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Abstract
Grappa is a runtime system for commodity clusters of multicore
computers that presents a massively parallel, single address space
abstraction to applications. Grappa’s purpose is to enable scalable
performance of irregular parallel applications, such as branch and
bound optimization, SPICE circuit simulation, and graph processing.
Poor data locality, imbalanced parallel work and complex communi-
cation patterns make scaling these applications difficult.

Grappa serves both as a C++ user library and as a foundation for
higher level languages. Grappa tolerates delays to remote memory by
multiplexing thousands of lightweight workers to each processor core,
balances load via fine-grained distributed work-stealing, increases
communication throughput by aggregating smaller data requests
into large ones, and provides efficient synchronization and remote
operations. We present a detailed description of the Grappa system
and performance comparisons on several irregular benchmarks to
hand-optimized MPI code and to the Cray XMT, a custom system
used to target the real-time graph-analytics market. We find Grappa to
be 9X faster than MPI on a random access microbenchmark, between
3.5X and 5.4X slower than MPI on applications, and between 2.6X
faster and 4.4X slower than the XMT.

1. Introduction
Irregular applications exhibit workloads, dependences, and memory
accesses that are highly sensitive to input. Classic examples of such
applications include branch and bound optimization, SPICE circuit
simulation, and car crash analysis. Important contemporary examples
include processing large graphs in the business, national security, and
social network computing domains. For these emerging applications,
reasonable response time – given the sheer amount of data – requires
large multinode systems. The most broadly available multinode
systems are those built from x86 compute nodes interconnected via
Ethernet or InfiniBand. However, scalable performance of irregular
applications on these systems is elusive for two reasons:
Poor data locality and frequent communication Data reference
patterns of irregular applications are unpredictable and tend to be
spread across the entire system. This results in frequent requests
for small pieces of remote data. Caches are of little assistance
because of low temporal and spatial locality. Prefetching is of limited
value because request locations are not known early enough. Data-
parallel frameworks such as MapReduce [24] are ineffective because
they rely on data partitioning and regular communication patterns.
Consequently, commodity networks, which are designed for large
packets, achieve just a fraction of their peak bandwidth on small
messages, starving application performance.
High network communication latency The performance chal-
lenges of frequent communication are exacerbated by high network
latency relative to processor performance. Latency of commodity net-

works runs anywhere from a few to hundreds of microseconds – tens
of thousands of processor clock cycles. Since irregular application
tasks encounter remote references dynamically during execution and
must resolve them before making further progress, stalls are frequent
and lead to severely underutilized compute resources.

While some irregular applications can be manually restructured
to better exploit locality, aggregate requests to increase network
message size, and manage the additional challenges of load balance
and synchronization, the effort required to do so is formidable and
involves knowledge and skills pertaining to distributed systems far
beyond those of most application programmers. Luckily, many of
the important irregular applications naturally offer large amounts
of concurrency. This immediately suggests taking advantage of
concurrency to tolerate the latency of data movement by overlapping
computation with communication.

The fully custom Tera MTA-2 [5, 6] system is a classic example
of supporting irregular applications by using concurrency to hide
latencies. It had a large distributed shared memory with no caches. On
every clock cycle, each processor would execute a ready instruction
chosen from one of its 128 hardware thread contexts, a sufficient
number to fully tolerate memory access latency. The network was
designed with a single-word injection rate that matched the processor
clock frequency and sufficient bandwidth to sustain a reference from
every processor on every clock cycle. Unfortunately, the MTA-2’s
relatively low single-threaded performance meant that it was not
general enough nor cost-effective. The Cray XMT approximates the
Tera MTA-2, reducing its cost but not overcoming its narrow range
of applicability.

We believe we can support irregular applications with good
performance and cost-effectiveness with commodity hardware for
two main reasons. First, commodity multicore processors have
become extremely fast with high clock rates, large caches and
robust DRAM bandwidth. Second, commodity networks offer high
bandwidth as long as messages are large enough. We build on these
two observations and develop Grappa, a software runtime system
that allows a commodity cluster of x86-based nodes connected via
an InfiniBand network to be programmed as if it were a single, large,
shared-memory NUMA (non-uniform memory access) machine with
scalable performance for irregular applications. Grappa exploits fast
processors and the memory hierarchy to provide a lightweight user-
level tasking layer that supports a context switch in as little as 38ns
and can sustain a large number of active workers. It bridges the
commodity network bandwidth gap with a communication layer that
combines short messages originating from many concurrent workers
into larger packets.

As a general design philosophy, Grappa trades latency for through-
put. By increasing latency in key components of the system we are
able to: increase effective random access memory bandwidth by
delaying and aggregating messages; increase synchronization rate
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Figure 1: Grappa system overview

by delegating atomic operations to gatekeeper cores, even when
referencing node-local global data; and improve load balance via
work-stealing. Grappa then exploits parallelism to tolerate the in-
creased latency.

Our evaluation of Grappa shows that its core components provide
scalable performance for irregular applications. It can multiplex thou-
sands of workers on a multicore CPU and is limited only by DRAM
bandwidth, not latency, to fetch worker state. The communication
layer helps Grappa achieve over 1 billion random updates per second
across 64 system nodes. Grappa provides performance approaching
and in some cases exceeding that of the custom-hardware XMT,
as well as MPI and UPC implementations of the same benchmarks.
When we compare Grappa to the XMT, we find Grappa to be between
2.6X faster and 4.3X slower depending on the benchmark. When
compared with MPI, Grappa is 9X faster on a random access mi-
crobenchmark and 3.5X to 5.4X slower on applications. We find that
the benchmarks that are faster contain specialized implementations
of features Grappa provides generally.

2. Grappa Overview
Grappa’s design is motivated by two key observations of today’s
systems. First, modern compute cores can execute hundreds of
thousands of instructions in the few microseconds that it takes for
one remote memory read to complete. Second, the injection rate of
modern commodity networks is low and the bandwidth is optimized
for large messages. Given the frequent communication caused by
high degree of fine-grained random access in irregular applications,
it is necessary to both overlap communication with computation
as much as possible and to aggregate network messages efficiently.
Providing these two properties depend on exploiting large amounts
of concurrency. Hence, Grappa’s programming model focuses on
enabling programmers to easily express concurrency.

Grappa comprises three main software components, shown in
Figure 1:

Tasking system The tasking system supports lightweight multi-
threading to tolerate communication latency and global dis-
tributed work-stealing (i.e., tasks can be stolen from any node
in the system), which provides automated load balancing. The
scheduler oversubscribes to have more worker threads than re-
quired for latency tolerance. By keeping at least four workers
per core ready to run at all times, the scheduler can prefetch
a worker’s state into cache to reduce the chance of stalling on
memory accesses during a context switch.

Communication layer The main goal of our communication layer
is to aggregate small messages into large ones. This process is
invisible to the application programmer. Its interface is based on
active messages [55]. Since aggregation and deaggregation of

messages needs to be very efficient, we perform the process in
parallel and carefully use lock-free synchronization operations.
GASNet [15] is used as the underlying mechanism for bulk re-
mote memory reads and writes using active message invoca-
tions, with an off-the-shelf user-mode InfiniBand device driver
stack [46]. MPI is used for process setup and tear down.

Distributed shared memory The DSM system provides fine-grain
access to data anywhere in the system, with delegated operation
at the core of its design. Every piece of global memory is owned
by a particular core in the system, and all others may only access
that memory by delegating their requests to the owning core.
It supports normal access operations such as read and write as
well as synchronizing operations such as fetch-and-add [29].
Due to delegation, the memory model offered is similar to what
underpins C/C++ [14, 35], so it is familiar to programmers. The
DSM system design relies on the lightweight tasking system and
communication layer in order to offer high aggregate random
access bandwidth for accessing remote data.

3. Tasking System
Below we discuss the implementation of our task management
support and then describe how applications expose parallelism to the
Grappa runtime.

3.1 Task Support Implementation
The basic unit of execution in Grappa is a task. When tasks are ready
to execute, they are mapped to a worker, which is akin to a user-level
thread. Each hardware core has a single operating system thread
pinned to it.

Tasks Tasks are specified by a closure (or “function object” in C++
parlance) that holds both code to execute and initial state. The functor
can be specified with a function pointer and explicit arguments, a C++
struct that overloads the parentheses operator, or a C++11 lambda
construct. These objects, typically very small (on the order of 64
bytes), hold read-only values such as an iteration index and pointers
to common data or synchronization objects. Task functors can be
serialized and transported around the system, and eventually executed
by a worker, as described next.

Workers Workers execute application and system (e.g., communi-
cation) tasks. A worker is simply a collection of status bits and a
stack, allocated at a particular core. When a task is ready to execute
it is assigned to a worker, which executes the task functor on its own
stack. Once a task is mapped to a worker it stays with that worker
until it finishes.

Scheduling During execution, a worker yields control of its core
whenever performing a long-latency operation, allowing the proces-
sor to remain busy while waiting for the operation to complete. In
addition, a programmer can direct scheduling explicitly. To minimize
context-switch overhead, the Grappa scheduler operates entirely in
user-space and does little more than store state of one worker and
load that of another. When a tasks encounters a long-latency oper-
ation, its worker is suspended and subsequently woken when the
operation completes.

Each core in a Grappa system has its own independent scheduler.
The scheduler has a collection of active workers ready to execute
called the ready worker queue. Each scheduler also has three queues
of tasks waiting to be assigned a worker:

deadline task queue a priority queue of tasks that are executed
according to task-specific deadline constraints;

private task queue a queue of tasks that must run on this core and
is therefore not subject to stealing;
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public task queue a queue of tasks that are waiting to be matched
with workers. It is a local partition of a shared task pool.

Whenever a task yields, the scheduler makes a decision about what to
do next. First, any task in the deadline task queue whose deadline is
imminent is chosen for execution. This queue manages high priority
system tasks, such as periodically servicing communication requests.
Second, the scheduler determines if any workers with running tasks
are ready to execute; if so, one is scheduled. Finally, if no workers
are ready to run, but tasks are waiting to be matched with workers,
an idle worker is woken (or a new worker is spawned), matched with
a task, and scheduled.

Context switching Grappa context switches between workers non-
preemptively. As with other cooperative multithreading systems,
we treat context switches as function calls, saving and restoring
only the callee-saved state as specified in the x86-64 ABI [7]. This
involves saving six general-purpose 64-bit registers and the stack
pointer, as well as the 16-bit x87 floating point control word and the
SSE context/status register. Thus, the minimum amount of state a
cooperative context switch routine must save, according to the ABI,
is 62 bytes.

Since Grappa keeps a very large number of active workers, their
context data will not fit in cache. By oversubscribing on the number of
workers beyond what is required for local DRAM latency tolerance,
the scheduler can ensure there is always some number of context
pointers in the ready queue. This allows the scheduler to prefetch
contexts into cache using software prefetch instructions; the size of
the L1 cache is sufficient to hold enough contexts to tolerate the
latency to main memory. Empirically we find that prefetching the
fourth worker in the scheduling order is sufficient. This prefetching
constrains the types of task scheduling decisions that can be made
but makes context switching effectively free of cache misses, even
to hundreds of thousands of workers. We provide an analysis of our
context switch performance in Section 7.1.

Work stealing When the scheduler finds no work to assign to its
workers, it commences to steal tasks from other cores using an
asynchronous call on active message. It chooses a victim at random
until it finds one with a non-zero amount of work in its public task
queue. The scheduler steals half of the tasks it finds at the victim.
Work stealing is particularly interesting in Grappa since performance
depends on having many active worker threads on each core. Even
if there are many active threads, if they are all suspended on long-
latency operations, then the core is underutilized. The stealing policy
must predict whether local tasks will likely generate enough new
work soon; a similar problem is addressed in [54].

3.2 Expressing Parallelism
Grappa programmers focus on expressing as much parallelism as
possible without concern for where it will execute. Grappa then
chooses where and when to exploit this parallelism, scheduling as
much work as is necessary on each core to keep it busy in the presence
of system latencies and task dependences.

Grappa provides three methods for expressing parallelism. First,
a single task can be created to execute in parallel with the current task
by calling spawn with a functor. This adds it to the queue of tasks
which will be executed the next time a worker is available. Second,
the programmer can invoke a parallel for loop with parallel for,
provided that the trip count is known at loop entry. The programmer
specifies a functor which takes the loop index as a parameter, and an
optional threshold to control parallel overhead. Grappa does recursive
decomposition of iterations, similar to Cilk’s cilk for construct [13],
and TBB’s parallel for [49]. It generates a logarithmically-deep
tree of tasks, stopping to execute the loop body when the number of
iterations is below the required threshold. Third, parallelism can be

expressed via asynchronous delegate operations, which are explained
next, in Section 4.

Figure 2 shows sample code using Grappa for a parallel tree
search. Note how the code looks very similar to a recursive search
procedure for a shared-memory system, without regard for communi-
cation, and Grappa’s parallel loop construct allows easy paralleliza-
tion of the search.

class Vertex {
Key key
int64_t numChildren;
GlobalAddress <Vertex > children;

};

void search(GlobalAddress <Vertex > vtx_addr ,
Key key , GlobalAddress <Vertex > result) {

// blocking remote read to get vertex info
Vertex vtx = delegate_read(vtx_addr);
if (vtx.key == key) {

// key found
delegate_write(result , vtx);

} else {
// spawn stealable tasks for iterations
parallel_for (0,vtx.numChildren ,[=]( int i) {

// recursive search
search(vtx.children+i, key , result);

});
}

}

Figure 2: Sample Grappa code illustrating a parallel tree search
similar to the unbalanced tree search benchmark we describe later.
Children are spread over the system, so each parallel recursive search
performs a delegate read to get vertex data.

4. Distributed Shared Memory
Applications written for Grappa utilize two forms of memory: local
and global. Local memory is local to a single core within a node in the
system. Accesses occur through conventional pointers. Applications
use local accesses for a number of things in Grappa: the stack
associated with a task, accesses to localized global memory in caches
(see below), and accesses to debugging infrastructure local to each
system node. Local pointers cannot access memory on other cores,
and are valid only on their home core.

Large data that is expected to be shared and accessed with low
locality is stored in Grappa’s global memory. All global data must be
accessed through calls into Grappa’s API, shown in Figure 3.

Global memory addressing Grappa provides two methods for
storing data in the global memory. The first is a distributed heap
striped across all the machines in the system in a block-cyclic
fashion. The global malloc and global free calls are used to
allocate and deallocate memory in the global heap. Addresses to
memory in the global heap use linear addresses. Choosing the block
size involves trading off sequential bandwidth against aggregate
random access bandwidth. Smaller block sizes help spread data
across all the memory controllers in the cluster, but larger block sizes
allow the locality-optimized memory controllers to provide increased
sequential bandwidth. The block size, which is configurable, is
typically set to 64 bytes, or the size of a single hardware cache
line, in order to exploit spatial locality when available.

Grappa also allows any local data on a core’s stacks or heap to
be exported to the global address space to be made accessible to
other cores across the system. Addresses to global memory allocated
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in this way use 2D global addresses. This uses a traditional PGAS
(partitioned global address space [25]) addressing model, where each
address is a tuple of a rank in the job (or global process ID) and
an address in that process. The lower 48 bits of the address hold a
virtual address in the process. The top bit is set to indicate that the
reference is a 2D address (as opposed to linear address). This leaves
15 bits for network endpoint ID, which limits our scalability to 215

cores. Any node-local data can be made accessible to other cores in
the system by wrapping the address and node ID into a 2D global
address. This address can then be accessed with a delegate operation
and even be buffered by other cores. The address is converted at the
destination into a canonical x86 address by replacing the upper bits
with the sign-extended upper bit of the virtual address. 2D addresses
may refer to memory allocated from a single processes’ heap or from
a task’s stack. Figure 4 shows how 2D and linear addresses can refer
to other cores’ memory.

Allocation in the global heap:
GlobalAddress<T> global_malloc<T>( size )
global_free( GlobalAddress<T> )

Delegate operations:
T delegate_read( GlobalAddress<T>)
Promise<T> delegate_read_async( GlobalAddress<T> )
void delegate_write( GlobalAddress<T>, T value)
void delegate_write_async( GlobalAddress<T>, T value)
bool delegate_cas( GlobalAddress<T>, T cmp, T set)
T delegate_fetch_inc( GlobalAddress<T>, T inc)
void delegate_inc_async( GlobalAddress<T>, T inc)

Figure 3: Grappa API for memory accesses.

Global memory access Access to Grappa’s distributed shared mem-
ory is provided through delegate operations, which are short memory
accesses performed at the memory location’s home node. When the
data access pattern has low-locality, it is more efficient to modify the
data on its home core rather than bringing a copy to the requesting
core and returning it after modification. Delegate operations [39, 43]
provide this capability. Applications can dispatch computation to
be performed on individual machine-word sized chunks of global
memory to the memory system itself. Delegates can execute arbitrary
code, provided they do not block, to ensure communicator workers
make progress. Provided they touch only memory owned by a single
core, we can use them to perform simple read/write operations to
global memory, as well as more complex read-modify-write oper-
ations (e.g., fetch-and-add). We use these primitive operations to
implement higher-level synchronization mechanisms such as mu-
texes, condition variables, and full-empty bits.

Delegate operations are always executed at the home core of
their address. The remote operation may not perform any operations
that could cause a context switch; this ensures any modifications are
atomic. We limit delegate operations to operate on objects in the 2D
address space or objects that fit in a single block of the linear address
space so they can be satisfied with a single network request. Given
these restrictions, we can ensure that delegate operations for the
same address from multiple requesters are always serialized through
a single core in the system, providing atomic semantics without using
actual atomic operations (and thus avoiding their typical high cost).

Delegate operations can be either blocking or asynchronous. With
blocking operations, the task issuing the delegate call blocks until
the delegate operation completes, which is necessary, for example,
to ensure that synchronization has finished before continuing. On the
other hand, remote data accesses often can overlap, and delegates
with no return value may not need to block the caller. To avoid un-
necessary waiting, we support asynchronous delegate operations. For
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Figure 4: Global memory referencing in Grappa

reads, we support a “futures”-like mechanism which allows tasks to
issue reads in parallel and block on the “promises” returned. Del-
egate write operations may also be performed asynchronously, but
synchronization is still needed to ensure that asynchronous opera-
tions have completed. Grappa provides a GlobalCompletionEvent
synchronization object, which asyncronous operations (including
tasks) can be enrolled. Tasks can block on these objects to be woken
when all enrolled operations are complete.

When programmers want to operate on data structures spread
across multiple nodes, accesses must be expressed as multiple
delegate operations along with with appropriate synchronization
operations. Grappa’s API also includes calls for gathering and
scattering contiguous blocks in the global heap, but the user is
responsible for ensuring correct synchronization.

Memory consistency model discussion As mentioned earlier, all
synchronization operations are done via delegate operations. Since
they all execute on their home core in some serial order, they are
guaranteed to be globally linearizable [32], with their updates visible
to all cores across the system in the same order. In addition, only
one synchronous delegate will be in flight at a time from a particular
task. Therefore, synchronization operations from a particular task
are not subject to reordering. Consequently, all synchronization
operations execute in program order and are made visible in the
same order to all cores in the system. These properties are sufficient
to guarantee a memory model that offers sequential consistency for
data-race-free programs [2] (all accesses to shared data are separated
by synchronization). This is the memory model that underpins
C/C++ [14, 35].

Note, however, that if the application code uses explicit buffers
or asynchronous delegates to access shared data, all updates must be
published back to the home core before the synchronization operation
that protects the data is performed. This is done using release op-
erations on cached regions and using the GlobalCompletionEvent
object to determine that asynchronous delegates have completed.

5. Communication Support
Grappa’s communication support has two layers: user-level messag-
ing interface based on active messages; and network-level transport
that supports request aggregation for better communication band-
width.

Active message interface At the upper (user-level) layer, Grappa
implements asynchronous active messages [55]. Each message con-
sists of a function pointer, an optional argument payload, and an
optional data payload.

Message aggregation In our experiments the vast majority of upper
layer message requests are smaller than 44 bytes. Our measurements
confirm manufacturers’ published data [15]; with 44-byte packets,
the available bisection bandwidth is only a small fraction (3%) of
the peak bisection bandwidth. As mentioned earlier, commodity net-
works including InfiniBand achieves their peak bisection bandwidth

4



only when the packet sizes are relatively large – on the order of
multiple kilobytes. The reason for this discrepancy is the combina-
tion of overheads associated with handling each packet (in terms
of bytes that form the actual packet, processing time at the card,
multiple round-trips on the PCI Express bus and processing on the
CPU within the driver stack). Consequently, to make the best use of
the network, we must convert small messages into large ones.

Message processing mechanics Since communication is very fre-
quent in Grappa, aggregating and sending messages efficiently is
very important. To achieve that, Grappa makes careful use of caches,
prefetching, and lock-free synchronization operations.

Each processing core of a system node maintains an array of
outgoing message lists. The array size is the number of system cores
in the Grappa system. The outgoing message lists and messages are
located in a region of memory shared across all cores in a Grappa
node (thus enabling cores to peek at each other’s message lists).
When a task sends a message, it allocates a buffer (typically on its
stack), determines the destination system node, and links the buffer
into the corresponding linked list.

Each processing core in a given system node is responsible for
aggregating and sending the resulting messages from all cores on that
node to a set of destination nodes. Each core periodically executes
a task responsible for sending messages. This task examines the
private (to each core) message lists for each destination node it is
responsible for managing and, if the list is long enough or a message
has waited past a time-out period, all messages to a given destination
system node from that source system node are sent. Aggregating
and sending a message involves manipulating a set of shared data-
structures (the message lists). This is done using CAS (compare-
and-swap) operations to avoid high synchronization costs. Note that
we use a per-core array of message lists that is only periodically
modified across processor cores after experimentally determining
that this approach was faster (sometimes significantly) than a global
per-system node array of message lists.

Each node has a region of memory with send buffers where the
final aggregated messages are built. These buffers are visible to the
network card, and messages are sent with user-mode operations
only. When the worker responsible for outbound messages to a
given system node has received a sufficient number of message
send requests or a timeout is reached, the linked list of messages
is walked and messages are copied to a send buffer. This process
requires careful prefetching because most of the outbound messages
are not in the processor cache at this time (recall that a core can be
aggregating messages originating from other cores in the same node).
Once the send buffer has been formed, it is handed off to GASNet for
transfer to the remote system node. RDMA is used if the underlying
network supports it.

There are two useful consequences of forming the send buffer
at the time of message transmission instead of along the way as
individual upper layer message send requests are received. First, as
previously mentioned, most of the messages are not in the cache and
prefetching is used to run ahead in the linked list of messages in order
to avoid cache misses. But once the send buffer is formed, it is in the
cache (for the most part). Hence, when it is handed off to GASNet
for transfer across the physical wire, the network card can pull the
message buffer from the processor cache instead of main memory,
which we have found speeds performance. The second consequence
of this decision is that we do not need to pre-allocate buffers for all
destination nodes in the system, as the buffer can be allocated on the
fly. Nevertheless we have found it efficient to build a flow-control-
like protocol of outstanding message buffers between pairs of system
nodes.

Once the remote system node has received the message buffer,
a management task is spawned to manage the unpacking process.
The management task spawns a task on each core at the receiving

system to simultaneously unpack messages destined for that core.
Upon completion, these unpacking tasks synchronize with the man-
agement task. Once all cores have processed the message buffer, the
management task sends a reply to the sending system node indicating
the successful delivery of the messages.

6. Methodology
We implemented the Grappa in C++ for the Linux operating system.
The core runtime system system is about 15K lines of code. We
ported a number of benchmarks to Grappa as well as collected and
optimized a set of comparison benchmarks for XMT, MPI, and
UPC [17]. We ran the Grappa, MPI, and UPC experiments on a
cluster of AMD Interlagos processors. Nodes have 32 2.1-GHz cores
in two sockets, 64GB of memory, and 40Gb Mellanox ConnectX-
2 InfiniBand network cards. Nodes are connected via a QLogic
InfiniBand switch. We also compare Grappa to a 128-node Cray
XMT (3rd generation MTA). Each node consists of a 500-MHz MTA
Threadstorm multithreaded processor that supports 128 streams. The
machine uses Cray’s proprietary SeaStar2 interconnection network.

We use a variety of benchmarks:
Unbalanced tree search in-memory (UTS-Mem) Unbalanced Tree
Search (UTS) is a benchmark for evaluating the programmability and
performance of systems for parallel applications that require dynamic
load balancing [47]. It involves traversing an unbalanced implicit
tree: at each vertex, its number of children is sampled from some
probability distribution, and this number of new nodes are added to a
work queue to be visited. While this benchmark captures irregular,
dynamic computation, we actually want to evaluate performance of
algorithms with irregular memory access patterns. Thus we augment
UTS by using the existing traversal code to create a large tree in
memory, and then we traverse the in-memory tree. In our modified
UTS, the timed portion is this traversal of the in-memory tree. This in-
memory traversal has no knowledge of the tree structure beforehand.
Breadth-first-search (BFS) This is the primary kernel for the
Graph500 benchmark and is what currently determines the ranking
of machines on the Graph500 list [30]. As a whole, the Graph500
benchmark suite is designed to bring the focus of system design
on data-intensive workloads, particularly large-scale graph analysis
problems, that are important among cybersecurity, informatics, and
network-understanding workloads. The BFS benchmark builds a
search tree containing parent nodes for each traversed vertex during
the search. While this is a relatively simple problem to solve, it
exercises the random-access and fine-grained synchronization ca-
pabilities of a system as well as being a primitive in many other
graph algorithms. Performance is measured in traversed edges per
second (TEPS), where the number of edges is the edges making
up the generated BFS tree. With some modifications to the XMT
reference version of Graph500 BFS, the XMT compiler can be made
to recognize and apply a Manhattan loop collapse, exposing enough
parallelism to allow it to scale out to 64 nodes for the problem scales
we show. In order to make comparison easier, we do not employ
algorithmic improvements for any of these versions, though there
are many [10, 57]; this makes our results difficult to compare with
published Graph500 results. Grappa can be expected to benefit the
same as MPI due to decreased communication.
IntSort This sorting benchmark is taken from the NAS Parallel
Benchmark Suite [8, 44] and is one on which the Cray XMT’s
early predecessor once held the world speed record [1]. The largest
problem size, class D, ranks two billion uniformly distributed random
integers using either a bucket or a counting sort algorithm, depending
on the strengths of the system. Bucket sort executes a greater number
of loops, but is able to leverage locality and avoid communication
completely in the final phase, ranking within buckets. For these
reasons, the MPI reference version and our Grappa implementation
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use bucket sort. On the other hand, the Cray XMT cannot take
advantage of locality, but has an efficient compiler-supported parallel
prefix sum, so it performs best using the counting sort algorithm.
The performance metrics for NAS Parallel Benchmarks, including
IntSort, are “millions of operations per second” (MOPS). For IntSort,
this “operation” is ranking a single key, so it is roughly comparable
to “GUPS” or “TEPS.”
PageRank This is a common centrality metric for graphs. PageRank
is an iterative algorithm with a common pattern of gather, apply, and
scatter on the rank of vertex. The algorithm is often implemented by
sparse linear algebra libraries, with the main kernel being the sparse
matrix dense vector multiply. For the multiply step, Grappa paral-
lelizes over the rows and parallelizes each dot product. PageRank
has the fortunate property that the accumulation function over the
in-edges is associative and commutative, so they can be processed in
any order or in parallel. Rather than the programmer writing the par-
allel dot product as local accumulations with a final all-reduce step,
we simply send streaming increments to each element of the final
vector. We compare PageRank to published results for the Trilinos
linear algebra library implemented in MPI [48], and multithreaded
PageRank for the XMT [9]. For Grappa, we run on a scale 29 graph
using the Graph500 generator.

The metric we use is algorithmic time, which means startup
and loading of the data structure (from disk) is not included in the
measurement. Grappa collects statistics about application behavior
(packets sent, context switches, etc) and these are discussed where
appropriate.

7. Evaluation
The goal of our evaluation is to understand whether the core pieces
of the Grappa runtime system, namely our tasking system and the
global memory/communication layer, work as expected and whether
together they are able to efficiently run irregular applications. We
evaluate Grappa in three basic steps:

• We present results that show that Grappa can support large
amounts of concurrency, sufficient for remote memory access
and aggregation. The communication layer is able to sustain a
very high rate of global memory operations. We also show the
performance of a graph kernel that stresses communication and
concurrency together.

• We characterize system behavior, including profiling where
execution time goes, and how aggregation affects message size
and rates.

• Finally, we show how some more realistic irregular workloads on
Grappa compare to the Cray XMT and hand-tuned MPI code.

7.1 Basic Grappa Performance
User-level context switching Fast context switching is at the heart
of Grappa’s latency tolerance abilities. We assess context switch
overheads using a simple microbenchmark that runs a configurable
number of workers on a single core, where each worker increments
values in a large array.

Figure 5 shows the average context switch time as the number
of workers grow. At our standard operating point (≈1K workers),
context switch time is on the order of 50ns. As we add workers,
the time increases slowly, but levels off: we also ran with 500,000
workers (10 times what is shown in the figure) and found that context
switch time was around 75ns. In comparison, for the same yield test
using kernel-level Pthreads on a single core, the switch time is 450ns
for a few threads and 800ns for 1000–32000 threads.

If we calculate aggregate context switch rate of all cores in a
node, we find that with prefetching, Grappa context switching is
limited not by memory latency, as normally assumed, but rather
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Figure 5: Average context switch time with and without prefetching.

memory bandwidth. Specifically, we empirically found that 4 cache
lines (1 for worker struct and 3 for stack data) was sufficient to
avoid cache misses in the microbenchmark. Every context switch
then requires 8 cache-line transfers. The off-chip bandwidth of a
single socket in our system is 270M cache lines per second [41, 43].
This implies that, in the limit, we can sustain at most 34M context
switches per second per socket (a context-switch time of 29ns).

In summary, our tasking layer is able to efficiently sustain
very high concurrency and, as we will show later, the amount of
concurrency sustained is sufficient for the latencies Grappa needs to
hide.

Global memory and communication We measure the performance
of Grappa’s global memory and communication layers using a
faithful implementation of the giga updates per second (GUPs)
benchmark, which measures cluster-wide random access bandwidth.
Read-modify-write updates are dispatched at random to a global
large array. This benchmark stresses the communication layer of
Grappa separately from the scheduler, because only a single worker
is used per system node. Figure 6 shows that Grappa is able to sustain
well over a billion updates per second with 64 nodes. Note also that
when aggregation is turned off, the update rate is nearly flat. Clearly
aggregation is instrumental for good communication performance.

This compares very favorably to published results [34] for other
high-end HPC systems. Though the actual computation done by
GUPS is not useful, irregular, data-intensive applications typically
must be able to sustain a high rate of random accesses in order to,
for example, visit and mark vertices during a graph traversal. High
random access rate in a distributed setting has been a long-standing
challenge in HPC.

Putting it all together with Unbalanced Tree Search (UTS) Fig-
ure 7 shows the overall performance of Grappa running UTS. This
experiment demonstrates that Grappa’s context switching and com-
munication layers can be used together, while balancing workload,
to run an irregular application efficiently.

Visiting vertices in the distributed tree requires mostly remote
accesses, and because each vertex in the tree must be visited before
it can be expanded, blocking remote reads are required. In this case,
we are forced to context switch to tolerate the remote access and
continue aggregating. Figure 2 shows a closely analogous tree search
in Grappa.

We look at two classes of trees, T1 and T3, from the original
benchmark. T1 trees are very shallow and wide (i.e., significant
parallel slack [53]), while T3 trees are very deep (i.e., little parallel
slack). Given that access to each vertex is a random access, the critical
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Figure 6: GUPS (giga updates per second) for Grappa as the number
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path to search T3 trees is very long, hence the low performance and
scalability. On such trees, we do not expect there to be sufficient
concurrency for any system, including Grappa, to achieve high
throughput – at the 16-node data point, the average active tasks
per core over the search is an order of magnitude larger for T1 than
for T3. Given the lack of parallelism, scaling up only serves to reduce
throughput by distributing the tree to more machines. On the other
hand, Grappa performs and scales very well for T1 trees.

We compared this to a in-memory modification of the UPC im-
plementation of UTS [47], where each core hosts a UPC “THREAD.”
Berkeley UPC (BUPC) is built upon GASNet, like Grappa, but it uses
RDMA transfers directly and the compiler overlaps remote commu-
nication when possible. We expect BUPC to perform similarly on the
T3 tree, where there is little parallelism to overlap communication
and computation, and no better than T3 on T1, given the inability to
overlap vertices on each core without multithreading (a multithreaded
variant of UPC has been evaluated in [42]). Our experiments confirm
that BUPC achieves lower throughput than Grappa for both T1 and
T3 trees.
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Figure 7: Vertices per second in UTS on Grappa as the number of
nodes grows.

7.2 Comparing Grappa to Other Systems
In order to put Grappa’s performance into a general context, we
compare it with XMT running BFS, PageRank, IntSort, GUPS, and
UTS. Since XMT is a different hardware platform, we also compare
Grappa with optimized MPI versions of BFS and GUPS running on
the same hardware. We run all experiments with 64 nodes and 16
cores per node.

Grappa XMT MPI
GUPS 1 2.23 0.11
BFS 1 1.63 3.52
IntSort 1 3.59 5.36
UTS (T1) 1 0.38 –
Pagerank 1 4.35 4.87

Table 1: Comparing Grappa with XMT and optimized MPI. Numbers
are presented as throughput on 64 nodes normalized to Grappa.

Table 1 shows the results. Grappa is able to provide performance
approaching and sometimes exceeding that of the other systems. This
data shows that, while Grappa is good at the operations for which
it was designed, there is a cost to providing Grappa’s generality.
In general, the benchmarks whose MPI implementations are faster
than Grappa include a implementation of a subset of Grappa’s
functionality specialized for their particular problem. We now discuss
each benchmark in more detail.

UTS It is perhaps not surprising that the XMT is faster than Grappa
on many of the benchmarks; after all, the XMT is custom hardware
optimized for irregular applications. The XMT can context-switch
every cycle, while Grappa takes 50ns. The XMT can complete
100 million random-access remote reads per second per node in
hardware, while Grappa must spend many instructions managing and
aggregating each of these reads in software.

What is more surprising is that Grappa is able to exceed the
XMT’s performance on UTS. This is a demonstration of the inflexi-
bility of custom hardware. Recall that the UTS benchmark searches
an unbalanced tree and spawns a data-dependent number of child
tasks at each vertex. The XMT’s spawn/join semantics, whose imple-
mentation is spread across the hardware, OS, and runtime, require a
task visiting a vertex to block until all its child tasks have completed,
even though the benchmark does not require those tasks to have com-
pleted until the end of the tree search. Furthermore, each new task
is immediately made available to all other processors in the system,
even though it is likely the processor that spawned a task will end up
executing it.

Since Grappa’s tasks are implemented entirely in software, it is
easy to support arbitrary synchronization semantics. Grappa allows
both XMT-like per-vertex task joins as well as whole-problem joins
that are a better fit for UTS. Grappa’s work-stealing distributed task
queue encourages locality in task execution so that the system is
optimized for the common case of a processor executing a task
it spawned. Furthermore, Grappa’s parallel loop granularity and
buffering features provide a disciplined way for the programmer to
easily take better advantage of spatial locality when it oviously exists,
specifically when reading a vertex’s edgelist.

BFS The Grappa and MPI BFS implementations are quite similar.
They both use the same graph representation, and they both depend
on aggregation for performance. The difference is that the BFS
aggregation is integrated with the traversal code and specialized for
the problem: since the only messages required are edge traversals, the
aggregation buffers store only pairs of 8-byte vertex IDs. In contrast,
Grappa pays execution and space overhead in order to support
aggregation of arbitrary messages; the messages Grappa aggregates
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include the two 8-byte vertex IDs along with 8 bytes of deserialization
information as well as 8 bytes of synchronization information.
Furthermore, the MPI implementation writes the edge information
directly into the aggregation buffer while Grappa executes additional
code to serialize and deserialize the messages.

GUPS The MPI GUPS implementation includes an implementation
of aggregation, but it is not optimized to work when the aggregated
data exceeds cache, and it has limited support for concurrent com-
munication with multiple destinations. Grappa benefits from being
optimized for both of these cases.

Pagerank The MPI Pagerank implementation is built on top of the
highly-optimized sparse matrix support in the Trilinos [33] library.
In contrast, the Grappa implementation is a straightforward nested
loop.

IntSort Both MPI and Grappa IntSort implement a bucket sort.
For Grappa, distributing keys into buckets accounts for the bulk of
the execution time; Grappa does this using asynchronous delegate
operations to write the keys directly to their final destination. The
MPI implementation, on the other hand, first does a local sort of
the keys on each core, and then uses an MPI Alltoallv() collective
operation to move all the keys to their destination nodes in bulk.
This is essentially specialized aggregation combined with collective
communication. When we measure the time spent in this region of
both benchmarks, we find that the the sort and MPI Alltoallv()
are 5× faster than the Grappa version using generic aggregation and
point-to-point communication. An interesting future direction would
be to extend Grappa to support aggregation via collective operations.

Summary Overall, Grappa provides a general programming model
at a moderate performance cost. While Grappa’s core functionality
performs well, applications can specialize similar functionality for
their problems and obtain better performance than Grappa on the
same hardware. This is, however, not the end of the story for Grappa’s
performance; Grappa is a young library and, as discussed in the next
section, is limited by its implementation rather than the hardware on
which it runs. We believe there are opportunities for optimization
that will improve its performance.

7.3 Characterization

GUPS BFS IntSort UTS Pagerank
App. message rate/core (K/s) 984 983 732 411 474
Avg. App. message bytes 31.8 33.9 30.6 47.3 45.5
Network BW per node (MB/s) 478 511 343 298 332
Avg. Network message bytes 23.2K 4.3K 12.8K 4.2K 3.0K
Avg. active tasks/core 0.9 58.2 0.9 326.2 429.3
Max. active tasks/core 1 128 1 507 1024
Avg. ready queue length/core 2.3 6.1 1.3 186.1 300.4
Avg. Ctx switch rate/core (K/s) 34.2 539 127 543 336
Steal attempts/core/s 0 0 0 54.4 0
Steal successes/core/s 0 0 0 17.0 0

Table 2: Internal runtime metrics, for 64-node, 16-core-per-node
benchmark runs

Runtime metrics Table 2 show a number of internal runtime
metrics collected while executing the benchmarks from the previous
section. These are per-core averages computed over all 1024 cores of
the 64-node, 16-core-per-node jobs.

The first group of four metrics relate to the communication layer.
Application messages refer to those issued by the user code; network
message refer to the aggregated packets sent over the wire. The data
show that most application messages are only a handful of bytes, but
our aggregator is able to turn them into packets of many kilobytes.

The next group of five metrics relate to the scheduler. We show the
average and maximum number of concurrently-executing tasks, along
with the average length of the ready queue and the average context
switch rate. The last two lines shows the rate of work-stealing from
other cores. Only UTS depends on work-stealing for performance;
the other applications exploit locality by binding tasks to specific
cores Nevertheless, even in UTS, steals are an infrequent occurrence
and account for a small fraction of the execution time.
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Figure 8: Throughput, request latency, and idleness as number of
concurrent workers is varied

How much concurrency does Grappa require? How much latency
does it add? Grappa depends on concurrency to cover the latency
of aggregation and remote communication. How much is required
for good performance?

Figure 8 shows a 48-node, 16-core-per-node run of UTS, varying
the number of concurrently executing tasks on each core. The top
pane shows the overall throughput of the tree search. The middle pane
shows average blocking delegate operation latency in microseconds.
The bottom pane shows idle time; that is, the fraction of the time the
scheduler could not find a ready task to run.

We can observe three things from this figure. First, above 512
concurrently executing tasks per core, idle time is practically zero:
these tasks generate requests fast enough to cover the latency of
aggregation and communication. This matches the results seen in the
throughput plot; throughput peaks at 512 workers and gradually
decreases after that due to the overhead of unnecessary context
switches. Finally, we see that with 512 workers, the average per-
request latency is 1.8ms.

Does Grappa scale? Figures 9, 6, and 7 show scaling out to
64 nodes. Grappa scales best on BFS and worst on IntSort, but
is in general able to make use of more nodes. Unfortunately memory
limitations in our current network library keep us from exploring
scaling beyond 64 nodes; this will be addressed in future work.

In the limit, aggregation does not scale: the time it takes to
aggregate enough random requests to build a buffer of reasonable
size scales with the size of the cluster. However, we believe our
current approach will work for clusters with hundreds of nodes. In
the future, we will explore hierarchical, collective techniques to
aggregate requests from multiple nodes as well; we believe this can
apply to clusters with thousands of nodes.

What limits Grappa’s performance? The most common operation
in Grappa is sending a message. Three key operations occur in a
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Figure 9: Scaling for BFS, IntSort, and Pagerank. Refer to Figure 6 for GUPS scaling and Figure 7 for UTS scaling

message’s lifetime: creating and enqueuing a message, serializing
a message in the aggregator, and deserializing a message at the
destination. We benchmarked each of these steps individually to shed
light on the mechanism.

Minimum-sized messages can be created and enqueued at a
rate of 16M/s, serialized into an aggregation buffer at 32M/s, and
deserialized from an aggregation buffer at 210M/s. Together, these
rates limit us to 10M/s per core in the best case. In practice,
Grappa does not achieve this maximum; the overhead of cross-core
communication in the current aggregator design limits our message
rate to to 1M/s per core with messages of common sizes. Future
work will reduce this cost.

8. Related Work
Multithreading Grappa uses multithreading to tolerate memory
latency. This is a well known technique. Hardware implementations
include the Denelcor HEP [51], Tera MTA [6], Cray XMT [27],
Simultaneous multithreading [52], MIT Alewife [3], Cyclops [4],
and even GPUs [26].

Grappa’s closest ancestor is the Threaded Abstract Machine [22].
This was a software runtime system designed as a prototyping plat-
form for dataflow execution models on distributed memory super-
computers, and contained support for inter-node communication and
management of the memory hierarchy as well as context switching
and scheduling computation. The Active Messages [55] work that
grew out of this project inspired our communication layer. One of the
conclusions of this work [23] was that context switch costs can be
low only when contexts are in cache, and that latency tolerance was
not sufficient to guarantee performance on commodity processors.
Grappa demonstrates that times have changed: modern commodity
processors have sufficient bandwidth and prefetch capacity to stream
contexts from DRAM and sustain a very large number of active
contexts.

Grappa implements its own software-based multithreading with
a lightweight user-mode task scheduler to multiplex thousands of
tasks on a single processing core. The large number of tasks is
required to tolerate the very high inter-node communication latency
of commodity networks. Grappa’s task library employs several
optimizations: an extremely fast task switch, a small task size, and
judicious use of software prefetch instructions to bring task state into
the cache sufficiently long before that task is actually scheduled.
The main difference between Grappa’s support for lightweight
threads and prior work such as QThreads [56] and Capriccio [11]
is context prefetching, which is needed for good performance when
multiplexing such a large number of tasks.

Software distributed shared memory. The goal of providing a
shared memory abstraction for a distributed memory system goes
back nearly 30 years. Much of the innovation in SDSM has occurred
around reducing the synchronization cost of doing updates. The first
DSM systems, including IVY [37], used frequent invalidations to
provide sequential consistency, which imposed significant communi-
cation cost for write-heavy workloads. Later systems supported more
relaxed consistency models, including release consistency, which
reduced the cost by allowing updates to be buffered until synchro-
nization occurred. Furthermore, multiple writer protocols that sent
only modified data were developed to help combat false sharing. The
Munin [12, 18] and TreadMarks [36] systems exploited both of these
ideas, but some coherence overhead was still required. In contrast,
Grappa’s delegate-based approach to updates avoids synchronization
overhead entirely, providing sequential consistency for data-race-free
programs without the cost of a full coherence protocol.

Another way in which SDSM systems differ is in the granu-
larity of access control. Many SDSM systems, including IVY and
TreadMarks, tracked ownership at a granularity of a kilobyte or
more. There are two main justifications for this design choice: first,
networks are more efficient with large packets, and second, multi-
kilobyte granularity allowed systems to reuse the processor’s paging
mechanisms to accelerate access control checks and to provide shared
memory transparently. Unfortunately, this meant that these systems
depended on a fair ammount of locality to amortize the cost of mov-
ing these large blocks, and the systems were very susceptible to false
sharing. Other systems, including Munin and Blizzard [50], allowed
tracking ownership with variable granularity to address these prob-
lems. Grappa’s delegate-based approach is similar; since updates are
always performed at data’s home node, only modified data needs to
be moved.

SDSM systems often required extensive modifications to the sys-
tem software stack, including the OS (IVY, Blizzard) and compilation
infrastructure (Munin). This made these systems difficult to port to
new platforms. Grappa follows the lead of TreadMarks and provides
SDSM entirely at user-level through a library and runtime.

In summary, while Grappa’s DSM system is conceptually similar
to prior work, we accept the random access aspect of irregular
applications and optimize for throughput rather than low latency.
Our DSM system must support enough concurrency to tolerate the
latency of the network and additional latency overhead impose by
the runtime system.
Partitioned Global Address Space languages. The high-performance
computing community has largely discarded the coherent distributed
shared memory approach in favor of the Partitioned Global Address
Space (PGAS) model. Example include Split-C [21], Chapel [19],
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X10 [20], Co-array Fortran [45] and UPC [25]. Grappa shares many
parts of its design philosophy with these languages.

There are two key ideas Grappa draws from PGAS languages.
First, PGAS languages implement DSM at the language, rather than
the system level. This allows for a number of optimizations, including
efficient split-phase access, variable data granularity, and support for
user-customizable synchronization operations. Grappa follows this
approach for the same reason.

Second, in PGAS languages, each piece of data has a single
canonical location on a particular node. Grappa takes the same
approach. However, PGAS languages often expect programmers
to modify algorithms to take advantage of locality by processing
node-local data as much as possible; access to data stored on other
nodes is possible but is seen as something to avoid if possible. Grappa
takes the opposite view, as it optimizes for random access to data
anywhere in the cluster, and exploiting any available locality in the
application is a secondary concern.

Most PGAS languages adopt a SPMD programming model: the
programmer must reason about what is happening on every node
in the system. Chapel is the exception: it provides a global view of
control, while allowing programmers to direct individual cores when
necessary. Grappa follows the same approach as Chapel, providing a
single-machine abstraction to the programmer along with support for
controlling the locality of computation when requested.
Distributed graph processing systems. While Grappa is a general
runtime system for any large-scale concurrent application, it performs
especially well on graph analysis. Other distributed graph process-
ing frameworks include Pregel [40] and Distributed GraphLab [38].
Pregel adopts a bulk-synchronous parallel (BSP) execution model,
which makes it inefficient on workloads that could prioritize vertices.
GraphLab overcomes this limitation with an execution model that
schedules vertex computations individually, allowing prioritization,
which gives faster convergence in a variety of iterative algorithms.
GraphLab, however, imposes a rigid model that requires program-
mers to express computation as transformations on a vertex and its
edge list, with information only from adjacent vertexes. Pregel is
only slightly less restrictive, as the input data can be any vertex
in the graph. Grappa also supports dynamic parallelism with asyn-
chronous execution, but parallelism is expressed as tasks or loop
iterations, which is a far more general programming model for irreg-
ular computation tasks. PowerGraph [28] improves the performance
of GraphLab for real-world graphs with power-law degree distri-
butions by using a vertex cut for graph partitioning. Algorithmic
transformations like this would also improve the performance of
graph applications on Grappa.

While the bulk-synchronous MapReduce [24] model and related
systems such as Hadoop [31] are not a good fit for irregular or
graph problems, the ideas have been extended to support a subset
of related problems that require iteration, including some graph-
based machine learning applications. HaLoop [16] and Spark [58]
are two examples of this sort of system. This class of systems is
generally characterized by having a restricted programming model
and restricted interface to access data, focused on streaming data
from disk. In particular, direct communication between nodes in the
cluster is not supported; communications must happen through the
parallel data structures provided. Grappa is general enough to run
these jobs, but the MapReduce-derived systems have much more
complete IO support and the ability to tolerate from node failures.

9. Conclusion
Irregular computations are both important and challenging to execute
quickly. Scaling these applications easily on commodity hardware
has been a historical challenge. Grappa simplifies this task for
software developers and compiler writers. Grappa’s key aspect is

extreme latency tolerance, which not only hides network latency but
also enables the system to spend time on sophisticated work stealing
and network optimizations, trading latency for even more throughput.

Our evaluation of Grappa shows that the core components,
scheduling and communication, achieve their design goals. Thou-
sands of workers can be efficiently context switched on a multicore
processor, limited by DRAM bandwidth. Aggregating messages
enables Grappa to achieve over 1.0 GUPS on 64 nodes. We also
explored four other algorithms: unbalanced tree search, breadth first
search, PageRank, and integer sort, comparing performance of these
algorithms on Grappa, the Cray XMT, and optimized MPI imple-
mentations. Grappa is 9X faster than MPI on GUPS, 3.5X to 5.4X
slower than MPI on applications, and between 2.6X faster and 4.3X
slower than the XMT. When Grappa is slower than MPI, we find that
the MPI implementation includes a specialized implementation of a
feature Grappa provides generally to all applications. This generality
comes at a performance cost but eases the application developer’s
task. Moreover, there are significant tuning opportunities the Grappa
runtime system. When cost-performance is considered, Grappa on
mass-market x86-based clusters is a highly attractive option.
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