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Abstract

This paper examines the workload of Facebook’s photo-
serving stack and the effectiveness of the many layers
of caching it employs. Facebook’s image-management
infrastructure is complex and geographically distributed.
It includes browser caches on end-user systems, Edge
Caches at ~20 PoPs, an Origin Cache, and for some
kinds of images, additional caching via Akamai. The
underlying image storage layer is widely distributed, and
includes multiple data centers.

We instrumented every Facebook-controlled layer of
the stack and sampled the resulting event stream to obtain
traces covering over 77 million requests for more than
1 million unique photos. This permits us to study traf-
fic patterns, cache access patterns, geolocation of clients
and servers, and to explore correlation between proper-
ties of the content and accesses. Our results (1) quantify
the overall traffic percentages served by different layers:
65.5% browser cache, 20.0% Edge Cache, 4.6% Origin
Cache, and 9.9% Backend storage, (2) reveal that a signif-
icant portion of photo requests are routed to remote PoPs
and data centers as a consequence both of load-balancing
and peering policy, (3) demonstrate the potential perfor-
mance benefits of coordinating Edge Caches and adopting
S4LRU eviction algorithms at both Edge and Origin lay-
ers, and (4) show that the popularity of photos is highly
dependent on content age and conditionally dependent
on the social-networking metrics we considered.

1 Introduction

The popularity of social networks has driven a dramatic
surge in the amount of user-created content stored by
Internet portals. As a result, the effectiveness of the
stacks that store and deliver binary large objects (blobs)
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has become an important issue for the social network
provider community [2, 3]. While there are many forms
of digital content, media binaries such as photos and
videos are the most prevalent and will be our focus here.

Our paper explores the dynamics of the full Face-
book photo-serving stack, from the client browser to
Facebook’s Haystack storage server, looking both at
the performance of each layer and at interactions be-
tween multiple system layers. As in many other set-
tings [1, 7, 8, 11, 13, 17, 18, 19, 22, 23], the goal of
this study is to gain insights that can inform design de-
cisions for future content storage and delivery systems.
Specifically, we ask (1) how much of the access traffic
is ultimately served by the Backend storage server, as
opposed to the many caching layers between the browser
and the Backend, (2) how requests travel through the
overall photo-serving stack, (3) how different cache sizes
and eviction algorithms would affect the current perfor-
mance, and (4) what object meta data is most predictive
of subsequent access patterns.

Our study addresses these questions by collecting and
correlating access records from multiple layers of the
Facebook Internet hierarchy between clients and Backend
storage servers. The instrumented components include
client browsers running on all desktops and laptops ac-
cessing the social network website, all Edge cache hosts
deployed at geographically distributed points of presence
(PoP), the Origin cache in US data centers, and Backend
servers residing in US data centers. This enabled us to
study the traffic distribution at each layer, and the rela-
tionship between the events observed and such factors as
cache effects, geographical location (for client, Edge PoP
and data center) and content properties such as content
age and the owner’s social connectivity. This data set
also enables us to simulate caching performance with
various cache sizes and eviction algorithms. We focus
on what we identified as key questions in shaping a new
generation of content-serving infrastructure solutions.

1. To the best of our knowledge, our paper is the first
study to examine an entire Internet image-serving
infrastructure at a massive scale.

2. By quantifying layer-by-layer cache effectiveness,
we find that browser caches, Edge caches and the
Origin cache handle an aggregated 90% of the traffic.
For the most-popular 0.03% of content, cache hit
rates neared 100%. This narrow but high success
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rate reshapes the load patterns for Backend servers,
which see approximately Zipfian traffic but with
Zipf coefficient @ diminishing deeper in the stack.

3. By looking at geographical traffic flow from clients
to Backend, we find that content is often served
across a large distance rather than locally.

4. We identify opportunities to improve cache hit ra-
tios using geographic-scale collaborative caching at
Edge servers, and by adopting advanced eviction
algorithms such as S4LRU in the Edge and Origin.

5. By examining the relationship between image ac-
cess and associated meta-data, we find that content
popularity rapidly drops with age following a Pareto
distribution and is conditionally dependent on the
owner’s social connectivity.

The paper is organized as follows. Section 2 presents
an overview of the Facebook photo serving-stack, high-
lighting our instrumentation points. Section 3 describes
our sampling methodology. After giving a high level
overview of the workload characteristics and current
caching performance in Section 4, Sections 5, 6, and
7 further break down the analysis in three categories: ge-
ographical traffic distribution, potential improvements,
and traffic association with content age and the content
owners’ social connectivity. Related work is discussed in
Section 8 and we conclude in Section 9.

2 Facebook’s Photo-Serving Stack

As today’s largest social-networking provider, Facebook
stores and serves billions of photos on behalf of users. To
deliver this content efficiently, with high availability and
low latency, Facebook operates a massive photo-serving
stack distributed at geographic scale. The sheer size of the
resulting infrastructure and the high loads it continuously
serves make it challenging to instrument. At a typical
moment in time there may be hundreds of millions of
clients interacting with Facebook Edge Caches. These are
backed by Origin Cache and Haystack storage systems
running in data centers located worldwide. To maximize
availability and give Facebook’s routing infrastructure
as much freedom as possible, all of these components
are capable of responding to any photo-access request.
This architecture and the full life cycle of a photo request
are shown in Figure 1; shaded elements designate the
components accessible in this study.

2.1 The Facebook Photo-Caching Stack

When a user receives an HTML file from Facebook’s
front-end web servers (step 1), a browser or mobile client
app begins downloading photos based on the embedded
URLs in that file. These URLs are custom-generated
by web servers to control traffic distribution across the
serving stack: they include a unique photo identifier,

specify the display dimensions of the image, and encode
the fetch path, which specifies where a request that misses
at each layer of cache should be directed next. Once there
is a hit at any layer, the photo is sent back in reverse along
the fetch path and then returned to the client.

There are two parallel stacks that cache photos, one
run by Akamai and one by Facebook. For this study,
we focus on accesses originating at locations for which
Facebook’s infrastructure serves all requests, ensuring
that the data reported here has no bias associated with
our lack of instrumentation for the Akamai stack. The
remainder of this section describes Facebook’s stack.

There are three layers of caches in front of the backend
servers that store the actual photos. These caches, ordered
by their proximity to clients, are the client browser’s
cache, an Edge Cache, and the Origin Cache.

Browser The first cache layer is in the client’s browser.
The typical browser cache is co-located with the client,
uses an in-memory hash table to test for existence in the
cache, stores objects on disk, and uses the LRU eviction
algorithm. There are, however, many variations on the
typical browser cache. If a request misses at the browser
cache, the browser sends an HTTP request out to the
Internet (step 2). The fetch path dictates whether that
request is sent to the Akamai CDN or the Facebook Edge.

Edge The Facebook Edge is comprised of a set of Edge
Caches that each run inside points of presence (PoPs)
close to end users. There are a small number of Edge
Caches spread across the US that all function indepen-
dently. (As of this study there are nine high-volume Edge
Caches, though this number is growing and they are be-
ing expanded internationally.) The particular Edge Cache
that a request encounters is determined by its fetch path.
Each Edge Cache has an in-memory hash table that holds
metadata about stored photos and large amounts of flash
memory that store the actual photos [10]. If a request hits,
it is retrieved from the flash and returned to the client
browser. If it misses, the photo is fetched from Face-
book’s Origin Cache (step 3) and inserted into this Edge
Cache. The Edge caches currently all use a FIFO cache
replacement policy.

Origin Requests are routed from Edge Caches to
servers in the Origin Cache using a hash mapping based
on the unique id of the photo being accessed. Like the
Edge Caches, each Origin Cache server has an in-memory
hash table that holds metadata about stored photos and a
large flash memory that stores the actual photos. It uses a
FIFO eviction policy.

Haystack The backend, or Haystack, layer is accessed
when there is a miss in the Origin cache. Because Origin
servers are co-located with storage servers, the image can
often be retrieved from a local Haystack server (step 4). If
the local copy is held by an overloaded storage server or is
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Figure 1: Facebook photo serving stack: components

are linked to show the photo retrieval work-flow. Desktop

and Mobile clients initiate request traffic, which routes either directly to the Facebook Edge or via Akamai de-
pending on the fetch path. The Origin Cache collects traffic from both paths, serving images from its cache and

resizing them if needed. The Haystack backend holds

the actual image content. Shading highlights components

tracked directly (dark) or indirectly (light) in our measurement infrastructure.

unavailable due to system failures, maintenance, or some
other issue, the Origin will instead fetch the information
from a local replica if one is available. Should there be no
locally available replica, the Origin redirects the request
to a remote data center.

Haystack resides at the lowest level of the photo serv-
ing stack and uses a compact blob representation, stor-
ing images within larger segments that are kept on log-
structured volumes. The architecture is optimized to
minimize I/O: the system keeps photo volume ids and
offsets in memory, performing a single seek and a single
disk read to retrieve desired data [2].

2.2 Photo Transformations

Facebook serves photos in many different forms to many
different users. For instance, a desktop user with a big
window will see larger photos than a desktop users with
a smaller window who in turn sees larger photos than a
mobile user. The resizing and cropping of photos com-
plicates the simple picture of the caching stack we have
painted thus far.

In the current architecture all transformations are done
between the backend and caching layers, and thus all
transformations of an image are treated as independent
blobs. As a result, a single cache may have many trans-
formation of the same photo. These transformations are
done by Resizers (shown closest to the backend server
in Figure 1), which are co-located with Origin Cache
servers. The Resizers also transform photos that are re-
quested by the Akamai CDN, though the results of those
transformations are not stored in the Origin Cache.

When photos are first uploaded to Facebook they are
scaled to a small number of common, known sizes, and
copies at each of these sizes are saved to the backend
Haystack machines. Requests for photos include not only
the exact size and cropping requested, but also the orig-
inal size from which it should be derived. The caching
infrastructure treats all of these transformed and cropped
photos as separate objects. One opportunity created by

our instrumentation is that it lets us explore hypothetical
alternatives to this architecture. For example, we eval-
uated the impact of a redesign that pushes all resizing
actions to the client systems in Section 6.

2.3 Objective of the Caching Stack

The goals of the Facebook photo-caching stack differ
by layer. The primary goal of the Edge cache is to re-
duce bandwidth between the Edge and Origin datacenters,
whereas the main goal for other caches is traffic sheltering
for its backend Haystack servers, which are I/O bound.
This prioritization drives a number of decisions through-
out the stack. For example, Facebook opted to treat the
Origin cache as a single entity spread across multiple
data centers. Doing so maximizes hit rate, and thus the
degree of traffic sheltering, even though the design some-
times requires Edge Caches on the East Coast to request
data from Origin Cache servers on the West Coast, which
increases latency.

3 Methodology

We instrumented Facebook’s photo-serving infrastruc-
ture, gathered a month-long trace, and then analyzed that
trace using batch processing. This section presents our
data gathering process, explains our sampling methodol-
ogy, and addresses privacy considerations.

3.1 Multi-Point Data Collection

In order to track events through all the layers of the Face-
book stack it is necessary to start by independently instru-
menting the various components of the stack, collecting
a representative sample in a manner that permits corre-
lation of events related to the same request even when
they occur at widely distributed locations in the hierarchy
(Figure 1). The ability to correlate events across different
layers provides new types of insights:
 Traffic sheltering: We are able to quantify the degree
to which each layer of cache shelters the systems down-
stream from it. Our data set enables us to distinguish



hits, misses, and the corresponding network traffic from
the browser caches resident with millions of users down
through the Edge Caches, the Origin Cache, and finally
to the Backend servers. This type of analysis would not
be possible with instrumentation solely at the browser
or on the Facebook Edge.

* Geographical flow: We can map the geographical flow
of requests as they are routed from clients to the layer
that resolves them. In some cases requests follow sur-
prisingly remote routes: for example, we found that a
significant percentage of requests are routed across the
US. Our methodology enables us to evaluate the effec-
tiveness of geoscale load balancing and of the caching
hierarchy in light of the observed pattern of traffic.

Client To track requests with minimal code changes,
we limit our instrumentation to desktop clients and ex-
clude mobile platforms: (1) all browsers use the same
web code base, hence there is no need to write separate
code for different platforms; and (2) after a code rollout
through Facebook’s web servers, all desktop users will
start running that new code; an app update takes effect
far more slowly. Our client-side component is a fragment
of javascript that records when browsers load specific
photos that are selected based on a tunable sampling rate.
Periodically, the javascript uploads its records to a remote
web server and then deletes them locally.

The web servers aggregate results from multiple clients
before reporting them to Scribe [15], a distributed logging
service. Because our instrumentation has no visibility
into the Akamai infrastructure, we limit data collection to
requests for which Facebook serves all traffic; selected to
generate a fully representative workload. By correlating
the client logs with the logs collected on the Edge cache,
we can now trace requests through the entire system.

Edge Cache Much like the client systems, each Edge
host reports sampled events to Scribe whenever an HTTP
response is sent back to the client. This allows us to learn
whether the associated request is a hit or a miss on the
Edge, along with other details. When a miss happens, the
downstream protocol requires that the hit/miss status at
Origin servers should also be sent back to the Edge. The
report from the Edge cache contains all this information.

Origin Cache While the Edge trace already contains
the hit/miss status at Origin servers, it does not provide
details about communication between the Origin servers
and the Backend. Therefore, we also have each Origin
host report sampled events to Scribe when a request to
the Backend is completed.

To ensure that the same photos are sampled in all three
traces, our sampling strategy is based on hashing: we
sample a tunable percentage of events by means of a
deterministic test on the photold. We explore this further
in Section 3.3.

Scribe aggregates logs and loads them into Hive [21],
Facebook’s data warehouse. Scripts then perform statisti-
cal analyses yielding the graphs shown below.

3.2 Correlating Requests

By correlating traces between the different layers of the
stack we accomplish several goals. First, we can ask
what percentage of requests result in cache hits within the
client browser. Additionally, we can study the paths taken
by individual requests as they work their way down the
stack. Our task would be trivial if we could add unique
request-IDs to every photo request at the browser and then
piggyback that information on the request as it travels
along the stack, such an approach would be disruptive to
the existing Facebook code base. This forces us to detect
correlations in ways that are sometimes indirect, and that
are accurate but not always perfectly so.

The first challenge arises in the client, where the detec-
tion of client-side cache hits is complicated by a techni-
cality: although we do know which URLSs are accessed,
if a photo request is served by the browser cache our
Javascript instrumentation has no way to determine that
this was the case. For example, we can’t infer that a local
cache hit occured by measuring the time delay between
photo fetch and completion: some clients are so close
to Edge Caches that an Edge response could be faster
than the local disk. Accordingly, we infer the aggregated
cache performance for client object requests by compar-
ing the number of requests seen at the browser with the
number seen in the Edge for the same URL.

To determine the geographical flow between clients
and PoPs, we correlate browser traces and Edge traces on
a per request basis. If a client requests a URL and then
an Edge Cache receives a request for that URL from the
client’s IP address, then we assume a miss in the browser
cache triggered an Edge request. If the client issues
multiple requests for a URL in a short time period and
there is one request to an Edge Cache, then we assume
the first request was a miss at browser but all subsequent
requests were hits.

Correlating Backend-served requests in the Edge trace
with requests between the Origin and Backend layers is
relatively easy because they have a one-to-one mapping.
If a request for a URL is satisfied after an Origin miss,
and a request for the same URL occurs between the same
Origin host and some Backend server, then we assume
they are correlated. If the same URL causes multiple
misses at the same Origin host, we align the requests
with Origin requests to the Backend in timestamp order.

3.3 Sampling Bias

To avoid affecting performance, we sample requests in-
stead of logging them all. Two sampling strategies were
considered: (1) sampling requests randomly, (2) sam-



pling focused on some subset of photos selected by a
deterministic test on photold. We chose the latter for two
reasons:

* Fair coverage of unpopular photos: Sampling based
on the photo identifier enables us to avoid bias in favor
of transiently popular items. A biased trace could lead
to inflated cache performance results because popular
items are likely stored in cache.

* Cross stack analysis: By using a single deterministic
sampling rule that depends only on the unique photold,
we can capture and correlate events occurring at differ-
ent layers.

A potential disadvantage of this approach is that because

photo-access workload is Zipfian, a random hashing

scheme could collect different proportions of photos from
different popularity levels. This can cause the estimated
cache performance to be inflated or deflated, reflecting
an overly high or low coverage of popular objects. To
quantify the degree of bias in our traces, we further down-
sampled our trace to two separate data sets, each of which
covers 10% of our original photolds. While one set in-
flates the hit ratios at browser, Edge and Origin caches by
3.6%, 2% and 0.4%, the other set deflates the hit ratios at
browser and Edge caches 0.5% and 4.3%, resp. Overall,
the browser and Edge cache performance are more sen-
sitive to workload selection based on photolds than the

Origin. Comparing to Facebook’s live monitoring data,

which has a higher sampling ratio but lower sampling

duration, our reported Edge hit ratio is lower by about 5%

and our Origin hit ratio is about the same. We concluded
that our sampling scheme is reasonably unbiased.

3.4 Privacy Preservation

We took a series of steps to preserve the privacy of Face-
book users. First, all raw data collected for this study was
kept within the Facebook data warehouse (which lives
behind a company firewall) and deleted within 90 days.
Second, our data collection logic and analysis pipelines
were heavily reviewed by Facebook employees to ensure
compliance with Facebook privacy commitments. Our
analysis does not access image contents or users profiles
(however, we do sample some meta-information: photo
size, age and the owner’s number of followers). Finally,
as noted earlier, our data collection scheme is random-
ized and based on photold, not user-id; as such, it only
yields aggregated statistics for a cut across the total set
of photos accessed during our study period.

4 Workload Characteristics

Our analysis examines more than 70 TB of data, all cor-
responding to client-initiated requests that traversed the
Facebook photo-serving stack during a one-month sam-
pling period. Table | shows summary statistics for our
trace. Our trace includes over 77M requests from 13.2M

user browsers for more than 1.3M unique photos. Our
analysis begins with a high level characterization of the
trace, and then dives deeper in the sections that follow.

Table 1 gives the number of requests and hits at each
successive layer. Of the 77.2M browser requests, 50.6M
are satisfied by browser caches (65.5%), 15.4M by the
Edge Caches (20.0%), 3.6M by the Origin cache (4.6%),
and 7.6M by the Backend (9.9%). There is an enor-
mous working set and the photo access distribution is
long-tailed with a significant percentage of accesses are
directed to low-popularity photos. Looking next at bytes
being transferred at different layers, we see that among
492.2GB of photo traffic being delivered to the client,
492.2 —250.6 = 241.6GB were served by Edge caches,
250.6 — 187.2 = 63.4GB were served by the Origin and
187.2GB were derived from Backend fetches, which cor-
responds to over 456GB of traffic between the Origin and
Backend before resizing.

This table also gives the hit ratio at each caching layer.
The 65.5% hit ratio at client browser caches provides
significant traffic sheltering to Facebook’s infrastructure.
Without the browser caches, requests to the Edge Caches
would approximately triple. The Edge Caches have a
58.0% hit ratio and this also provides significant traf-
fic sheltering to downstream infrastructure: if the Edge
Caches were removed, requests to the Origin Cache and
the bandwidth required from it would more than dou-
ble. Although the 31.8% hit ratio achieved by the Origin
Cache is the lowest among the caches present in the Face-
book stack, any hits that do occur at this level reduce
costs in the storage layer and eliminate backend network
cost, justifying deployment of a cache at this layer.

Recall that each size of a photo is a distinct object for
caching purposes. The Photos w/o size row ignores the
size distinctions and presents the number of distinct un-
derlying photos being requested. The number of distinct
photos requests at each tier remains relatively constant,
about 1.3M. This agrees with our intuition about caches:
they are heavily populated with popular content repre-
sented at various sizes, but still comprise just a small
percentage of the unique photos accessed in any period.
For the large numbers of unpopular photos, cache misses
are common. The Photos w/ size row breaks these figures
down, showing how many photos are requested at each
layer, but treating each distinct size of an image as a sep-
arate photo. While the number decreases as we traverse
the stack, the biggest change occurs in the Origin tier,
suggesting that requests for new photo sizes are a source
of misses. The Haystack Backend maintains each photo
at four commonly-requested sizes, which helps explain
why the count seen in the last column can exceed the
number of unique photos accessed: for requests corre-
sponding to these four sizes, there is no need to undertake
a (costly) resizing computation.



Inside browser Edge caches Origin cache Backend (Haystack)
Photo requests 717,155,557 26,589,471 11,160,180 7,606,375
Hits 50,566,086 15,429,291 3,553,805 7,606,375
% of traffic served 65.5% 20.0% 4.6% 9.9%
Hit ratio 65.5% 58.0% 31.8% N/A
Photos w/o size 1,384,453 1,301,972 1,300,476 1,295,938
Photos w/ size 2,678,443 2,496,512 2,484,155 1,531,339
Users 13,197,196 N/A N/A N/A
Client IPs 12,341,785 11,083,418 1,193 1,643
Client geolocations 24,297 23,065 24 4
Bytes transferred N/A 492.2 GB 250.6 GB 456.5 GB (187.2 GB after resizing)

Table 1: Workload characteristics: broken down by different layers across the photo-serving stack where traffic
was observed; Client IPs refers to the number of distinct IP addresses identified on the requester side at each
layer, and Client geolocations refers to the number of distinct geographical regions to which those IPs map.
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Figure 2: Cumulative distribution function (CDF) on
object size being transferred through the Origin.

The size distribution of transferred photos depends
upon the location at which traffic is observed. Figure 2
illustrates the cumulative distribution of object size trans-
ferred before and after going through the Origin Cache
for all Backend fetches. After photos are resized, the
percentage of transferred objects smaller than 32KB in-
creases from 47% to over 80%.

The rows labeled Client IPs and Client geolocations in
Table 1 offer measurements of coverage of our overall in-
strumentation stack. For example, we see that more than
12 million distinct client IP addresses covering over 24
thousand geolocations (cities or towns) used the system,
that 1,193 distinct Facebook Edge caches were tracked,
etc. As we move from left to right through the stack we
see traffic aggregate from massive numbers of clients to
a moderate scale of Edge regions and finally to a small
number of data centers. Section 5 undertakes a detailed
analysis of geolocation phenomena.

4.1 Popularity Distribution

A natural way to quantify object popularity is by track-
ing the number of repeated requests for each photo. For
Haystack we consider each stored common sized photo
as an object. For other layers we treat each resized vari-
ant as an object distinct from the underlying photo. By
knowing the number of requests for each object, we can
then explore the significance of object popularity in de-
termining Facebook’s caching performance. Prior stud-

ies of web traffic found that object popularity follows
a Zipfian distribution [4]. Our study of browser access
patterns supports this finding. However, at deeper levels
of the photo stack, the distribution flattens, remaining
mostly Zipf-like (with decreasing Zipf-coefficient o at
each level), but increasingly distorted at the head and tail.
By the time we reach the Haystack Backend, the distri-
bution more closely resembles a stretched exponential
distribution [12].

Figures 3a, 3b, 3c and 3d show the number of requests
to each unique photo blob as measured at different layers,
ordered by popularity rank in a log-log scale. Because
each layer absorbs requests to some subset of items, the
rank of each blob can change if popularity is recomputed
layer by layer. To capture this effect visually, we plot-
ted the rank shift, comparing popularity in the browser
ranking to that seen in the Edge (Figure 3e), in the Origin
tier (Figure 3f) and in Haystack (Figure 3g). In these
graphs, the x-axis is the rank of a particular photo blob
as ordered on browsers, while the y-axis gives the rank
on the indicated layer for that same photo object. The
type of blob is decided by the indicated layer. Had there
been no rank shift, these graphs would match the straight
black line seen in the background.

As seen in these plots, item popularity distributions
at all layers are approximately Zipfian (Figures 3a-3d).
However, level by level, item popularities shift, especially
for the most popular 100 photo blobs in the Edge’s pop-
ularity ranking. For example, when we look at the rank
shift between browser and Edge (Figure 3e), where 3 top-
10 objects dropped out of the highest-popularity ranking
and a substantial fraction of the 10th-100th most popular
objects dropped to around 1000th and even 10000th on
the Edge (“upward” spikes correspond to items that were
more popular in the browser ranking than in the Edge
ranking).

As traffic tunnels deeper into the stack and reaches first
the Origin Cache and then Haystack, millions of requests
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Figure 3: Popularity distribution. Top: Number of requests to unique photos at each layer, ordered from the
most popular to the least. Bottom: a comparison of popularity of items in each layer to popularity in the client
browser, with the exact match shown as a straight line. Shifting popularity rankings are thus evident as spikes.
Notice in (a)-(d) that as we move deeper into the stack, these distributions flatten in a significant way.

are served by each caching layer, hence the number of
requests for popular images is steadily reduced. This
explains why the distributions seen on the Edge, Origin
and Haystack remain approximately Zipfian, but the Zipf
coefficient, o, becomes smaller: the stream is becoming
steadily less cacheable. Yet certain items are still being
cached effectively, as seen by the dramatic popularity-
rank shifts as we progress through the stack.

4.2 Hit Ratio

Given insight into the popularity distribution for distinct
photo blobs, we can relate popularity to cache hit ratio
performance as a way to explore the question posed ear-
lier: To what extent does photo blob popularity shape
cache hit ratios? Figure 4a illustrates the traffic share
in terms of percent of client’s requests served by each
layer during a period of approximately one week. Client
browsers resolved ~65% of the traffic from the local
browser cache, the Edge cache served ~20%, the Origin
tier ~5%, and Haystack handled the remaining ~10%. Al-
though obtained differently, these statistics are consistent
with the aggregated results we reported in Table 1.

Figure 4b breaks down the traffic served by each layer
into image-popularity groups. We assign each photo blob
a popularity rank based on the number of requests in
our trace. The most popular photo blob has rank 1 and
the least popular blob has rank over 2.6M. We then bin
items by popularity, using logarithmically-increasing bin
sizes. The figure shows that the browser cache and Edge
cache served more than 89% of requests for the hundred-
thousand most popular images (groups A-E). As photo
blobs become less popular (groups F then G) they are less
likely to be resident in cache and thus a higher percent-
age of requests are satisfied by the Haystack Backend. In

particular, we see that Haystack served almost 80% of re-
quests for the least popular group (G). The Origin Cache
also shelters the Backend from a significant amount of
traffic, and this sheltering is especially effective for blobs
in the middle popularity groups (D, E and F), which are
not popular enough to be retained in the Edge cache.

Figure 4c illustrates the hit ratios binned by the same
popularity groups for each cache layer. It also shows the
percent of requests to each popularity group. One inter-
esting result is the dramatically higher hit ratios for the
Edge and Origin layers than the browser cache layer for
popular photos (groups A-B). The explanation is straight-
forward. Browser caches can only serve photos that this
particular client has previously downloaded, while the
Edge and Origin caches are shared across all clients and
can serve photos any client has previously downloaded.
The reverse is true for unpopular photos (groups E-G).
They have low hit ratios in the shared caches because they
are quickly evicted for more generally popular content,
but remain in the individual browser caches, which see
traffic from only a single user.

Popularity group # Requests | # Unique IPs | Req/IP ratio
A 5120408 665576 7.7
B 8313854 1530839 5.4
C 15497215 2302258 6.7

Table 2: Access statistics for selected groups. ‘“Viral”
photos are accessed by massive numbers of clients,
rather than accessed many times by few clients, so
browser caching is of only limited utility.

Looking closely at the hit ratios, it is at first counter-
intuitive that the browser cache has a lower hit ratio for
group B than the next less popular photo group C. The
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the 90 next most popular, etc. (c) shows the hit ratios for each cache layer binned by the same popularity group,

along with each group’s traffic share.

likely reason is that many photo blobs in this group are
“viral,” in the sense that large numbers of distinct clients
are accessing them concurrently. Table 2 confirms this by
relating the number of requests, the number of distinct I[P
addresses, and the ratio between these two for the top 3
popularity groups. As we can see, the ratio between the
number of requests and the number of IP addresses for
group B is lower than the more popular group A and less
popular group C. We conclude that although many clients
will access “viral” content once, having done so they are
unlikely to subsequently revisit that content. On the other
hand, a large set of photo blobs are repeatedly visited
by the same group of users. This demonstrates that the
Edge cache and browser cache complement one another
in serving these two categories of popular images, jointly
accounting for well over 90% of requests in popularity
groups A, B and C of Figure 4b.

5 Geographic Traffic Distribution

This section explores the geographical patterns in re-
quest flows. We analyze traffic between clients and Edge
Caches, how traffic is routed between the Edge Caches
and Origin Cache, and how Backend requests are routed.
Interestingly (and somewhat surprisingly), we find signif-
icant levels of cross-country routing at all layers.

5.1 Client To Edge Cache Traffic

We created a linked data set that traces activities for
photo requests from selected cities to US-based Edge
Caches. We selected thirteen US-based cities and nine
Edge Caches, all heavily loaded during the period of our
study. Figure 5 shows the percentage of requests from
each city that was directed to each of the Edge Caches.
Timezones are used to order cities (left is West) and Edge
Caches (top is West).

Notice that each city we examine is served by all nine
Edge Caches, even though in many cases this includes
Edge Caches located across the country that are accessi-
ble only at relatively high latency. Indeed, while every
Edge Cache receives a majority of its requests from geo-
graphically nearby cities, the largest share does not nec-

essarily go to the nearest neighbor. For example, fewer
Atlanta requests are served by the Atlanta Edge Cache
than by the D.C. Edge Cache. Miami is another interest-
ing case: Its traffic was distributed among several Edge
Caches, with 50% shipped west and handled in San Jose,
Palo Alto and LA and only 24% handled in Miami.

The reason behind this geographical diversity is a rout-
ing policy based on a combination of latency, Edge Cache
capacity and ISP peering cost, none of which necessarily
translates to physical locality. When a client request is
received, the Facebook DNS server computes a weighted
value for each Edge candidate, based on the latency, cur-
rent traffic, and traffic cost, then picks the best option.
The peering costs depend heavily on the ISP peering
agreements for each Edge Cache, and, for historical rea-
sons, the two oldest Edge Caches in San Jose and D.C.
have especially favorable peering quality with respect to
the ISPs hosting Facebook users. This increases the value
of San Jose and D.C. compared to the other Edge Caches,
even for far-away clients.

A side effect of Facebook’s Edge Cache assignment
policy is that a client may shift from Edge Cache to Edge
Cache if multiple candidates have similar values, espe-
cially when latency varies throughout the day as network
dynamics evolve. We examined the percentage of clients
served by a given number of Edge Caches in our trace:
0.9% of clients are served by 4 or more Edge Caches,
3.6% of clients are served by 3 or more Edge Caches, and
17.5% of clients are served by 2 or more Edge Caches.
Client redirection reduces the Edge cache hit ratio be-
cause every Edge Cache reassignment brings the poten-
tial for new cold cache misses. In Section 6, we discuss
potential improvement from collaborative caching.

5.2 Edge Cache to Origin Cache Traffic

Currently Facebook serves user-uploaded photos at four
regional data centers in the United States. Two are on the
East Coast (in Virginia and North Carolina) and two oth-
ers are on the West Coast (in Oregon and California). In
addition to hosting Haystack Backend clusters, these data
centers comprise the Origin Cache configured to handle
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Figure 6: Traffic from major Edge Caches to the data
centers that comprise the Origin Cache.

requests coming from various Edge Caches. Whenever
there is an Edge Cache miss, the Edge Cache will contact
a data center based on a consistent hashed value of that
photo. In contrast with the Edge Caches, all Origin Cache
servers are treated as a single unit and the traffic flow is
purely based on content, not locality.

Figure 6 shows the share of requests from nine Edge
Caches to the four Origin Cache data centers. The per-
centage of traffic served by each data center on behalf
of each Edge Cache is nearly constant, reaffirming the
effects of consistent hashing. One noticeable exception,
California, was being decommissioned at the time of our
analysis and not absorbing much Backend traffic.

5.3 Cross-Region Traffic at Backend

In an ideal scenario, when a request reaches a data center
we would expect it to remain within that data center:
the Origin Cache server will fetch the photo from the
Backend in the event of a miss, and a local fetch would
minimize latency. But two cases can arise that break this
common pattern:

* Misdirected resizing traffic: Facebook continuously
migrates Backend data, both for maintenance and to en-
sure that there are adequate numbers of backup copies
of each item. Continuously modifying routing policy to
keep it tightly aligned with replica location is not feasi-
ble, so the system tolerates some slack, which manifests
in occasional less-than-ideal routing.

¢ Failed local fetch: Failures are common at scale, and
thus the Backend server holding some local replica of
a desired image may be offline or overloaded. When
a request from an Origin Cache server to its nearby
Backend fails to fetch a photo quickly, the Origin Cache
server will pick a remote alternative.

Table 3 summarizes the traffic retention statistics for each
data center. More than 99.8% of requests were routed to
a data center within the region of the originating Origin
Cache, while about 0.2% of traffic travels over long dis-
tances. This latter category was dominated by traffic sent
from California, which is also the least active data center
region in Figure 6 for Edge Caches. As noted earlier, this
data center was being decommissioned during the period
of our study.

Origin Cache Backend Region

Server Region Virginia | North Carolina Oregon
Virginia 99.885% 0.049% 0.066%
North Carolina 0.337% 99.645% 0.018%
Oregon 0.149% 0.013% 99.838%
California 24.760% 13.778% 61.462%

Table 3: Origin Cache to Backend traffic.
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Figure 7: Complementary cumulative distribution
function (CCDF) on latency of requests from Origin
Cache servers to the Backend.

Figure 7 examines the latency of traffic between the
Origin Cache servers and the Backend, with lines for
successful requests (HTTP error code 200/30x), failed
requests (HTTP error code 40x/50x), and all requests.
‘While successful accesses dominate, more than 1% of
requests failed. Most requests are completed within tens
of milliseconds. Beyond that range, latency curves have
two inflection points at 100ms and 3s, corresponding
to the minimum delays incurred for cross-country traf-
fic between eastern and western regions, and maximum
timeouts currently set for cross-country retries. When a
successful re-request follows a failed request, the latency
is aggregated from the start of the first request.
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6 Potential Improvements

This section closely examines Browser, Edge, and Origin
Cache performance. We use simulation to evaluate the
effect of different cache sizes, algorithms, and strategies.

6.1 Browser Cache

Figure 8 shows the aggregated hit ratio we observed for
different groups of clients. The “all” group includes all
clients and had a aggregated hit ratio of 65.5%. This is
much higher than the browser cache statistics published
by the Chrome browser development team for general
content: they saw hit ratios with a Gaussian distribution
around a median of 35% for unfilled caches and 45% for
filled caches [6].

The figure also breaks down hit ratios based on the
observed activity level of clients, i.e., how many entries
are in our log for them. The least active group with 1-10
logged requests saw a 39.2% hit ratio, while a more active
group with 1K-10K logged requests saw a 92.9% hit ratio.
The higher hit ratio for more active clients matches our
intuition: highly active clients are more likely to access
repeated content than less active clients, and thus their
browser caches can achieve a higher hit ratio.

Browser Cache Simulation Using our trace to drive
a simulation study, we can pose what-if questions. In
Figure 8 we illustrate one example of the insights gained
in this manner. We investigate what the client browser hit
ratios would have been with an infinite cache size. We
use the first 25% of our month-long trace to warm the
cache and then evaluate using the remaining 75% of the
trace. The infinite cache size results distinguish between
cold (compulsory) misses for never-before-seen content
and capacity misses, which never happen in an infinite
cache. The infinite size cache bar thus gives an upper
bound on the performance improvements that could be
gained by increasing the cache size or improving the
cache replacement policy. For most client activity groups
this potential gain is significant, but the least active client
group is an interesting outlier. These very inactive clients
would see little benefit from larger or improved caches:
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Figure 9: Measured, ideal, and resize-enabled hit ra-
tios for the nine largest Edge Caches. All is the aggre-
gated hit ratio for all regions. Coord gives the results
for a hypothetical collaborative Edge Cache.

an unbounded cache improved their hit ratio by 2.6% to
slightly over 41.8%.

We also simulated the effect of moving some resiz-
ing to the client: clients with a cached full-size image
resize that object rather than fetching the required image
size. While client-side resizing does not result in large
improvements in hit ratio for most client groups, it does
provide a significant 5.5% improvement even relative to
an unbounded cache for the least active clients.

6.2 Edge Cache

To investigate Edge cache performance at a finer gran-
ularity, we analyzed the hit ratio for nine heavily used
Edge Caches. Figure 9 illustrates the actual hit ratio ob-
served at each Edge Cache, a value aggregated across
all regions, denoted “All”, and a value for a hypothetical
collaborative cache that combines all Edge Caches into a
single Edge Cache. (We defer further discussion of the
collaborative cache until later in this subsection.) We
also estimated the highest possible hit ratio for perfect
Edge Caches by replaying access logs and assuming an
infinite cache warmed by the first 25% of our month-long
trace. We then further enhanced the hypothetical perfect
Edge Caches with the ability to resize images. The results
are stacked in Figure 9, with the actual value below and
the simulated ideal performance contributing the upper
portion of each bar.

The current hit ratios range from 56.1% for D.C. to
63.1% in Chicago. The upper bound on improvement,
infinite size caches, has hit ratios from 77.7% in LA to
85.8% in D.C.. While the current hit ratios represent
significant traffic sheltering and bandwidth reduction, the
much higher ratios for infinite caches demonstrate there is
much room for improvement. The even higher hit ratios
for infinite caches that can resize photos makes this point
even clearer: hit ratios could potentially be improved to
be as high as 89.1% in LA, and to 93.8% in D.C..

Edge Cache Simulation Given the possibility of in-
creases as high as 40% in hit ratios, we ran a number of
what-if simulations. Figures 10a and 10b explores the
effect of different cache algorithms and cache sizes for



FIFO A first-in-first-out queue is used for cache eviction. This is the algorithm Facebook currently uses.

LRU A priority queue ordered by last-access time is used for cache eviction.
LFU A priority queue ordered first by number of hits and then by last-access time is used for cache eviction.
S4LRU Quadruply-segmented LRU. Four queues are maintained at levels 0 to 3. On a cache miss, the item is inserted at the head of

queue 0. On a cache hit, the item is moved to the head of the next higher queue (items in queue 3 move to the head of queue 3).
Each queue is allocated 1/4 of the total cache size and items are evicted from the tail of a queue to the head of the next lower
queue to maintain the size invariants. Items evicted from queue 0 are evicted from the cache.

Clairvoyant A priority queue ordered by next-access time is used for cache eviction. (Requires knowledge of the future.)
Infinite No object is ever evicted from the cache. (Requires a cache of infinite size.)
Table 4: Descriptions of the simulated caching algorithms.
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Figure 10: Simulation of Edge Caches with different cache algorithms and sizes. The object-hit ratio and byte-
hit ratio are shown for the San Jose Edge Cache in (a) and (b), respectively. The byte-hit ratio for a collaborative
Edge Cache is given in (c). The gray bar gives the observed hit ratio and size x approximates the current size of

the cache.

the San Jose Edge Cache. We use San Jose here because
it is the median in current Edge Cache hit ratios and the
approximate visual median graph of all nine examined
Edge Caches. The horizontal gray bar on the graph corre-
sponds to the observed hit ratio for San Jose, 59.2%. We
label the x-coordinate of the intersection between that ob-
served hit ratio line and the FIFO simulation line, which
is the current caching algorithm in use at Edge Caches,
as size x. This is our approximation of the current size of
the cache at San Jose.

The different cache algorithms we explored are ex-
plained briefly in Table 4. We first examine the results for
object-hit ratio. Our results demonstrate that more sophis-
ticated algorithms yield significant improvements over
the current FIFO algorithm: 2.0% from LFU, 3.6% from
LRU, and 8.5% from S4LRU. Each of these improve-
ments yields a reduction in downstream requests. For
instance, the 8.5% improvement in hit ratio from S4LRU
yields a 20.8% reduction in downstream requests.

The performance of the Clairvoyant algorithm demon-
strates that the infinite-size-cache hit ratio of 84.3%
is unachievable at the current cache size. Instead, an
almost-theoretically-perfect algorithm could only achieve
a 77.3% hit ratio.! This hit ratio still represents a very
large potential increase of 18.1% in hit ratio over the
current FIFO algorithm, which corresponds to a 44.4%
decrease in downstream requests. The large gap between

' The “Clairvoyant” algorithm is not theoretically perfect because it
does not take object size into account. It will choose to store an object
of size 2x next accessed at time ¢ over storing 2 objects of size x next
accessed at times 4 1 and 7 4 2.

the best algorithm we tested, S4LRU, and the Clairvoy-
ant algorithm demonstrates there may be ample gains
available to still-cleverer algorithms.

The object-hit ratios correspond to the success of a
cache in sheltering traffic from downstream layers, i.e.,
decreasing the number of requests (and ultimately disk-
based IO operations). For Facebook, the main goal of
Edge Caches is not traffic sheltering, but bandwidth re-
duction. Figure 10b shows byte-hit ratios given different
cache sizes. These results, while slightly lower, mostly
mirror the object-hit ratios. LFU is a notable exception,
with a byte-hit ratio below that of FIFO. This indicates
that LFU would not be an improvement for Facebook be-
cause even though it can provide some traffic sheltering
at the Edge, it increases bandwidth consumption. S4LRU
is again the best of the tested algorithms with an increase
of 5.3% in byte-hit ratio at size x, which translates to a
10% decrease in Origin-to-Edge bandwidth.

Figure 10 also demonstrates the effect of different
cache sizes. Increasing the size of the cache is also an
effective way to improve hit ratios: doubling the cache
size increases the object-hit ratio of the FIFO algorithm
by 5.8%, the LFU algorithm by 5.6%, the LRU algorithm
by 5.7%, and the S4LRU algorithm by 4.3%. Similarly,
it increases the byte-hit ratios of the FIFO algorithm by
4.8%, the LFU algorithm by 6.4%, the LRU algorithm by
4.8%, and the S4LRU algorithm by 4.2%.

Combining the analysis of different cache algorithms
and sizes yields even more dramatic results. There is an
inflection point for each algorithm at a cache size smaller
than x. This translates to higher-performing algorithms
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being able to achieve the current object-hit ratio at much
smaller cache sizes: LFU at 0.8x, LRU at 0.65x, and
S4LRU at 0.35x. The results are similar for the size
needed to achieve the current byte-hit ratio: LRU at 0.7x
and S4LRU at 0.3x. These results provide a major insight
to inform future static-content caches: a small investment
in Edge Caches with a reasonably sophisticated algorithm
can yield major reductions in traffic. Further, the smaller
a cache, the greater the choice of algorithm matters.

Collaborative Edge Cache We also simulated a col-
laborative Edge Cache that combines all current Edge
Caches into a single logical cache. Our motivation for
this what-if scenario is twofold. First, in the current
Edge Cache design, a popular photo may be stored at ev-
ery Edge Cache. A collaborative Edge Cache would only
store that photo once, leaving it with extra space for many
more photos. Second, as we showed in Section 5, many
clients are redirected between Edge Caches, resulting
in cold misses that would be avoided in a collaborative
cache. Of course, this hypothetical collaborative Edge
Cache might not be ultimately economical because it
would incur greater peering costs than the current system
and would likely increase client-photo-load latency.

Figure 10c gives the byte-hit ratio for different cache
algorithms and sizes for a collaborative Edge Cache. The
size x in this graph is the sum of the estimated cache
size we found by finding the intersection of observed hit
ratio and FIFO simulation hit ratio for each of the nine
Edge Caches. At the current cache sizes, the improve-
ment in hit ratio from going collaborative is 17.0% for
FIFO and 16.6% for S4LRU. Compared to the current
individual Edge Caches running FIFO, a collaborative
Edge Cache running S4LRU would improve the byte-hit
ratio by 21.9%, which translates to a 42.0% decrease in
Origin-to-Edge bandwidth.

6.3 Origin Cache

We used our trace of requests to the Origin Cache to
perform a what-if analysis for different cache algorithms
and sizes. We again evaluated the cache algorithms in
Table 4. The results are shown in Figure 11. The observed
hit ratio for the Origin Cache is shown with a gray line

and our estimated cache size for it is denoted size x.

The current hit ratio relative to the Clairvoyant algo-
rithm hit ratio is much lower at the Origin Cache than at
the Edge Caches and thus provides a greater opportunity
for improvement. Moving from the FIFO cache replace-
ment algorithm to LRU improves the hit ratio by 4.7%,
LFU improves it by 9.8%, and S4LRU improves it by
13.9%. While there is a considerable 15.5% gap between
S4LRU and the theoretically-almost-optimal Clairvoyant
algorithm, S4LRU still provides significant traffic shelter-
ing: it reduces downstream requests, and thus Backend
disk-10O operations, by 20.7%.

Increasing cache size also has a notable effect. Dou-
bling cache size improves the hit ratio by 9.5% for the
FIFO algorithm and 8.5% for the S4LRU algorithm. A
double-sized S4LRU Origin Cache would increase the hit
ratio to 54.4%, decreasing Backend requests by 31.9%
compared to a current-sized FIFO Origin Cache. This
would represent a significant improvement in the shelter-
ing effectiveness of Facebook’s Origin Cache. Combin-
ing the analysis of different cache sizes and algorithms,
we see an inflection point in the graph well below the
current cache size: the current hit ratio can be achieved
with a much smaller cache and higher-performing algo-
rithms. The current hit ratio (33.0%, in the portion of the
trace used for simulation) can be achieved with a 0.7x
size LRU cache, a 0.35x size LFU cache, or a 0.28x size
S4LRU cache.

We omit the byte-hit ratio for the Origin Cache, but the
difference is similar to what we see at the Edge Caches.
The byte-hit ratio is slightly lower than the object-hit
ratio, but the simulation results all appear similar with
the exception of LFU. When examined under the lens of
byte-hit ratio LFU loses its edge over LRU and performs
closer to FIFO. The S4LRU algorithm is again the best
for byte-hit rate with a 8.8% improvement over the FIFO
algorithm, which results in 11.5% less Backend-to-Origin
bandwidth consumption.

7 Social-Network Analysis

This section explores the relationship between photo re-
quests and various kinds of photo meta-information. We
studied two properties that intuitively should be strongly
associated with photo traffic: the age of photos and the
number of Facebook followers associated with the owner.

7.1 Content Age Effect

It is generally assumed that new content will draw atten-
tion and hence account for the majority of traffic seen
within the blob-serving stack. Our data set permits us to
evaluate such hypotheses for the Facebook image hierar-
chy by linking the traces collected from different layers
to the meta-information available in Facebook’s photo
database. We carried out this analysis, categorizing re-
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Figure 12: Traffic popularity and requests served by layer for photos at different age. The number of requests
to each image, categorized by age of requested photos in hours, broken down at every layer across the stack.

quests for images by the age of the target content, then
looking at the way this information varies at each layer
of the stack. Photo age (in hours) was determined by
subtracting the photo creation time from the request time.
Thus, even a photo uploaded the same day will have as-
sociated requests sorted into 24 hourly categories. This
analysis excludes profile photos because Facebook’s in-
ternal storage procedures for them precludes determining
their ago precisely.

Figure 12 plots the number of requests at each layer
for photos of different ages. In Figure 12a, we consider
a range of ages from 1 hour to 1 year. As content ages,
the associated traffic diminishes at every layer; the rela-
tionship is nearly linear when plotted on a log-log scale.
Figure 12b zooms into the mid-range age scales, focusing
on a week. We see a noticeable daily traffic fluctuation.
We traced this to a fluctuation in photo creation time,
determining that users create and upload greater num-
bers of photos during certain periods of the day. This
creation-time effect carries through to induce the striking
photo-access-by-age pattern observed for smaller ages.

Our analysis reveals that traffic differences between
caches deployed close to clients (browser, Edge Cache)
and storage Backend (including the Origin Cache) are
more pronounced for young photos than for old ones.
This matches intuition: fresh content is popular and
hence tends to be effectively cached throughout the im-
age serving hierarchy, resulting in higher cache hit ratios.
Figure 12c clearly exhibits this pattern. The age-based
popularity decay of photos seen in Figure 12a is nearly
Pareto, suggesting that an age-based cache replacement
algorithm could be effective.

We should note that although our traces include ac-
cesses to profile photos, and we used them in all other
analyses, we were forced to exclude profile photos for this
age-analysis. The issue relates to a quirk of the Facebook
architecture: when a user changes his or her profile photo,
Facebook creates a new profile object but reuses the same
name as for the previous versions. Profile objects can be
distinguished by looking at the ownerld, which Facebook
sets to the underlying photold, but we can not determine
the time of creation. None of our other analyses are im-
pacted, but we were forced to exclude profile objects in

our age analysis. The effect is to slightly reduce the com-
puted traffic share for caches close to clients, especially in
the categories associated with young and popular photos.

7.2 Social Effects

Intuitively, we expect that the more friends a photo owner
has, the more likely the photo is to be accessed. We
observed this phenomenon in our study, but only when
we condition on owner type. We binned owners by the
number of followers (friends for normal users, fans for
public page owners), creating “popularity groups”, and
graphed photo requests by their owners’ groups, yielding
the data seen in Figure 13. For each photo request, the
photo owner’s friend count was fetched on the day when
the access happened, thus requests for one photo may
be split into multiple groups when an owner’s popularity
changes. We include profile photos in this analysis.
Figure 13a graphs the number of requests for each
photo against the photo owner’s popularity group. Most
Facebook users have fewer than 1000 friends, and for
that range the number of requests for each photo is al-
most constant. For public page owners who can have
thousands or millions of fans, each photo has a signifi-
cantly higher number of requests, determined by the size
of the fan base. Figure 13b further breaks down the traffic
distribution at each layer of the photo-serving stack for
different social activity groups. For normal users with
fewer than 1000 followers (friends), the caches absorb
~80% of the requests for their photos; but for public page
owners, more followers (fans) drives higher percentages
of traffic being absorbed by caches. However, browser
caches tend to have lower hit ratios for owners with more
than 1 million followers. This is because these photos fall
into the “viral” category discussed earlier in Section 4.

8 Related Work

Many measurement studies have examined web access
patterns for services associated with content delivery, stor-
age, and web hosting. To the best of our knowledge, our
paper is the first to systematically instrument and analyze
a real-world workload at the scale of Facebook, and to
successfully trace such a high volume of events through-
out a massively distributed stack. The most closely re-
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Figure 13: Photo popularity organized owner popularity. (a) Requests per photo categorized by the number of
followers for the photo’s owner. (b) Traffic distribution by layer for different social activity groups.

lated prior work that we identified is a classic study by
Saroiu et al. [19] that compared the characteristics of four
different Internet content delivery mechanisms using a
network trace captured between University of Washing-
ton and the rest of the Internet. That work was undertaken
some time ago, however, during a period when peer-to-
peer networks were a dominant source of Internet traffic.
A follow-on paper [11] took the analysis further, compar-
ing the media popularity distribution seen in the campus
trace with that associated with traditional web traffic. Our
focus on blob traffic induced by social networking thus
looks at a different question, and on a much larger scale.

Additional work involved studies of the flash crowd
phenomenon in content delivery networks (CDNs) [23,
16, 20]. These efforts focused on data obtained by moni-
toring aggregated network traffic. Such work yields broad
statistics, but we gain only limited insight into application
properties that gave rise to the phenomena observed. An
exception is Freedman’s investigation [8] of a 5-year sys-
tem log of the Coral CDN [9], studying its behavior with
detailed insight into its operational properties and archi-
tecture. Our work covers both sides, enabling us to break
behaviors down in a manner not previously possible.

Whereas our focus here was on the network side of the
image-processing stack, the lowest layer we considered
is the backend storage server. Here, one can point to
many classic studies [1, 7, 13, 18, 22] and also to the re-
cent detailed architecture and performance evaluation of
Haystack, the Facebook blob storage server [2]. Detailed
network and caching traffic traces can inform the de-
sign of future storage systems, just as they enabled us to
study how different caching policies might reduce loads
within the Facebook infrastructure. However, constraints
of length and focus forced us to limit the scope of the
present paper, and we leave this for future investigation.

Numerous research projects have explored the mod-
elling of web workload, and several recent papers [14, 5]
monitor web traffic over extended time periods, to the
point of evaluating workload changes as the web itself
evolved. Breslau et al. [4] explore the impact of Zipf’s
law with respect to web caching, showing that Zipf-like
popularity distributions cause cache hit rates to grow

logarithmically with population size, as well as other ef-
fects. In contrast, Guo et al. [12] argue that access to
media content often has a significantly distorted head and
tail relative to a classic Zipf distribution. We found that
caches closest to the client browser have a purely Zipf
popularity distribution, but that deep within the Facebook
architecture, the Haystack Backend experiences a work-
load that looks very much like what [12] characterize as
a stretched exponential distribution.

9 Conclusions & Future Directions

We instrumented the entire Facebook photo-serving stack
obtaining traces representative of Facebook’s full work-
load. A number of valuable findings emerge from this in-
tegrated perspective, including the workload pattern, traf-
fic distribution and geographic system dynamics, yielding
insights that should be helpful to future system designers.

Our work also points to possible caching options that
merit further study. It may be worthwhile to explore
collaborative caching at geographic (nationwide) scales,
and to adopt S4LRU eviction algorithms at both Edge
and Origin layers. We also identified an opportunity to
improve client performance by increasing browser cache
sizes for very active clients and by enabling local photo
resizing for less active clients.

Our paper leaves a number of questions for future in-
vestigation. One important area concerns the placement
of resizing functionality along the stack, which is essen-
tial to balance the cost between network and computation.
Another important area is designing even better caching
algorithms, perhaps by predicting future access likeli-
hood based on meta information about the images.
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