effects. By

virtually speeding up lines of code, causal profiling identifies

and quantifies the impact on either throughput or latency of

any degree of optimization to any line of code. Our prototype

causal profiler, COZ, is efficient, accurate, and effective at

guiding optimization efforts.
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