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Abstract

We describe ExCamera, a system that can edit, transform,
and encode a video, including 4K and VR material, with
low latency. The system makes two major contributions.
First, we designed a framework to run general-purpose
parallel computations on a commercial “cloud function”
service. The system starts up thousands of threads in
seconds and manages inter-thread communication.
Second, we implemented a video encoder intended for
fine-grained parallelism, using a functional-programming
style that allows computation to be split into thousands of
tiny tasks without harming compression efficiency. Our
design reflects a key insight: the work of video encoding
can be divided into fast and slow parts, with the “slow”
work done in parallel, and only “fast” work done serially.

1 Introduction

The pace of data analysis and processing has advanced
rapidly, enabling new applications over large data sets.
Providers use data-parallel frameworks such as MapRe-
duce [8], Hadoop [12], and Spark [32] to analyze a variety
of data streams: click logs, user ratings, medical records,
sensor histories, error logs, and financial transactions.

Yet video, the largest source of data transiting the In-
ternet [6], has proved one of the most vexing to analyze
and manipulate. Users increasingly seek to apply com-
plex computational pipelines to video content. Examples
include video editing, scene understanding, object recog-
nition and classification, and compositing. Today, these
jobs often take hours, even for a short movie.

There are several reasons that interactive video-
processing applications have yet to arrive. First, video
jobs take a lot of CPU. In formats like 4K or virtual
reality, an hour of video will typically take more than
30 CPU-hours to process. A user who desires results in a
few seconds would need to invoke thousands of threads
of execution—even assuming the job can be parallelized
into thousands of pieces.

Second, existing video encoders do not permit fine-
grained parallelism. Video is generally stored in com-
pressed format, but unlike the per-record compression
used by data-parallel frameworks [2], video compres-

sion relies on temporal correlations among nearby frames.
Splitting the video across independent threads prevents
exploiting correlations that cross the split, harming com-
pression efficiency. As a result, video-processing systems
generally use only coarse-grained parallelism—e.g., one
thread per video, or per multi-second chunk of a video—
frustrating efforts to process any particular video quickly.
In this paper, we describe ExCamera, a massively par-
allel, cloud-based video-processing framework that we
envision as the backend for interactive video-processing
applications. A user might sit in front of a video-editor in-
terface and launch a query: “render this 4K movie, edited
as follows, and with scenes containing this actor given a
certain color shade.” As with any interactive cloud editor
(e.g. Google Docs), the goal is to execute the task quickly
and make the result immediately accessible online.
ExCamera makes two contributions:

1. A framework that orchestrates general-purpose par-
allel computations across a “cloud function” service
(§ . The advent of such services—AWS Lambda,
Google Cloud Functions, IBM OpenWhisk, and
Azure Functions—permits new models of interactive
cloud computing. A cloud function starts in millisec-
onds and bills usage in fraction-of-a-second incre-
ments, unlike a traditional virtual machine, which
takes minutes to start and has a minimum billing
time of 10 minutes (GCE) or an hour (EC2). Though
these services were designed for Web microservices
and event handlers, AWS Lambda has additional
features that make it more broadly useful: workers
can run arbitrary Linux executables and make net-
work connections. ExCamera invokes thousands of
C++-implemented Lambda functions in seconds.

2. A video encoder intended for massive fine-grained
parallelism (§ B]), built to avoid the traditional com-
promise of parallel video encoding: the inability to
benefit from visual similarities that span parts of
the video handled by different threads. ExCamera
encodes tiny chunks of the video in independent
threads (doing most of the “slow” work in paral-
lel), then stitches those chunks together in a “fast”
serial pass, using an encoder written in explicit state-
passing style with named intermediate states (§ 4).



Summary of results

We characterized ExCamera’s performance and found
that it can summon 3,600 cores (representing about 9
teraFLOPS) within 2.5 seconds of job startup. For video
encoding, we tuned ExCamera and compared it with ex-
isting systems using a 15-minute animated movie in 4K
resolution [20], encoding into the VP8 compressed-video
format [29]. ExCamera achieved comparable compres-
sion to existing systems, at the same quality level relative
to the original uncompressed video, and was many times
faster. The evaluation is fully described in Section|5|

System Bitrate Encode time

at 20 dB SSIM

(lower is better)  (lower is better)
ExCamera[6,16]! 27.4 Mbps 2.6 minutes
ExCamera[6,1]? 43.1 Mbps 0.5 minutes
vpxenc multi-threaded  27.2 Mbps 149 minutes
vpxenc single-threaded ~ 22.0 Mbps 453 minutes
YouTube H.264° n/a 36.5 minutes
YouTube VP9 n/a 417 minutes

Results were similar on a 12-minute live-action 4K
video [23]:

System Bitrate
at 16 dB SSIM

(lower is better)

Encode time

(lower is better)

ExCamera[6,16] 39.6 Mbps 2.2 minutes
ExCameral6,1] 66.0 Mbps 0.5 minutes
vpxenc multi-threaded  36.6 Mbps 131 minutes
vpxenc single-threaded  29.0 Mbps 501 minutes

This paper proceeds as follows. In Section|2, we intro-
duce our framework to execute general-purpose parallel
computations, with inter-thread communication, on AWS
Lambda. We discuss the problem of fine-grained parallel
video encoding in Section |3, and describe ExCamera’s
approach in Section|4. We then evaluate ExCamera’s per-
formance (§ 5), discuss limitations (§ 6), and compare
with related work (§/7).

ExCamera is free software. The source code and evalu-
ation data are available at https://ex.camera.

2 Thousands of tiny threads in the cloud

While cloud services like Amazon EC2 and Google Com-
pute Engine allow users to provision a cluster of powerful
machines, doing so is costly: VMs take minutes to start
and usage is billed with substantial minimums: an hour

1“ExCamera[6,16]” refers to encoding chunks of six frames indepen-
dently in parallel, then stitching them together in strings of 16 chunks.

2Encodes independent chunks of six frames each, without stitching.

3Because YouTube doesn’t encode into the VP8 format at this res-
olution or expose an adjustable quality, we report only the total time
between the end of upload and the video’s availability in each format.

for EC2, or 10 minutes for GCE. This means that a cluster
of VMs is not effective for running occasional short-lived,
massively parallel, interactive jobs.

Recently, cloud providers have begun offering microser-
vice frameworks that allow systems builders to replace
long-lived servers processing many requests with short-
lived workers that are dispatched as requests arrive. As
an example, a website might generate thumbnail images
using a “cloud function,” spawning a short-lived worker
each time a customer uploads a photograph.

Because workers begin their task quickly upon spawn-
ing and usage is billed at a fine grain, these frameworks
show promise as an alternative to a cluster of VMs
for short-lived interactive jobs. On the other hand, mi-
croservice frameworks are typically built to execute asyn-
chronous lightweight tasks. In contrast, the jobs we target
use thousands of simultaneous threads that execute heavy-
weight computations and communicate with one another.

To address this mismatch we built mu, a library for
designing and deploying massively parallel computations
on AWS Lambda. We chose AWS Lambda for several
reasons: (1) workers spawn quickly, (2) billing is in sub-
second increments, (3) a user can run many workers simul-
taneously, and (4) workers can run arbitrary executables.
Other services [4,10, 19] offer the first three, but to our
knowledge none offers the fourth. We therefore restrict
our discussion to AWS Lambda. (In the future it may be
possible to extend mu to other frameworks.)

In the next sections, we briefly describe AWS
Lambda (§ m); discuss the mismatch between Lambda
and our requirements, and the architecture that mu uses to
bridge this gap (§(2.2); detail mu’s software interface
and implementation (§ m; and present microbench-
marks (§ 2.4). We present an end-to-end evaluation of
mu applied to massively parallel video encoding in Sec-
tion[5 and discuss mu’s limitations in Section 6]

2.1 AWS Lambda overview

AWS Lambda is a microservice framework designed to
execute user-supplied Lambda functions in response to
asynchronous events, e.g., message arrivals, file uploads,
or API calls made via HTTP requests. Upon receiving an
event, AWS Lambda spawns a worker, which executes
in a Linux container with configurable resources up to
two, 2.8 GHz virtual CPUs, 1,536 MiB RAM, and about
500 MB of disk space. AWS Lambda provisions addi-
tional containers as necessary in response to demand.

To create a Lambda function, a user generates a pack-
age containing code written in a high-level language (cur-
rently Python, Java, Javascript, or C#) and installs the
package using an HTTP API. Installed Lambda functions
are invoked by AWS Lambda in response to any of a
number of events specified at installation.


https://ex.camera

At the time of writing, AWS Lambda workers us-
ing maximum resources cost 250 uc¢ per 100 ms, or
$0.09 per hour. This is slightly less than the closest AWS
EC2 instance, c3.large, which has the same CPU configu-
ration, about twice as much RAM, and considerably more
storage. While Lambda workers are billed in 100 ms in-
crements, however, EC2 instances are billed hourly; thus,
workers are much less expensive for massively parallel
computations that are short and infrequent.

2.2 Supercomputing as a (u)service

With mu, we use AWS Lambda in a different way than
intended. Instead of invoking workers in response to a
single event, we invoke them in bulk, thousands at a time.
The mismatch between our use case and Lambda’s design
caused several challenges:

1. Lambda functions must be installed before being
invoked, and the time to install a function is much
longer than the time to invoke it.

2. The timing of worker invocations is unpredictable:
workers executing warm (recently invoked) func-
tions spawn more quickly than those running cold
functions (§(2.4). In addition, workers may spawn
out of order.

3. Amazon imposes a limit on the number of workers a
user may execute concurrently.

4. Workers are behind a Network Address Translator
(NAT). They can initiate connections, but cannot
accept them, and so they must use NAT-traversal
techniques to communicate with one another.

5. Workers are limited to five minutes’ execution time.

To illustrate the effect of these limitations, consider a
strawman in which a user statically partitions a computa-
tion among a number of threads, each running a different
computation, then creates and uploads a Lambda function
corresponding to each thread’s work. First, this requires
the user to upload many different Lambda functions,
which is slow (limitation 1). Second, workers will spawn
slowly, because each one is cold (limitation 2). Third, if
there are execution dependencies among the workers, the
computation may deadlock if workers are spawned in a
pathological order and the number of needed workers ex-
ceeds the concurrency limit (limitations 2 and 3). Finally,
workers cannot communicate and must synchronize indi-
rectly, e.g., using the AWS S3 block store (limitation 4).

To address issues 1-4, we make three high-level deci-
sions. First, mu uses a long-lived coordinator that provides
command and control for a fleet of ephemeral workers
that contain no thread-specific logic. Instead, the coordi-
nator steps workers through their tasks by issuing RPC re-

quests and processing the responses. For computations in
which workers consume outputs from other workers, mu’s
coordinator uses dependency-aware scheduling: the coor-
dinator first assigns tasks whose outputs are consumed,
then assigns tasks that consume those outputs. This helps
to avoid deadlock and reduce end-to-end completion time.

Second, all workers in mu use the same generic
Lambda function. This Lambda function is capable of
executing the work of any thread in the computation.
As described above, at run time the coordinator steps
it through its assigned task. This means the user only in-
stalls one Lambda function and thus that workers spawn
quickly because the function remains warm. Third, we use
a rendezvous server that helps each worker communicate
with other workers. The end result is a highly parallel,
distributed, low-latency computational substrate.

This design does not completely sidestep the above lim-
itations. Amazon was willing to increase our concurrent
worker limit only to 1,200 per AWS region (the default is
100). We still need to partition our largest computations
among several regions. In addition, the five-minute worker
timeout seems unavoidable. For ExCamera this limitation
does not cause serious problems since the system aims
for smaller end-to-end latencies, but it prevented us from
benchmarking certain alternative systems (§ B).

2.3 mu software framework

Workers. mu workers are short-lived Lambda function
invocations. When a worker is invoked, it immediately
establishes a connection to the coordinator, which there-
after controls the worker via a simple RPC interface. As
examples, the coordinator can instruct the worker to re-
trieve from or upload to AWS S3; establish connections
to other workers via a rendezvous server; send data to
workers over such connections; or run an executable. For
long-running tasks like transferring data and running exe-
cutables, the coordinator can instruct the worker to run its
task in the background.

The user can include additional executables in the mu
worker Lambda function package (§ mm The worker
executes these in response to RPCs from the coordinator.

Coordinator. The coordinator is a long-lived server (e.g.,
an EC2 VM) that launches jobs and controls their execu-
tion. To launch jobs, the coordinator generates events,
one per worker, using AWS Lambda API calls via
HTTP (§ 2.1). These HTTP requests are a bottleneck
when launching thousands of workers, so the coordinator
uses many parallel TCP connections to the HTTP server
(one per worker) and submits all events in parallel.

The coordinator contains all of the logic associated with

4We statically link these executables to make sure they will run in
the worker’s environment.



a given computation in the form of per-worker finite-state-
machine descriptions. For each worker, the coordinator
maintains an open TLS connection, the worker’s current
state, and its state- transition logic. When the coordinator
receives a message from a worker, it applies the state-
transition logic to that message, producing a new state
and sending the next RPC request to the worker.

Rendezvous. Like the coordinator, the rendezvous server
is long lived. mu’s rendezvous is a simple relay server
that stores messages from workers and forwards them to
their destination. This means that the rendezvous server’s
connection to the workers can be a bottleneck, and thus
fast network connectivity between workers and the ren-
dezvous is required. Future work is implementing a hole-
punching NAT-traversal strategy to address this limitation.

Developing computations with mu. To design a compu-
tation, a user specifies each worker’s sequence of RPC re-
quests and responses in the form of a finite-state machine
(FSM), which the coordinator executes. mu provides a
toolbox of reusable FSM components as a Python library.
These components hide the details of the coordinator’s
communication with workers, allowing a user to describe
workers’ tasks at a higher level of abstraction.

The simplest of mu’s state-machine components repre-
sents a single exchange of messages: the coordinator waits
for a message from the worker, sends an RPC request,
and transitions unconditionally to a new state. For long,
straight-line exchanges, mu can automatically pipeline,
i.e., send several RPCs at once and then await all of the re-
sponses. This is useful if the coordinator’s link to workers
has high latency.

To encode control-flow constructs like if-then-else and
looping, the toolbox includes state combinator compo-
nents. These components do not wait for messages or
send RPCs. Instead, they implement logic that encodes
conditional FSM transitions. As an example, an if-then-
else combinator might check whether a previous RPC
succeeded, only uploading a result to S3 upon success.
In addition to control flow, mu’s state combinators imple-
ment cross-worker synchronization and encode parallel
execution of multiple RPCs.

Implementation details. mu comprises about 2,700
lines of Python and 2,200 lines of C++. Workers mu-
tually authenticate with the coordinator and rendezvous
servers using TLS certificates.

2.4 mu microbenchmarks

In this section, we run microbenchmarks on AWS Lambda
using mu to answer two questions:

1. How does cold vs. warm start affect end-to-end la-
tency for massively parallel jobs using mu?
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Figure 1: Characterization of cold vs. warm startup time. On
a warm start, mu established 3,600 TLS connections to AWS
Lambda, spawned 3,600 workers, and received inbound network
connections from each worker, in under three seconds (§[2.4).
On a cold start, the delay was as long as two minutes.

2. How much computational power can mu provide,
and how quickly, for an embarrassingly parallel job?

In sum, we find that cold starts can introduce minutes
of delay, and that a mu job with thousands of threads
can run at about nine TFLOPS and starts in just a few
seconds when warm. In Section |5, we evaluate mu us-
ing end-to-end benchmarks involving worker-to-worker
communication and synchronization.

Setup and method. In these microbenchmarks, we in-
voke 3,600 workers across eight AWS Lambda regions,
450 workers per region. We choose this number because
it is similar to the largest computations in our end-to-end
evaluation of ExCamera (§ B). Each worker runs with
the maximum allowable resources (§2.1). We run a mu
job on every worker that executes LINPACK [16], a stan-
dard floating-point benchmark that factorizes a random
matrix and uses the result to solve a linear equation. Our
experiments use double-precision floating point and a
5,000 % 5,000 matrix.

Cold and warm start. Figure 1 shows typical worker
startup latency for cold and warm Lambda functions. In
both cases, there is about a 1-second delay while the coor-
dinator establishes many parallel TLS connections to the
AWS Lambda API endpoint. For cold behavior, we install
a new mu worker Lambda function and record the timing
on its first execution. Only a few workers start before
2 seconds, and about 2,300 have started by 5 seconds; this
delay seems to be the result of Lambda’s provisioning ad-
ditional workers. The last 1,300 cold workers are delayed
by more than one minute as a result of rate limiting logic,
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Figure 2: Characterization of floating-point computational
power for an embarrassingly parallel job (after PyWren [14]).
mu starts 3,600 workers in less than 3 seconds. Each worker
executes about 2.5 MFLOPS, for a total of 9 TFLOPS.

which we confirm via the AWS Lambda web interface.
To produce warm behavior, we invoke the same mu
computation three times in succession. The result is that
AWS Lambda provisions many workers and can start them
all very quickly: all 3,600 are started within 3 seconds.

Raw compute power. Figure [2| shows floating-point
computational power versus time for a typical (warm)
execution of the LINPACK benchmark. All workers start
within 3 seconds, and each takes about 3 minutes to
run this benchmark. On average, workers execute about
2500 MFLOPS each, for a total of about 9 TFLOPS.

3 Fine-grained parallel video encoding

The previous section described ExCamera’s execution
engine for running general-purpose parallel jobs with
inter-thread communication on a “cloud function” service.
We now describe the initial application of this framework:
low-latency video encoding to support an interactive ap-
plication. Parallelizing this workload into tiny tasks was a
major focus of our work, because video encoding had not
been considered a finely parallelizable operation without
compromising compression efficiency.

Compressed video accounts for about 70% of consumer
Internet traffic [6]. In digital-video systems, an encoder
consumes raw frames and turns them into a compressed
bitstream. A corresponding decoder converts the bitstream
back to frames that approximate the original input and
can be displayed to the viewer.

Video-compression techniques typically exploit the
correlations between nearby frames. For example, if a
background does not change between two frames, those

sections of the image don’t need to be repeated in the bit-
stream. If part of the image is in motion, the encoder can
still take advantage of the correlation by using “motion-
compensated prediction,” which moves around pieces of
earlier frames to produce an approximation of the new
frame. An encoder spends most of its CPU time searching
for such correlations to reduce the size of the output.

These techniques cause compressed frames to depend
on one another in a way that makes it impossible to start
decoding in midstream. In practice, however, applications
often want to start in midstream. For example, a television
viewer may change the channel, or a YouTube or Netflix
client may want to switch to a higher-quality stream.

To allow this, video encoders insert Stream Access
Points in the compressed bitstream—one at the beginning,
and additional ones in the middle. A Stream Access Point
resets the stream and serves as a dependency barrier: the
decoder can begin decoding the bitstream at a Stream
Access Point, without needing access to earlier portions
of the bitstream. The same concepﬁ goes by different
names in different video formats: a “closed Group of Pic-
tures” (MPEG-2 [17]), an “Instantaneous Display Refresh”
(H.264 [11]), or a “key frame” (VP8/VP9 [26,129]). We
use the term “key frame” in this paperE

Chunks of compressed video separated by a key frame
are essentially independent. This can be useful in parallel
video encoding. Each thread can encode a different range
of the video’s frames, outputting its own compressed bit-
stream independently, without making reference to com-
pressed frames in another thread’s portion. The resulting
bitstreams can simply be concatenated.

But key frames incur a significant cost. As an example,
a raw frame of 4K video is about 11 megabytes. After
compression in the VP8 format at 15 Mbps, a key frame
is typically about one megabyte long. If the video content
stays on the same scene without a cut, subsequent frames—
those allowed to depend on earlier frames—will be about
10-30 kilobytes. Spurious insertion of key frames signifi-
cantly increases the compressed bitrate.

This phenomenon makes low-latency parallel video
encoding difficult. To achieve good compression, key
frames should only be inserted rarely. For example, sys-
tems like YouTube use an interval of four or five seconds.
If frames within each chunk are processed serially, then
multi-second chunks make it challenging to achieve low-
latency pipelines, especially when current encoders pro-
cess 4K videos at roughly 1/30th (VP8) or 1/100th (VP9)
of real time on an x86-64 CPU core. In the next section,
we describe how ExCamera addresses this difficulty.

SFormally, a Stream Access Point of type 1 or type 2 [18].

6An “I-frame” is not the same concept: in MPEG standards, I-
pictures depend on compression state left behind by previous elements
in the bitstream, and do not prevent subsequent frames from depending
on the image content of earlier frames.



4 ExCamera’s video encoder

ExCamera is designed to achieve low latency with fine-
grained parallelism. Our encoder reflects one key insight:
that the work of video encoding can be divided into fast
and slow parts, with the “slow” work done in parallel
across thousands of tiny threads, and only “fast” work
done serially. The slower the per-frame processing—e.g.,
for pipelines that use 4K or 8K frames or sophisticated
video compression, or that run a computer-vision analy-
sis on each frame—the more favorable the case for fine-
grained parallelism and for our approach.

ExCamera first runs thousands of parallel vpxenc pro-
cesses (Google’s optimized encoder), each charged with
encoding just % second, or six frames, of videom Each
vpxenc output bitstream begins with a key frame. Each
thread then re-encodes the first frame, using ExCamera’s
own video encoder, to remove the key frame and take ad-
vantage of correlations with the previous thread’s portion
of the video. Finally, in a serial step, the system “rebases’
each frame on top of the previous one, stitching together
chains of 16 chunks. The result is a video that only incurs
the penalty of a key frame every four seconds, similar to
the interval used by YouTube and other systems.

1)

We refer to this algorithm as “ExCamera[6,16],” mean-
ing it stitches together chains of 16 six-frame chunks. In
our evaluation, we profile several settings of these pa-
rameters, including ones that simply use naive parallel
encoding without stitching (e.g., “ExCamera[6,1]”). Ex-
Camera has been implemented with the VP8 format, but
we believe the “rebasing” technique is general enough to
work with any recent compressed-video format.

Overview of approach. ExCamera encodes videos us-
ing a parallel-serial algorithm with three major phases:

1. (Parallel) Each thread runs a production video en-
coder (vpxenc) to encode six compressed frames,
starting with a large key frame.

2. (Parallel) Each thread runs our own video encoder
to replace the initial key frame with one that takes
advantage of the similarities with earlier frames.

3. (Serial) Each thread “rebases” its chunk of the video
onto the prior thread’s output, so that the chunks can
be played in sequence by an unaltered VP8 decoder
without requiring a key frame in between.

In this section, we describe the video-processing prim-

itives we built to enable this algorithm (§ 4.1-4.3) and
then specify the algorithm in more detail (§ 4.4).

7Major motion pictures are generally shown at 24 frames per second.

4.1 Video in explicit state-passing style

Traditional video encoders and decoders maintain a sub-
stantial amount of opaque internal state. The decoder
starts decoding a sequence of compressed frames at the
first key frame. This resets the decoder’s internal state.
From there, the decoder produces a sequence of raw
images as output. The decoder’s state evolves with the
stream, saving internal variables and copies of earlier de-
coded images so that new frames can reference them to
exploit their correlations. There is generally no way to im-
port or export that state to resume decoding in midstream.

Encoders also maintain internal state, also with no in-
terface to import or export it. A traditional encoder begins
its output with a key frame that initializes the decoder.

For ExCamera, we needed a way for independent en-
coding threads to produce a small amount of compressed
output each, without beginning each piece with a key
frame. The process relies on a “slow” but parallel phase—
compressing each video frame by searching for corre-
lations with recent frames—and a “fast” serial portion,
where frames are “rebased” to be playable by a decoder
that just finished decoding the previous thread’s outputl§

To allow ExCamera to reason about the evolution of
the decoder as it processes the compressed bitstream, we
formulated and implemented a VP8 encoder and decoder
in explicit state-passing style. A VP8 decoder’s state con-
sists of the probability model—tables that track which
values are more likely to be found in the video and there-
fore consume fewer bits of output—and three reference
images, raw images that contain the decoded output of
previous compressed frames:

state := (prob_model, references[3])

Decoding takes a state and a compressed frame, and
produces a new state and a raw image for display:

decode(state, compressed_frame) — (state’, image)

ExCamera’s decode operator is a deterministic pure
function; it does not have any implicit state or side effects.
The implementation is about 7,100 lines of C++11, plus
optimized assembly routines borrowed from Google’s
libvpx where possible. Our implementation passes the
VP8 conformance tests.

4.2 What’s in a frame?

A compressed frame is a bitstring, representing either a
key frame or an “interframe.” A key frame resets and

8We use the term by analogy to Git, where commits may be written
independently in parallel, then “rebased” to achieve a linear history [5].
Each commit is rewritten so as to be applicable to a source-code reposi-
tory in a state different from when the commit was originally created.



initializes the decoder’s state:
decode(any state, key_frame) — (state’, image)

An interframe does depend on the decoder’s state, be-
cause it re-uses portions of the three reference images. An
interframe contains a few important parts:

interframe :=

(prediction_modes, motion_vectors, res idue)

The goal of an interframe is to be as short as possible,
by exploiting correlations between the intended output
image and the contents of the three reference slots in the
decoder’s state. It does that by telling the decoder how to
assemble a “prediction” for the output image. Every 4x4-
pixel square is tagged with a prediction mode describing
where to find visually similar material: either one of the
three references, or elsewhere in the current frame.

For prediction modes that point to one of the three
references, the 4x4-pixel square is also tagged with a
motion vector: a two-dimensional vector, at quarter-pixel
precision, that points to a square of the reference image
that will serve as the prediction for this square.

When decoding an interframe, the decoder uses the
prediction modes and motion vectors to assemble the
motion-compensated prediction image. It then adds the
residue—an overlay image that corrects the prediction—
applies a smoothing filter, and the result is the output
image. The interframe also tells the decoder how to update
the probability model, and which reference slots in the
state object should be replaced with the new output image.

The goal is for the prediction to be as accurate as possi-
ble so the residue can be coded in as few bits as possible.
The encoder spends most of its time searching for the best
combination of prediction modes and motion vectors.

4.3 Encoding and rebasing

ExCamera’s main insight is that the hard part of encoding
an interframe—finding the best prediction modes and mo-
tion vectors—can be run in parallel, while the remaining
work of calculating the residue is fast enough to be seri-
alized. This enables most of the work to be parallelized
into tiny chunks, without requiring a large key frame at
the start of each thread’s output.

To do this, we had to implement two more VP8 opera-
tions, in about 3,400 lines of C++11. The first is a video
encoder that can start from an arbitrary decoder state:

encode-given-state(state, image, qualiry) — interframe

This routine takes a state (including the three reference
images), and a raw input image, and searches for the best
combination of motion vectors and prediction modes so

that the resulting interframe approximates the original
image to a given fidelity.

Our encoder is not as good as Google’s vpxenc, which
uses optimized vector assembly to search for the best
motion vectors. Compared with vpxenc, “encode-given-
state” is much slower and produces larger output for the
same quality (meaning, similarity of the decoder’s output
image to the input image). However, it can encode given
an externally supplied state, which allows the key frame at
the start of each chunk to be replaced with an interframe
that depends on the previous thread’s portion of the video.

The second operation is a “rebase” that transforms
interframes so they can be applied to a different state than
the one they were originally encoded for:

rebase(state, image, interframe) — interframe’

While encode-given-state creates a compressed frame
de novo, a rebase is a transformation on compressed
frames, taking advantage of calculations already done.
Rebasing involves three steps:

1. Don’t redo the slow part. Rebasing adopts verba-
tim the prediction modes and motion vectors from
the original interframe.

2. Apply motion prediction to new state. Rebasing
applies those prediction modes and motion vectors
to the new state object, producing a new motion-
compensated prediction image.

3. Recalculate residue given original target image.
Rebasing subtracts the motion-compensated predic-
tion image from the original input to the encoder:
the raw target image that was taken “ex camera,”
i.e., directly from the camera. This “fast” subtraction
produces a new residue, which is encoded into the
output interframe’.

4.4 The parallel-serial algorithm

We now describe an ExCamera[ N, x] encoder pipeline.
The algorithm works separately on batches of x threads,
each handling N frames, so the entire batch accounts for
N - x frames and will contain only one key frame. For
example, the ExCamera[6,16] algorithm uses batches of
96 frames each (meaning there will be one key frame
every four seconds). Batches are run in parallel. Within
each batch, the x threads proceed as follows:

1. (Parallel) Each thread downloads an N -image chunk
of raw video. At the resolution of a 4K widescreen
movie, each image is 11 megabytes.

2. (Parallel) Each thread runs Google’s vpxenc VP8
encoder. The output is N compressed frames: one
key frame (typically about one megabyte) followed
by N —1 interframes (about 10-30 kilobytes apiece).



3. (Parallel) Each thread runs ExCamera’s decode op-
erator N times to calculate the final state, then sends
that state to the next thread in the batch.

4. (Parallel) The first thread is now finished and up-
loads its output, starting with a key frame. The
other x — 1 threads run encode-given-state to en-
code the first image as an interframe, given the state
received from the previous thread. The key frame
from vpxenc is thrown away; encode-given-state
works de novo from the original raw imageP

5. (Serial) The first remaining thread runs rebase to
rewrite interframes 2..N in terms of the state left be-
hind by its new first frame. It sends its final state to
the next thread, which runs rebase to rewrite all its
frames in terms of the given state. Each thread con-
tinues in turn. After a thread completes, it uploads
its transformed output and quits.

The basic assumption of this process is that rebasing
(recalculating residues by subtracting the prediction from
the intended image) can be done quickly, while the dif-
ficult work of searching for correlations, and therefore
motion vectors, can be done in parallel.

5 Evaluation

We evaluated the ExCamera encoder, running on AWS
Lambda in the mu framework, on four metrics: (1) job
completion time, (2) bitrate of the compressed output,
(3) quality of the output, compared with the original, (4)
monetary cost of execution.

In summary, ExCamera achieved similar bitrates and
quality as a state-of-the-art video encoder—Google’s
vpxenc running with multi-threading on a 128-core
machine—while running about 60X faster. Pipelines
with fine-grained parallelism and rebasing (e.g. ExCam-
era[6,16]) achieved similar results to pipelines with
coarser-grained parallelism and no rebasing (e.g. ExCam-
era[24,1]). Our tests were performed on two open-source
movies that are available in uncompressed 4K raw for-
mat: the 15-minute animated “Sintel” (2010) [20], and
the 12-minute live-action “Tears of Steel” (2012) [23].

5.1 Methods and metrics

To set up the evaluation, we built and executed a mu
pipeline (§ to convert the raw frames of Sintel—
distributed as individual PNG files—into chunks of raw
images in the yuv4mpeg 8-bit 4:2:0 formatlW Each chunk
was uploaded to Amazon S3. To stay under Amazon’s

9We do use the quality, or quantization, settings chosen by vpxenc
for key frames and interframes to select the quality of the new interframe.
10«Tears of Steel” was already available in this format.
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Figure 3: Structural similarity (SSIM) [28] correlates with per-
ceived image quality.

limit of 1,200 concurrent workers per AWS region, we
spread the workers and the movies across four regions.

Our evaluation uses two other mu pipelines. The first
implements the ExCamera[N,x] video-encoding algo-
rithm described in § 4.4/ We partitioned the encoding job
into four large pieces, each accounting for a quarter of the
movie, and ran one piece in each region. Within a region,
the algorithm runs x-thread batches independently in par-
allel. Each batch produces N - x frames of compressed
video, the first of which is a key frame.

Within each batch, the mu coordinator assigns tasks
with awareness of the serial data-dependency relation-
ships of the encoding algorithm: each thread depends
on state objects calculated by the previous thread in the
batch. Thus, as workers spawn, the coordinator assigns
tasks to batches in a round-robin fashion: all of the first
threads across all batches, then all of the second threads,
etc. This maximizes the likelihood that threads will make
continuous forward progress, avoiding stalls.

The final mu pipeline collects additional performance
metrics, defined as follows:

Latency: Total time-to-completion, starting when the
coordinator is launched, and ending when all threads have
finished uploading compressed output to S3.

Bitrate: Total compressed size divided by duration.

Quality: Fidelity of the compressed frames to the orig-
inal raw frames. We use the quality metric of struc-
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Figure 4: Execution of the ExCamera[6,16] encoder (§ ’ﬂ) for
atypical 16-thread batch on a warm start. At two points in the
computation, a thread may have to “wait” for state from the
thread above. The “slow” work of searching for motion vectors
and prediction modes (vpxenc and encode-given-state) runs in
parallel. The “fast” rebasing step runs serially.

tural similarity (SSIM) [28], calculated by the Xiph
dump_ssim tool [7]. Figure|3 illustrates how SSIM corre-
lates with perceived image quality.

5.2 Baselines

We benchmarked a range of ExCamera[ N, x] pipelines
against two alternative VP8 encoding systems:

1. vpx (single-threaded): vpxenc, running in single-
threaded mode on an Amazon EC2 c3.8xlarge in-
stance with a 2.8 GHz Intel Xeon E5-2680 v2 CPU.
The source material was on a local SSD RAID array.
Encoded output was written to a RAM disk.

This represents the best possible compression and
quality that can be achieved with a state-of-the-art
encoder, but takes about 7.5 hours to encode Sintel.

2. vpx (multi-threaded): vpxenc in multi-threaded
mode and configured to use all cores, running on
the same kind of instance as above. This represents
a common encoding configuration, with reasonable
tradeoffs among compression, quality, and speed.
Encoding Sintel takes about 2.5 hours. We also ran
vpxenc on a 128-core x1.32xlarge machine, with
the same results. vpxenc’s style of multi-threading
parallelizes compression within each frame, which
limits the granularity of parallelism.

5.3 Results

Microbenchmark. We first present a breakdown of the
time spent by an ExCamera[6,16] encoder. This serves
as a microbenchmark of the mu system and of the algo-
rithm. Figure[4|shows the results of a typical batch. mu’s
dependency-aware scheduler assigns the first worker that

AWS Lambda spawns to a task whose output will be con-
sumed by later-spawning workers. The figure shows that
the total amount of “slow” work dwarfs the time spent on
rebasing, but the serial nature of the rebasing step makes
it account for most of the end-to-end completion time.
The analysis confirms that our own encode routine
(encode-given-state) is considerably slower than Google’s
vpxenc, especially as the latter is encoding six frames
and our routine only one. This suggests ExCamera has
considerable room for optimization remaining.

Encoder performance. We ran ExCamera and the base-
lines with a variety of encoding parameters, resulting in a
range of quality-to-bitrate tradeoffs for each approach.
Figure 5| shows the results. As expected, vpx (single-
threaded) gives the best quality at a given bitrate, and
naive parallelism (ExCamera[6,1]) produces the worst.
On the animated movie, ExCamera[6,16] performs as
well as multi-threaded vpxenc, giving within 2% of the
same quality-to-bitrate tradeoff with a much higher de-
gree of parallelism. On the live-action movie, ExCamera
is within 9%.

We also measured each approach’s speed. We chose a
particular quality level: for Sintel, SSIM of 20 dB, rep-
resenting high quality, and for Tears of Steel, SSIM of
16 dB. We ran ExCamera with a range of settings that
produce this quality, as well as the baselines, to compare
the tradeoffs of encoding speed and compressed bitrate.
We took the median of at least three runs of each scheme
and linearly interpolated time and bitrate between runs
at adjacent quality settings when we could not achieve
exactly the target quality.

Figure 6| shows the results. ExCamera sweeps out a
range of tradeoffs between 60X to 300x faster than multi-
threaded vpxenc, with compression that ranges between
10% better and 80% worse. In some cases, pipelines
with coarser-grained parallelism and no rebasing (e.g. Ex-
Camera[24,1]) outperformed pipelines with finer-grained
parallelism and rebasing (e.g. ExCamera[6,16]). This
suggests inefficiency in our current implementation of
encode-given-state and rebase that can be improved
upon, but at present, the value of fine-grained parallelism
and rebasing may depend on whether the application
pipeline includes other costly per-frame processing, such
as a filter or classifier, in addition to compressing the
output. The costlier the per-frame computation, the more
worthwhile it will be to use fine-grained threads.

YouTube measurement. To compare against a commer-
cial parallel encoding system, we uploaded the official
H.264 version of Sintel, which is 5.1 GiB, to YouTube.
YouTube appears to insert key frames every 128 frames,
and we understand that YouTube parallelizes at least some
encoding jobs with the same granularity. The upload
took 77 seconds over a gigabit Ethernet connection from
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Figure 5: Quality vs. bitrate for four VP8 video encoders on the two 4K movies. ExCamera[6,16] achieves within 2% (Sintel) or 9%
(Tears of Steel) of the performance of a state-of-the-art encoder (multi-threaded vpxenc) with a much higher degree of parallelism.

Stanford. We ran youtube-dl --list-formats every
five seconds to monitor the availability of the processed
versions. Counting from the end of the upload, it took
YouTube 36.5 minutes until a compressed H.264 version
was available for playback. It took 417 minutes until a
compressed VP9 version was available for playback.

Because YouTube does not encode 4K VP8 content,
and does not have adjustable quality, these figures cannot
be directly compared with those in Figure|6. However,
they suggest that even in systems that have no shortage
of raw CPU resources, the coarse granularity of available
parallelism may be limiting the end-to-end latency of
user-visible encoding jobs.

Cost. At AWS Lambda’s current pricing, it costs about
$5.40 to encode the 15-minute Sintel movie using the Ex-
Camera[6,16] encoder. The encoder runs 3,552 threads,
each processing % second of the movie. The last thread
completes after 2.6 minutes, but because workers quit as
soon as their chunk has been rebased and uploaded, the
average worker takes only 60.4 seconds. In a long chain
of rebasing, later threads spend much of their time waiting
on predecessors (Figure|4). A more-sophisticated launch-
ing strategy could save money, without compromising
completion time, by delaying launching these threads.

6 Limitations and future work

At present, ExCamera has a number of limitations in its
evaluation, implementation, and approach. We discuss
these in turn.

6.1 Limitations of the evaluation

Only evaluated on two videos. We have only character-
ized ExCamera’s performance on two creative-commons
videos (one animated, one live-action). While these are
widely used benchmarks for video encoders, this may
have more to do with their availability in uncompressed
formats than suitability as benchmarks. We will need to
verify experimentally that ExCamera’s results generalize.

If everybody used Lambda as we do, would it still
be as good? To the best of our knowledge, ExCamera
is among the first systems to use AWS Lambda as a
supercomputer-by-the-second. ExCamera slams the sys-
tem with thousands of TLS connections and threads start-
ing at once, a workload we expect not to be characteristic
of other customers. We don’t know if Lambda would con-
tinue to provide low latencies, and maintain its current
pricing, if ExCamera-like workloads become popular.

6.2 Limitations of the implementation

encode-given-state is slow and has poor compression
efficiency. The microbenchmark of Figure 4 and other
measurements suggest there is considerable room for op-
timization in our encode-given-state routine (§ 4.4). This
is future work. We explored building further on vpxenc
so as to avoid using our own de novo encoder at all, but
did not achieve an improvement over the status quo.

Pipeline specification is complex. In addition to parallel
video compression, ExCamera supports, in principle, a
range of pipeline topologies: per-image transformations
followed by encoding, operations that compose multiple
input frames, edits that rearrange frames, and computer-
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Figure 6: Bitrate vs. encoding speed, at constant quality relative to the original movie. ExCamera sweeps out a range of tradeoffs.

vision analyses on each frame. We are working to design
a pipeline-description language to specify jobs at a higher
level of abstraction.

Worker failure Kills entire job. Because ExCamera’s
jobs run for only a few minutes, and the mu framework
only assigns tasks to Lambda workers that successfully
start up and make a TLS connection back to the coordi-
nator, mu does not yet support recovery from failure of
a Lambda worker in the middle of a task. Producing Fig-
ure|6 required 640 jobs, using 520,000 workers in total,
each run for about a minute on average. Three jobs failed.

ExCamera encodes VP8. What about newer formats?
It took considerable effort to implement a VP8 decoder,
encoder, and rebase routine in explicit state-passing style.
ExCamera only works with this format, which was de-
signed in 2008 and has been largely superseded by the
newer VP9. Although Google released a VP9 version of
vpxenc in 2013, the VP9 specification was not released
until April 2016. To the best of our knowledge, there has
not yet been an independent implementation of VP9
We believe the rebasing technique is general enough to
work with VP9 and other current formats, but hesitate to
predict the efficacy without an empirical evaluation. We
hope to persuade implementers of the benefit of ExCam-
era’s explicit-state-passing style and to provide a similar
interface themselves.

6.3 Limitations of the approach

Many video jobs don’t require fine-grained paral-
lelism. ExCamera is focused on video pipelines where

ITExisting software implementations have been written by Google
employees or by former employees who worked on vpxenc.

the processing of a single frame consumes a large amount
of CPU resources—e.g., encoding of large (4K or VR)
frames, expensive computer-vision analyses or filtering,
etc. Only in these cases is it worthwhile to parallelize pro-
cessing at granularities finer than the practical key-frame
interval of a few seconds. For encoding “easier” content
(e.g., standard-definition resolutions) without extensive
per-frame computation, it is already possible to run a
naively parallel approach on multi-second chunks with
acceptable end-to-end latency. Figure 6/shows that if the
application is simply encoding video into the VP8 format,
with no expensive per-frame processing that would bene-
fit from fine-grained parallelism, pipelines with coarser
granularity and no rebasing (e.g. ExCamera[24,1]) can
sometimes perform as well as pipelines with finer granu-
larity and rebasing (e.g., ExCamera[6,16]).

Assumes video is already in the cloud. We assume that
the source material for a video pipeline is already in the
cloud and accessible to the workers—in our cases, loaded
into S3, either in raw format (as we evaluated) or com-
pressed into small chunks. Many video pipelines must
deal with video uploaded over unreliable or challenged
network paths, or with compressed source video that is
only available with infrequent Stream Access Points.

7 Related work

Data-processing frameworks. Batch-processing frame-
works such as MapReduce [8], Hadoop [12], and
Spark [32] are suited to tasks with coarse-grained par-
allelism, such as mining error logs for abnormal patterns.
In these tasks, each thread processes an independent sub-
set of the data. It is challenging to express video encoding



within these frameworks, because video compression de-
pends on exploiting the correlations among frames.

A number of additional distributed-computing frame-
works have been proposed that implement pipeline-
oriented computation. Apache Tez [24] and Dryad [13]
support arbitrary DAG-structured computation, with data
passed along edges in a computation graph. Such systems
could be used to support video-processing pipelines.

Cloud computing. Data-processing frameworks today
rely on computational substrates such as Amazon EC2
and Microsoft Azure, which provide heavyweight vir-
tualization through virtual machines that run an entire
operating system. In contrast, ExCamera relies on AWS
Lambda’s cloud functions, which provides lightweight
virtualization. For the same monetary cost, it can access
many more parallel resources, and can start and stop them
faster. To our knowledge, ExCamera is the first system
to use such cloud functions for compute-heavy tasks,
such as video encoding; current uses [25] are focused
on server-side scripts for Web microservices and asyn-
chronous event handlers.

After the submission of this paper, we sent a preprint
to a colleague who then developed PyWren [14,[15], a
framework that executes thousands of Python threads on
AWS Lambda. Our Figure |2/ was inspired by a similar
measurement in [14]. ExCamera’s mu framework differs
from PyWren in its focus on heavyweight computation
with C++-implemented Linux threads and inter-thread
communication.

Parallel video encoding. Parallel video encoding has
a substantial literature. Broadly speaking, existing ap-
proaches use one of two techniques: intra-frame paral-
lelism, where multiple threads operate on disjoint areas
of the same frame [3,27,31], or frame parallelism, where
each thread handles a different range of frames [1, 22, 30].

Intra-frame parallelism is widely used to enable real-
time encoding and decoding with small numbers of
threads. This kind of parallelism does not scale with the
length of a video, and in practice cannot be increased
beyond tens of threads without severely compromising
compression efficiency. This limits the speedup available.

Frame parallelism can scale with the length of a videos,
but also sacrifices coding efficiency at higher degrees of
parallelism (§ 3). Some prior systems [9] employ frame
parallelism by searching for natural locations to place key
frames, then encoding the ranges between pairs of key
frames independently. These systems operate at coarse
granularity: thousands of frames per worker. The goal of
ExCamera’s encoder is to exploit fine-grained parallelism
without sacrificing coding efficiency.

Reusing prior encoding decisions. ExCamera’s frame-
rebasing technique involves transforming an interframe
into a new interframe, preserving the motion vectors and

prediction modes from an earlier encoding, but recalculat-
ing the residue so that the frame can be applied to a new
decoder state.

The idea of preserving motion vectors and prediction
modes to save CPU is not new: similar techniques have
a long history in the context of real-time transcoding
(e.g., [21]), where one input stream of compressed video
is turned into several output streams at varying bitrates. In
these systems, the original motion vectors and prediction
modes can be reused across each of the output streams.
However, to the best we have been able to determine,
ExCamera is the first system to use this idea to enable
low-latency parallel video encoding.

8 Conclusion

ExCamera is a cloud-based video-processing framework
that we envision as the backend for interactive video ap-
plications. It can edit, transform, and encode a video,
including 4K and VR material, with low latency.

The system makes two major contributions: a frame-
work to run general-purpose parallel computations on a
commercial “cloud function” service with low latency,
and a video encoder built with this framework that
achieves fine-grained parallelism without harming com-
pression efficiency.

ExCamera suggests that an explicit state-passing style,
which exposes the internal state of a video encoder and
decoder, is a useful interface that can enable substantial
gains for video-processing workloads—applications that
will only grow in importance. We encourage the develop-
ers of video codecs to implement such abstractions.
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Appendix: vpxenc command lines

We used vpxenc 1.6.0 (Sintel) and 1.6.1 (Tears of Steel)
with the below command-line arguments in our evalua-
tions (§ . $QUALITY is a parameter that indicates the
target quality of the compressed video; it ranges from 0
(best) to 63 (worst). When running vpx multi-threaded,
$NPROC is set to 31 (one fewer than the number of cores,
as recommended in the documentation) and $TOK_PARTS
is set to 3. When running single-threaded, they are set to
1 and O, respectively.

vpxenc --codec=vp8 \
--good \
--cpu-used=0 \
--end-usage=cq \
--min-g=0 \
--max-q=63 \
--buf-initial-sz=10000 \
--buf-optimal-sz=20000 \
--buf-sz=40000 \
--undershoot-pct=100 \
--passes=2 \
--auto-alt-ref=1 \
--tune=ssim \
--target-bitrate=4294967295 \
--cq-1level=$QUALITY \
--threads=$NTHREADS \
--token-parts=$TOK_PARTS \
-0 output_file \
input.y4m
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