
iPipe: A Framework for Building Datacenter Applications Using In-networking
Processors

Ming Liu
University of Washington

Arvind Krishnamurthy
University of Washington

Simon Peter
UT Austin

Karan Gupta
Nutanix

Abstract

The increasing disparity of data center link bandwidth and
CPU computing power motivates the use of in-networking
processors to co-execute parts of datacenter applications. By
offloading computations onto a NIC-side processor, we can
not only save endhost server CPU cores, but also achieve
lower request latency. However, building applications with
an in-networking processor brings three challenges: pro-
grammability, offloading constraints, and multi-tenancy sup-
port.

This work proposes iPipe, a framework for develop-
ing datacenter services that can take advantage of an in-
networking processor on a programmable NIC. iPipe pro-
vides an actor programming model and exposes various APIs
through the iPipe runtime. It enables efficient NIC hard-
ware utilization and fair computational resource sharing via
a lightweight actor scheduler, distributed shared objects, a
cross PCIe messaging tier, a shim networking stack, and
a dynamic resource manager. We build three datacenter
applications (i.e., a real-time data analytics engine, a dis-
tributed transaction system, and a replicated key-value store)
based on iPipe and prototype them using commodity pro-
grammable NICs (i.e., Cavium LiquidIO). Real system based
evaluations show that when processing 10Gbps of appli-
cation bandwidth, NIC-side offloading reduces the average
number of beefy Intel cores (of three applications) from 2.2
to 0.4, along with up to 15.8µs latency savings. We also
demonstrate that iPipe is able to provide performance iso-
lation with fair bandwidth allocation, and that it scales to
multiple programmable NICs.

1 Introduction
Recent years have seen a rapid increase in network inter-
face bandwidth [13, 14] for datacenter servers, outpacing the
CPU computing power. For example, since 2009, Azure [22]
has seen a 50x improvement in the network bandwidth, but
not a 50x increase on CPU performance. Therefore, datacen-
ter operators have to burn more CPU cores to fully utilize the
network bandwidth, leaving fewer computing resources for
tenant workload execution.

Emerging in-networking processor based programmable
NICs (e.g., Cavium LiquidIO [10], Netronome Agilio [45],
Mellanox BlueField [41]) offer a solution. An in-networking
processor has an array of wimpy cores, with capabilities
to (1) access limited on-board SRAM/DRAM via high-
bandwidth coherent memory buses; (2) interact with packet

processing/domain specific accelerators and programmable
DMA engines, using high-performance interconnects. These
in-network computing capabilities allow hosts to offload lim-
ited amounts of simple but general computations onto the
programmable NIC, while continuing to support complex
application logic on the hosts. By offloading lightweight but
frequently invoked operations, we can accelerate datacenter
applications while reducing the host CPU load without sac-
rificing program generality.

The key idea of this paper is using an in-networking pro-
cessor on a programmable NIC to co-execute distributed
datacenter workloads so that one can reduce both request
execution latency on the fast path, as well as host CPU
computation load. Specifically, we explore the feasibility
of refactoring common datacenter applications, executing
lightweight latency-sensitive application logic on a NIC-side
in-networking processor and more general logic on the host
CPU.

However, this idea is non-trivial to realize given the fol-
lowing challenges. First, there is no programming model
support for such non-cache-coherent and heterogeneous pro-
grammable NIC accelerated servers, where an in-networking
processor on the data path communicates with the host CPU
using a high-bandwidth PCIe bus. Second, there are offload-
ing constraints given the compute, memory and communica-
tion capabilities of the NIC. Specifically, an in-networking
processor should not be oversubscribed for workload execu-
tion and must always be able to handle the full network band-
width. When designing the data structures and laying out the
application working set, one needs to consider the complex
memory hierarchy along with unusual performance charac-
teristics (e.g., remote host memory has asymmetric latency
for reads/writes) so that the NIC processor is able to interact
with the host processor effectively. Third, one should sup-
port multi-tenancy, where different applications are able to
safely share the NIC’s computational resource.

We design and implement the iPipe framework for pro-
grammable NICs, which addresses the above challenges and
allows programmers to develop datacenter applications using
an in-networking processor effectively. iPipe provides an ac-
tor programming model and a runtime system that includes
the following components: (1) a lightweight work conserv-
ing scheduler that maximizes the NIC processor utilization
without hurting the target link bandwidth; (2) distributed
object abstractions that enable efficient use of remote host
memory and flexible actor migration; (3) a cross PCIe mes-
saging tier and a shim networking stack for communicat-

1

DMA
command ring

TX/RX port

Host server

PCI-E

DMA Engines

L2/DRAM

Traffic
Manager

In-networking
Processor

a. Programmable NIC and In-networking processor

DRAM

CPU

Data
Buffer

DMA
Engine Packet Buffer

DMA
command ring

Data
Buffer

Packet Buffer

Host

NIC

NIC core

TX port

DMA
Engine

NIC core

RX port

b. Sending path c. Receiving path

Traffic
Manager

Traffic
Manager

Cache
NPU core

Accelerators

PCIe

Figure 1: Architecture block diagram and packet com-
munication path for a programmable NIC.

ing with host processors and RX/TX ports; (4) a dynamic
resource manager that supports weighted max-min fairness
on the link bandwidth and provides execution latency guar-
antees for multi-application consolidations. Crucially, pro-
grammers can express applications using the actor model
and rely on the runtime to automatically schedule (and/or
migrate) the actor execution on either the in-networking pro-
cessor or the host CPU.

We prototype iPipe and build three applications (i.e., a
real-time data analytics engine, a distributed transaction pro-
cessing system, and a replicated key-value store) using com-
modity in-networking processor based programmable NICs
(i.e., Cavium LiquidIO). We evaluate the system using an 8-
node testbed and compare the performance against DPDK-
based implementations. Our experimental results show we
can significantly reduce the host load for three real-world
datacenter applications; iPipe reduces the average number
of beefy Intel cores used to process 10Gbps of application
bandwidth from 2.2 to 0.4, along with up to 15.8µs savings
in request processing latency. When consolidating three ap-
plications, iPipe is able to minimize tail latency by 11.5µs
and provide fair bandwidth allocation. We characterized dif-
ferent iPipe primitives to understand where the latency sav-
ings come from and demonstrate the scalability of iPipe un-
der multiple programmable NICs.

2 Background & Motivation

In-networking processors hold the potential to offload end-
host computations. This section provides the necessary
background and discusses the challenges of integrating an
in-networking processor into the operation of a datacenter
application.

2.1 Programmable NICs

Figure 1-a shows the architecture of a typical programmable
NIC [10, 45, 41] with an in-networking processor. It com-
prises of a multi-core NPU (networking processor unit), de-
vice local memory (L2 cache/DRAM), a traffic manager,
DMA engines, and TX/RX ports. These architectural com-
ponents connect with each other using high-performance in-
terconnects (e.g., coherent memory bus, I/O interconnect).
The traffic manager has three functionalities: (1) fetch in-
coming/outgoing packets; (2) feed packets into the NIC core;
and (3) track the packet order. An in-networking processor,
packaged with some local L1 cache, can (1) perform general-
purpose computations; (2) read/write the device local mem-
ory; (3) issue host DMA commands to the engine; and (4)
send packets to the TX port. Programmable NICs also pro-
vide on-chip/off-chip accelerators to speed up certain oper-
ations (e.g., encryption, hash calculation, look up engines,
packet buffer management, etc.).

This work uses a recent commercial programmable NIC
(i.e., Cavium LiquidIO [10]) to build the iPipe framework.
Its major computing unit is a Cavium OCTEON proces-
sor [8] with 12 cnMIPS wimpy cores, which run at 1.20GHz
and enclose 32KB L1 cache. The NIC has 4MB shared L2
cache, 4GB on-board device memory, a number of accelera-
tion engines, and two 10Gbps ports.

The added programmability comes at a minimal cost. A
two-port 10 Gbps LiquidIO [10] server adapter from Cavium
costs about $350, comparable to an RDMA NIC (e.g., $438
for Mellanox ConnectX-4 EN), cheaper than an iWARP NIC
(e.g., $733 for Chelsio T62100), and a bit more expensive
than a traditional two-port 10Gbps NIC (e.g., Intel X710
costs around $290). Similar commercial programmable
NICs include Netronome Agilio [45], and Mellanox Blue-
Field [41].

Programmable NICs have packet communication paths
similar to that of normal NICs, except that the computing
unit can process the raw packet content. On the sending side
(Figure 1-b), the host creates a DMA control command (in-
cluding the instruction header and packet buffer address) and
writes it into a command ring. The NIC DMA engine fetches
the command and data from host memory and writes into the
packet buffer (which is located in NIC memory). The traffic
manager then generates a work item (including the address
of the packet) and delivers it to the NIC core. After some
processing, the NIC sends the packet out through the TX
port. The receiving side (Figure 1-c) is similar but in the
reverse order: Packets come from the RX port and are deliv-
ered to the NIC core via the traffic manager. The NIC core
performs some computations and issues a DMA instruction
word to the engine. The DMA engine then fetches descrip-
tor ring contents (which includes a pointer to the host data
buffer) and writes data from NIC to the host.

2

2.2 Key idea and challenges

The key thrust of this paper is offloading parts of applica-
tion logic onto computing units (especially an in-networking
processor) of a programmable NIC. Such offloaded compu-
tations should stay within the NIC-side computing and mem-
ory capability, without impacting other traffic. With such co-
execution, one can achieve two benefits: (1) reducing end-
host server CPU computing burden so that host CPU cores
are able to consolidate more applications/VMs; (2) mini-
mizing request execution latency by processing data in the
packet communication path. Realizing this idea brings in
three challenges:

Programmability. A programmable NIC accelerated
server is a non-cache-coherent heterogeneous computing
platform where (1) host/NIC processors communicate with
each other via a reliable high-bandwidth PCIe bus; (2) both
sides have certain hardware parallelism with performance
asymmetric computing power; (3) NIC processors are in the
data path between host and network. This is significantly
different from existing heterogeneous systems, such as
ARM’s big.LITTLE, where the processors share the same
cache coherence domain, and GPGPUs, where the host
CPU is the computing coordinator and the GPU is off the
communication path. Hence, we need a programming model
that can achieve efficient concurrency while tolerating
heterogeneity, partitioned memory, as well as chipset (i.e.,
PCIe) communication.

Offloading constraints. One should offload application
computations within the programmable NIC hardware lim-
its. First, an in-networking processor should not be oversub-
scribed. The NIC’s main task is to transfer network pack-
ets between hosts and NIC TX/RX ports. When overloaded
with other computations, the NIC will not be able to han-
dle the link bandwidth. For example, on our platform, a
NIC core takes around 0.37µs to read from RX and trans-
mit to TX, in order to fully utilize the bandwidth with 12
cores, each core only has 0.85µs and 10.05µs left for addi-
tional processing of requests for 64B and 1KB packets, re-
spectively. Second, from the in-networking processor’s point
of view, the system presents a deep non-uniform memory
subsystem including four components: per-core L1 cache,
global shared L2 cache, global device memory, and remote
host memory. In addition, remote host memory has asym-
metric latency for reads and writes. This makes it harder
to design efficient data structures and to lay out the appli-
cation working set. Third, PCIe performance is notoriously
unstable and impacted by many factors [46]. A DMA en-
gine usually provides blocked (which waits until the DMA
completion word coming back)/non-blocking (which returns
immediately after inserting the command to the DMA engine
queue) primitives with different performance characteristics.
One should choose the right one for communication.

Multi-tenancy support. Data center servers often execute
workloads of multiple tenants simultaneously. When of-
floading application-level tasks to a programmable NIC, we
have to ensure that multiple tenants can safely share the NIC.
Hence, we need to (1) guarantee that different applications
cannot touch each other’s application working set; (2) mini-
mize the application interference and ensure that tail latency
increases, if any, are modest; (3) provide resource allocation
across applications with flexible policies.

3 iPipe framework
iPipe is a framework for building applications using an in-
networking processor efficiently while addressing the above-
mentioned challenges. This section describes its program-
ming model, APIs, and runtime system.

3.1 An application written using iPipe

Replicated key-value store (RKV) is a critical datacenter ser-
vice [17, 15]. It mainly comprises of two key system com-
ponents: a consensus protocol, and a key-value data store.
Given its use of sophisticated data structures and algorithm,
we use it as a running example to introduce various aspects
of the iPipe framework.

Our application uses the traditional Multi-Paxos algo-
rithm [34] to achieve consensus among multiple replicas.
Each replica maintains an ordered log for every Paxos in-
stance. There is a distinguished leader that receives client
requests and performs consensus coordination using Paxos
prepare/accept/learning messages. In the common case, con-
sensus for a log instance can be achieved with a single round
of accept messages, and the consensus value can be dissemi-
nated using an additional round (learning phase). Each node
of a replicated state machine can then execute the sequence
of commands in the ordered log to implement the desired
replicated service. When the leader fails, replicas will run a
two-phase Paxos leader election (which determines the next
leader), choose the next available log instance, and learn ac-
cepted value from other replicas if its own log has gaps. Typ-
ically, the Multi-Paxos protocol can be expressed as a se-
quence of messages that are generated and processed based
on the state of the RSM log. One can apply batch processing
and piggy-backed commits to optimize system performance.

The application uses a log-structured merge tree (LSM) to
implement the key-value store; LSM trees are widely used
in many KV systems (such as Google’s Bigtable [11], Lev-
elDB [35], Cassandra [4], HBase [5], and MangoDB [39]).
An LSM tree accumulates recent updates in memory and
serves reads of recently updates values from in-memory data
structures, flushes the updates to the disk sequentially in
batches, and merges long-lived on-disk persistent data to re-
duce disk seek costs.

The LSM tree mainly comprises of two components:
memtable, a sorted data structure (e.g., a SkipList or a B/B+
tree) and SSTables, collections of data items sorted by their

3

keys and organized into a series of levels. Each level has
a size limit on its SSTables, and this limit grows at an ex-
ponential rate with the level number. A first level SSTable
is obtained by dumping the Memtable to stable storage us-
ing a minor compact operation; this could result in the same
key being stored in multiple SSTables in the first level. The
SSTables at other levels are generated using major compact
operations, which merges one SSTable from level L with all
other overlapping ones from the next level L+1. This oper-
ation produces a series of new level L+1 files, updates the
indexing information, and discards the input SSTable. In-
serting a key-value pair requires updates to the Memtable.
Deletions are a special case of insertions wherein a dele-
tion marker is stored. Data retrieval might require multiple
lookups on the Memtable and the SSTables (starting with
level 0 and moving to higher levels) until a matching key is
found. A bloom filter could be applied to accelerate this pro-
cess. Minor/major compactions usually run in a background
thread and are triggered when the Memtable is full or the
number of SSTables at a given level reach a threshold.

3.2 Actor programming model

iPipe provides an actor programming model [26, 2, 49] for
application development. iPipe uses the actor-based model,
instead of say dataflow or thread-based models, because (1)
the actor model is able to support computing heterogeneity
and hardware parallelism automatically; (2) it doesn’t rely
on shared memory abstractions; (3) today’s datacenter work-
loads use RPCs (remote procedure calls) as the communica-
tion paradigm and some of them are control-heavy; (4) our
objective is to offload computations associated with latency-
sensitive, general-purpose message handlers.

1 t y p e d e f s t r u c t a c t o r {
2 i n t a p p i d ; / / App u n i qu e ID ;
3 i n t a c t o r i d ; / / Ac to r u n iq ue ID ;
4 i n t w e i gh t ; / / A l l o c a t i o n we igh t ;
5 u i n t 1 6 t p o r t ; / / Communicat ion p o r t
6 vo id ∗ p r i v a t e s t a t e ; / / I n t e r n a l s t a t e s ;
7 I n i t ∗ i n i t h a n d l e r ; / / S t a t e i n i t f unc ;
8 Exec ∗ e x e c h a n d l e r ; / / Message exec func ;
9 s p i n l o c k t ∗ e x e c l o c k ; / / Concur rency l o c k ;

10 c o n c u r q u e u e ∗mai lbox ; / / Message queue ;
11 a c t o r e n t r y ∗ a c t o r t b l ; / / Ac to r t a b l e ;
12 r a t e l i m i t e r ∗ r t ; / / Ra te l i m i t e r ;
13 } a t t r i b u t e ((packed)) a c t o r ;

An actor is a computation agent that performs three kinds
of operations based on incoming type of messages: (1) trig-
ger its execution handlers and manipulate its private state; (2)
create actors and register them into the runtime; (3) interact
with other actors by sending messages asynchronously. Ac-
tors don’t share memory. The code snippet above shows the
major fields of an actor structure in iPipe. When creating an
actor, one needs to provide init handler and exec handler for
state initialization and message execution. private state can
use different data types (as described in Sections 3.4 and 3.5)
and mailbox is a multi-producer multi-consumer concurrent

Send/Recv I/O
ring metaData

Core0
… …

CoreN

In-networking Processor

Core0
… …

CoreM

Memory

Programmable NIC

iPipe runtime

Lightweight actor
scheduler

Dynamic resource
manager

Communication Execution

Computing

Distributed shared
objects Other data typesMemory

Cross PCIe
messaging tier

Shim networking
stack

Communication

Distributed shared objects
Caching/local data objects
Actor mailbox/backet buffer

Figure 2: An overview of the iPipe runtime on the pro-
grammable NIC. The host side runtime has similar com-
ponents.

FIFO queue, which is used to save incoming asynchronous
messages. exec lock is used to decide whether an actor can
be executed on multiple cores (discussed in Section 3.6). rt
is the rate limiter to control the incoming message rate. Our
runtime will generate a unique port number, set the app id,
and assign actor tbl that contains the communication address
for all actors. An actor can also provide a weight that will be
used for bandwidth allocation.

RKV use case: Each data shard is handled by three ma-
jor actors: (1) The first one is NIC-resident and handles the
Multi-Paxos logic; (2) The second one handles the LSM
logic for implementing the memtable. It is instantiated on
the NIC, but it is migrated to the host when the memtable ex-
ceeds the limit and its state is serialized into an SSTable be-
fore it is removed/deleted from the runtime; (3) The third one
is host-resident and is used to process SSTable reads/writes.

3.3 iPipe runtime and APIs

The iPipe runtime (see Figure 2) manages and schedules the
computational resources of the programmable NIC and ex-
poses APIs for managing the computing, memory, and com-
munication resources as shown in (Table 1). Specifically,
iPipe provides a distributed shared object abstraction that en-
ables flexible actor migration, as well as support for a soft-
ware managed cache and NIC-local objects (see Sections
3.4 and 3.5). In the communication layer, iPipe provides
a cross PCIe message passing tier (Section 3.7) for commu-

4

API Explanation
A

ct
or

actor create create an actor
actor register register an actor into the runtime
actor init initialize the actor private state
actor delete delete the actor from the runtime
actor migrate migrate an actor to host

D
SO

dso malloc allocate a dso obj.
dso free free a dso obj.
dso mmset set space in a dso with value
dso mmcpy copy data from a dso to a dso
dso mmmove move data from a dso to a dso

C
A

C
H

E cache get read a <key, value> based on key
cache put write/update the <key, value>
cache del delete a <key, value> pair

M
SG

msg init init. a remoge message I/O ring
msg read (*) read new messages form the ring
msg write write messages into the ring

N
st

ac
k

nstack new wqe create a new WQE
nstack hdr cap build the packet header
nstack send send a packet to the TX
nstack get wqe get the WQE based on the packet
nstack recv(*) receive a packet from the RX

Table 1: iPipe major APIs. There are five cate-
gories: actor management (Actor), distributed shared
object (DSO), local memory (LMEM), software managed
cache (CACHE), message passing (MSG), and network-
ing stack (Nstack). We don’t list the LMEM ones as they
are similar to the DSO operations. We list only the most
important Nstack operations; the Nstack API has addi-
tional methods for packet manipulation. APIs with * are
mainly used by the runtime as opposed to actor code.

nications between the host and the NIC, as well as a simpli-
fied networking stack that delivers packets from/to TX/RX
ports (see Section 3.8). iPipe has an actor scheduler (see
Section 3.6), which schedules (and/or migrates) actor execu-
tion instances on the host/NIC, and uses a resource manager
that supports multi-tenancy based on user policies (see Sec-
tion 3.9).

The iPipe runtime provides actors with interfaces to inter-
act with other actors, manage memory, and initiate or receive
network messages. It also provides automatic mechanisms
for efficient resource utilization in the form of transparent
scheduling and migration of actors and distributed shared ob-
jects, so that the NIC’s hardware constraints are not violated.
Generally, an actor exec handler is implemented as a cou-
ple of message handlers. For example, the Paxos actor on
the leader has four handlers on client request, leader election
promise, leader election accept acknowledge, and command
accept acknowledge messages. Within the handler proce-
dure, one can use various iPipe primitives.

Object ID SizeStart addressActor ID
0 1KB0x10f0000000

Object ID SizeStart addressActor ID
1 1KB0xfc00000001

iPipe-host object table iPipe-NIC object table

x 2KB0x10f001234xx 2KB0xfc0001234x
y 4KB0x10f005678yz 4KB0x10f005678z
x 8KB0x10f00abcdxx 8KB0x10f00abcdx

struct node{
 char key[KEY_LEN];
 char *val;
 struct node *forwards[MAX_LEVEL];
}

Normal SkipList node

(a). Object migration

struct node{
 char key[KEY_LEN];
 int val_object;
 int forward_obj_id[MAX_LEVEL];
}

DSO SkipList node

(b). Skiplist node implementation in DSO

Figure 3: iPipe distributed share objects.

3.4 Distributed shared objects

iPipe provides the distributed shared object abstraction
(DSO) to enable flexible actor migration. iPipe maintains an
object table (Figure 3-a) on both sides and utilizes the local
memory manager to allocate/deallocate copies. At any given
time, a DSO has only one copy, either on the host or on the
NIC. We also do not allow an actor to perform reads/writes
on objects across the PCIe because remote memory accesses
are 10x slower than local ones (shown in Section 5.2). In-
stead, iPipe would automatically move DSOs along with the
actor and all DSO read/write/copy/move operations are per-
formed locally. If an actor on the programmable NIC cannot
hold a large working set due to memory limits, it will mi-
grate itself from the NIC to the host using the actor migrate
primitive.

Our DSO provides five APIs as shown in Table 1. When
creating an object on the NIC, iPipe first allocates a local
memory region using the dlmalloc2 allocator and then inserts
an entry (i.e., object ID, actor ID, start address, size) into
the NIC object table. Upon dso free, iPipe frees the space
allocated for the object and deletes the entry from the ob-
ject table. dso memset, dso memcpy, dso memmove resem-
ble memset/memcpy/memmove APIs in glibc, except that it
uses the object ID instead of a pointer. When migrating an
actor to the host, as shown in Figure 3, our runtime (1) col-
lects all objects that belong to the actor; (2) sends the object
data to the host side using messages and DMA primitives;
(3) creates new objects on the host side and then inserts en-
tries into the host-side object table; (4) deletes related entries
from the NIC-side object table upon deleting the actor. The
host-side DSO works similarly, except that it uses the glibc
memory allocator. When using DSOs to design a data struc-
ture, one has to use the object ID for indexing instead of
pointers.

RKV use case: The skiplist based memtable is imple-
mented using DSO. As shown in Figure 3-b, a traditional
skiplist node includes a key string, a value string, and a set
of forwarding pointers. With DSO, the key field is the same.
Value and fowarding pointers are replaced by object IDs.

5

When traversing, one will use the object ID to get the start
address of the object, cast the type, and then read/write its
contents.

3.5 Local memory objects and software managed cache

iPipe also provides two other kinds of data types to optimize
object access performance. One is local memory object that
is allocated on either the NIC or the host but cannot be mi-
grated. We make extensive use of local memory objects for
fast local data access and for indexing distributed shared ob-
jects.

The other one is a software managed cache to store fre-
quently accessed data. This software cache borrows tech-
niques from previous work [21]. It applies a 4-way concur-
rent cuckoo hash function and uses an optimistic locking de-
sign [33, 21]. Our cache operates in a write-through mode.
Programmers are responsible for (1) setting up indexing keys
(arbitrary strings up to 64B in the current prototype) and
(2) cache management: upon write/update operations, one
should delete the cached content. When there is a read miss
coming back from the host, one could insert the data into the
cache. If there is a read hit, an in-networking processor is
able to independently perform some computations.

3.6 Actor scheduler

The goal of the actor scheduler is to consolidate on the in-
networking process as much computation as possible with-
out triggering over-subscription and a loss in the commu-
nication bandwidth. Hence, an actor scheduler should: (1)
fully utilize available cores for actor execution; (2) apply a
lightweight bookkeeping mechanism to monitor actor com-
puting costs; (3) migrate heavyweight actors to the host side.

As shown in Figure 2, we dedicates certain NIC cores for
communication and use the rest for application workload ex-
ecution. (In the case of LiquidIO, M=2 and N=10.) Note that
all communication cores run a request dispatcher that pushes
a fetched work queue item into an actor’s mailbox. Instead
of using a raw Ethernet packet, we use the work queue item
as the request abstraction, and this includes packet metadata,
packet buffer, and programmable NIC environment metadata
(e.g., physical NIC port number).

We develop a light-weight work-conserving scheduler that
runs inside hardware threads on all the NIC cores reserved
for computing. These NIC computing cores share one global
runnable actor queue. Each core walks through the queue
in a round-robin fashion. When running an actor instance,
it performs batched computations that processes N requests
(if any) at once, which improves the locality. When the
exec lock is not set, we allow multiple cores to run an ac-
tor simultaneously. It is the programmer’s responsibility to
guarantee that an actor’s private datastructures support con-
currency. We note that: (1) our scheduler doesn’t reply on
hardware timers since it impacts the firmware performance
of our programmable NIC; (2) we don’t support scheduling

p
ro

c
e
ss

e
d

fre
e

msg1

m
sg

2

NIC tail ptr
NIC head ptr

Host head ptr

Buffer
directionchecksum

msg data
len

Message format
header
payload

Figure 4: Receive circular buffer for the message passing.

priority and treat all offloaded actors equally.

The dispatcher keeps monitoring two metrics: (1) incom-
ing bandwidth (BWin) from the RX port; (2) expected av-
erage packet execution latency (latencyexpected). We use a
simple bitmap approach to calculate them. Specifically, we
categorize packets into several buckets based on Ethernet
frame size (e.g., 65-127B, 128-191B, 192-255B, etc.) and
represent them as a counter bitmap. For each time epoch
(T), we clear the bitmap at the beginning and collect data
at the end. Based on this information, we know the to-
tal size of incoming packets (Sizetotal) and the total number
of packets (N). Hence, BWin =

Sizetotal
T , packetavg =

Sizetotal
N ,

latencyexpected =
BWin

N . The scheduler uses a similar approach
to monitor: (1) consumed bandwidth (BWconsumed) of all lo-
cated actors; (2) per-actor execution latency. Even though
our profiling doesn’t report accurate statistics, this approx-
imation is effective enough and introduces little computing
overheads.

When BWin > BWconsumed , actors are not able to process
incoming bandwidth. This results in two things: (1) actor
mailbox size will build up, which increases the average and
tail latencies for requests; (2) the size available for the packet
buffer on the programmable NIC will be squeezed, affect-
ing the performance of the iPipe networking stack. There-
fore, when BMin exceeds BMconsumed by a threshold (we use
a value of 10%), we will migrate an actor to the host side.
A candidate for migration is an actor that has high execution
latency (larger than latencyexpected). Our scheduler takes a
greedy approach: instead of walking through the entire ac-
tor queue and picking the heaviest one, the scheduler mi-
grates any candidate actor whose execution latency is higher
than the threshold. We apply a cold migration approach:
the scheduler will first moves the mailbox, and push the
global shared objects to the other side (Figure 3). Then, it
will delete the actor from the queue and release the actor’s
resources. Note that local memory and software managed
cache objects are discarded during the migration. This is
consistent with the programming guideline that one should
always using DSOs to store persistent state and take advan-
tage of the other two object types to improve the performance
of state access. Also, iPipe assumes that there is an actor im-
plementation on the host side with the same functionality.

6

3.7 Cross PCIe message passing tier

We use a message passing mechanism to communicate be-
tween the host and in-networking processors. Applications
create a set of I/O channels (depending on the communi-
cation frequency), and each channel includes two circular
buffers for sending and receiving. A buffer is unidirectional
and stored in the host memory. The in-networking proces-
sor writes into the receive buffer, and the host core polls it to
detect new messages. The send buffer works in reverse.

Figure 4 shows the receive buffer. The unused portions of
the buffer (marked as ”free” and ”processed”) are zeroed out
to detect new messages. We fix each message entry at 2KB
and split messages when they are larger. Since the DMA
engine may not write the message contents in a monotonic
sequence (unlike RDMA NICs), we add a 4B checksum to
verify the integrity of the whole message. The host core uses
the header to figure out the length of the message and delivers
the content to the application layer. We perform at most three
retries if the checksum doesn’t match and then discard the
message.

We considered two ways to synchronize the header pointer
between the host and the NIC: one is using lazy-update and
the other is to piggyback the updates along with transmitted
messages. As host send behavior is application dependent,
we take the first approach, wherein the host notifies the in-
networking processor when it has processed half of the buffer
via a dedicated message. To fully use the PCIe bandwidth,
we perform DMA reads/writes in a batched way. The mes-
sage buffer is NUMA aware (on a multi-socket server) in or-
der to reduce cross QPI remote memory traffic. Note that the
polling overhead will increase when we add more I/O chan-
nels to handle frequent host invocations and high bandwidth.
Table 1 shows the messaging API list.

RKV use case: When there is a key-value read that can-
not be processed by the memtable actor resident on the NIC,
the actor will forward this request to the host SSTable ac-
tor via the write primitive. After processing the request,
the SSTable actor will deliver the results via the host-side
msg write primitive, and our NIC-side runtime will pull it
using the read primitive.

3.8 Shim networking stack

iPipe takes advantage of packet processing accelerators (e.g.,
hardware managed resource pools) to build its networking
stack. Specifically, it polls incoming packets from the traf-
fic manager and transmits outgoing packets via the packet
output unit (i.e., PKO). The traffic manager fetches working
items (including packet data and metadata) from a packet
input module (i.e., PKI). PKI and PKO use a hardware man-
aged pool to efficiently allocate and free packet buffers.

iPipe also performs Layer2/Layer3 protocol processing,
such as packet encapsulation/decapsulation, fragmentation,
checksum verification, etc. While building a packet, iP-
ipe uses the DMA scatter-gather technique to combine the

header and payload if they are not colocated. Note that, be-
cause of the bounded computing limitation, we perform data-
gram processing on the NIC and push reliability mechanisms
(e.g., flow/congestion control, loss recovery) to the host ap-
plication layer. When passing the request to the host, the
stack is able to direct flows to different I/O channels based
on the host core locality.

RKV use case: The Paxos actor makes extensive use of
the networking API to communicate between the leader and
followers.

3.9 Dynamic resource management

We allow multiple applications to simultaneously use the
programmable NIC and share its computational resources.
iPipe therefore needs to provide resource allocation mecha-
nisms that support the execution of multiple concurrent ap-
plications and also provide performance and security isola-
tion.

iPipe provides fair bandwidth allocation and tries to min-
imize spikes in execution latency. It applies the weighted
max-min [53] fairness method and sets up rate limiters based
on the assigned bandwidths. Weights are initialized by the
programmers and adjusted when there is a request latency
spike (which is detected using the exponentially weighted
moving average [52] method). Each weight adjustment op-
eration will trigger a bandwidth and rate limiter recalcula-
tion for all actors. For instance, suppose three applications
have weights 2, 2, and 4, along with bandwidth demands
4Gbps, 6Gbps, and 2Gbps. At first, the algorithm allocates
bandwidth as 2.5Gbps, 2.5Gbps, and 5Gbps based on the
weights. Since app3’s demand is satisfied while those of
app1 and app2 are not, in the second round, the algorithm
will re-assign the additional 3Gbps from app3 to app1 and
app2 using their weights. Finally, app1 and app2 obtain
2.5Gbps+3Gbps× 2

2+2 = 4Gbps, respectively.
We rely on the hardware paging mechanism of the Cav-

ium cnMIPS processor [8] to isolate execution environments
of the NIC firmware, iPipe runtime, and actors. The host
side works similarly, except that it considers the actors that
pulls requests from the message ring. iPipe only considers
one resource type (i.e, link bandwidth) and our future work
will take multiple resources (e.g., NIC cores, local and global
memory, as well as bandwidth) into considering using the
DRF [23] algorithm.

3.10 Host-side runtime

Host-side runtime behaves similarly as the NIC-side one, ex-
cept that: (1) The host actor scheduler runs as a pthread;
(2) The host processor never migrates actors to the NIC side
proactively because it has no information about the load on
an in-networking processor, which is sensitive to the compu-
tation over-subscription. Instead, we use a pull-based mech-
anism initiated by the NIC; (3) It holds the full I/O ring con-
tent; and (4) The host side networking stack provides packet

7

manipulation APIs with no packet buffer management as it
primarily uses the messaging tier to forward packets.

4 Implementation
This section describes the use of DMA primitives and pro-
vides some guidelines on designing the data structures on the
NIC side. We then describe two other applications built with
iPipe.

4.1 Choice of DMA primitives

A NIC-side in-networking processor communicates with
host processors using DMA engines through the PCIe bus.
PCIe is a packet switched network with 500ns-2us latency
and 7.87 GB/s theoretical bandwidth per Gen3 x4 endpoint
(which is the one used in our server). Its performance is
usually impacted by many runtime factors. With respect to
latency, DMA engine queueing delay, PCIe request size and
its response ordering, PCIe completion word delivery, and
host DRAM access costs will all slow down PCIe packet de-
livery [24, 30, 46]. With respect to throughput, PCIe is lim-
ited by transaction layer packet (TLP) overheads (i.e., 20-28
bytes for header and addressing), the maximum number of
credits used for flow control, the queue size in DMA engines,
and PCIe tags used for identifying unique DMA reads.

Generally, a DMA engine provides two kinds of primi-
tives: blocking accesses, which wait for the DMA comple-
tion word from the engine, and non-blocking ones, which
allow the processing core to continue executing after send-
ing the DMA commands into the command queue. Fig-
ures 5 and 6 show our performance characterizations of the
LiquidIO NIC. Non-blocking operations insert a DMA in-
struction word into the queue and don’t wait for completion.
Hence, its read/write latency and throughput are independent
of packet size. We take advantage of the low overhead non-
blocking primitives while implementing the message passing
tier (Section 3.7).

For blocking operations, reads perform worse than writes
(i.e., a 1KB host memory read takes 2.10us while the write
is 1.28us). This is because read is a non-posted PCIe trans-
action, which requires the host to return a completion TLP to
indicate that the transaction was successfully processed. On
the other hand, write is a posted PCIe transaction and has no
such requirements. Moreover, both latency and throughput
become worse when we increase the payload size beyond
128B since larger packets are split into several small PCIe
transactions. When multiple cores simultaneously issue
DMA requests, contention will happen at either the DMA
command queue or the PCIe root complex. We carefully
batch multiple requests to fully utilize the PCIe bandwidth.
In our case, we use blocking operations when passing shared
objects between the two sides (Section 3.4). Note that, since
blocking primitives can be optimized by overlapping the
communication with some local computation, we provide
a special primitive blocked dma read/write overlap(func,

msg), which executes the function func while waiting for the
completion word for msg.

4.2 Index caching

An in-networking processor is a wimpy one since (1) it
doesn’t utilize a sophisticated microarchitecture for memory
level parallelism (i.e., few missing status holding registers
(MSHRs)) and (2) it has limited per-core cache. Therefore,
its local memory access is slower than that of host memory.
One will see diminishing returns in terms of latency if there
is significant NIC-local memory dereferencing while travers-
ing a data structure. To demonstrate this point, We use the
SkipList as an example and measure the operation latency
difference between host-local and NIC-local accesses as we
increase the number of list elements. For 1024K elements,
host processors outperform the NIC by 0.84us and 1.17us for
INSERT/FIND, approaching one PCIe transaction latency.
This indicates that when designing a data structure for an
in-networking processor, one should use the index caching
technique to accelerate the data access. iPipe’s local mem-
ory objects and software cached objects can be used for this
purpose. This is a widely used method for building systems
using one-sided RDMA [50, 18].

4.3 More applications on iPipe

We also use iPipe to build two other datacenter applications:
a distributed transactions system and a real-time analytics
engine. For brevity, we provide just an overview of the un-
derlying algorithms and how we develop them on iPipe.

Distributed Transactions. We build a distributed trans-
actions system that uses optimistic concurrency control and
two-phase commit for distributed atomic commit, follow-
ing the design used by other systems [54, 29]. Note that
we choose to not add a replication layer as we try to elimi-
nate the application function overlap with our replicated key-
value store. The application includes a coordinator and par-
ticipants that run a transaction protocol. Assume the set of
keys read and written by the transaction are R (read set) and
W (write set). The protocol works as follows: Phase1(read
and lock): the coordinator reads values for the keys in the
R set and locks the keys in the W set. If any key in R or
W is already locked, the coordinator aborts the transaction
and replies with the failure status; Phase2 (validation): after
locking the write set, the coordinator checks the version of
its read set by issuing a second read. If any key is locked
or its version has changed after the first phase, the coordi-
nator aborts the transaction; Phase3 (log): the coordinator
logs the key/value/version information into its coordinator
log and then sends a reply to the client with the result; Phase4
(commit): the coordinator sends commit messages to nodes
that holds the W set. After receiving this message, the par-
ticipant will update the key/value/version, as well as unlock
the key.

In iPipe, we implement the coordinator and participant as

8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 8 16 32 64 128 256 512 1024 2048

L
a

te
n

c
y
 (

u
s
)

Payload size (B)

DMA blocked read
DMA non-blocking read

DMA blocked write
DMA non-blocking write

Figure 5: Per-core blocked/non-
blocking DMA read/write latency
when increasing payload size.

 0

 2

 4

 6

 8

 10

4 8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(M

o
p

s
)

Payload size (B)

DMA blocked read
DMA non-blocking read

DMA blocked write
DMA non-blocking write

Figure 6: Per-core blocked/non-
blocking DMA read/write throughput
when increasing payload size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

32K 64K 128K 256K 512K 1024K

L
a

te
n

c
y
 (

u
s
)

Data structure size (B)

Insert latency diff
Find latency diff

Figure 7: INSERT and FIND latency
difference between a host processor
and an in-networking processor when
increasing the number of node of a
SkipList.

actors running on the NIC. The key storage abstractions re-
quired to implement the protocol are the coordinator log [16]
and the data store, which we realize using a traditional ex-
tensible hashtable [25]. Both of these are realized using dis-
tributed shared objects. We also cache responses from out-
standing transactions. When the log reaches a storage limit,
a new actor will be created on the NIC, and the old log will
be migrated to the host side for checkpointing.

Real-time Analytics. Data processing pipelines use a
real-time analytics engine to gain instantaneous insights into
vast and frequently changing datasets. We acquired the im-
plementation of FlexStorm [31] and extended its functional-
ity. All data tuples are passed through three workers: filter,
counter, and ranker. The filter applies a pattern matching
module to discard uninteresting data tuples. The counter uses
a sliding window and periodically emits a tuple to the ranker.
Ranking workers sort incoming tuples based on count and
then emit the top-n data to an aggregated ranker. Each
worker uses a topology mapping table to determine the next
worker to which the result should be forwarded. There are
also threads for de-multiplexing and multiplexing packets as
tuples are communicated from one worker to another.

In iPipe, we implement the three workers as actors. Fil-
ter actor is a stateless one. Counter uses the software man-
aged cache for statistics. Ranker is implemented using a dis-
tributed shared object, and we consolidate all top-n data tu-
ples into one object. During the execution, we find that when
the ranker actor performs quicksort to order tuples, the com-
putation significantly impacts the NIC’s ability to receive
new data tuples. Our runtime will then migrate this actor
to the host side.

5 Evaluation
Our evaluations aim to answer the following questions:

1. Compared with host-side execution, what are the la-
tency savings of running parts of an applications on an
in-networking processor (§ 5.2, $ 5.4)?

2. With the iPipe framework, how much throughput can
an application achieve for a given number of host CPU

cores? Alternately, how much fewer host CPU cores are
required to achieve a certain throughput (§ 5.3)?

3. How effective is iPipe at managing concurrent use
of the programmable NIC by different applications
(§ 5.5)?

4. Can iPipe scale to multiple programmable NICs ($ 5.6)?

5.1 Prototyped system

We build iPipe on the Cavium LiquidIOII [10] (described
before) with commercial off-the-shelf (COTS) Supermi-
cro 1U/2U servers. Our iPipe runtime spreads across the
NIC firmware and host system with 4061 LOCs and 3183
LOCs, respectively. On the NIC side, we take advantage
of low-level primitives provided by the Cavium Develop-
ment Kit [9]. The firmware applies the run-to-completion
model across all 12 cores. Our runtime is embedded into the
firmware, which starts after the firmware environment initial-
ization. As described before, iPipe dedicates 1 core for the
message tier, 1 core for the TX/RX, and the rest for applica-
tion execution. The firmware, runtime, and applications re-
side in different bootmem (which are large chunks of system
memory abstracted by the firmware). On the host side, we
use pthreads for runtime execution and allocate 1GB pinned
hugepages for the message ring. Each runtime thread peri-
odically polls requests from the channel and performs actor
executions. It transition to idling C-states when there is no
more work. Programmers use the C langugage to build appli-
cations. Our three workloads, real-time analytics (RTA), dis-
tributed transactions (DT), replicated key-value store (RKV),
built with iPipe have 1583 LOCs, 2225 LOCs, and 2133
LOCs, respectively, and we compare with similar implemen-
tations that use DPDK.

Our workload generator is also implemented using DPDK
and invokes operations in a closed-loop manner. For RTA,
each packet contains one fixed size (128B) data tuple. For
the distributed transaction, each request is a multi-key read-
write transaction, and each has 2 reads and 1 write. For
RKV, we generate the <key,value> pair in each packet,
with the following characteristics: 95% read, zipf distribu-

9

tion (skewness=0.99), and 1 million keys (used in previous
work[47, 37]).

Our testbed runs on an 8-node cluster, attached to an
Arista DCS-7050S ToR switch. Seven of them are 1U boxes
and the last one is a 2U server (all from Supermicro). Each
of the 1U machines has one 12-core E5-2680 v3 processor
at 2.5GHz and 64GB DDR4 memory. Four of them are
equipped with a dual-port 10Gbps Intel XL710 NIC and the
remaining three have Cavium LiquidIOII installed. We use
the 2U server for the multi-NIC evaluations, where it has
two 8-core Intel E5-2620 v4 processors at 2.1GHz, 128GB
memory, and 7 Gen3 PCIe slots. All servers are equipped
with a Seagate HDD, and we apply the Intel pstate governor
for power management.

5.2 Latency of iPipe primitives

We characterize the latency of various iPipe primitives us-
ing a set of microbenchmarks. Specifically, we use a pointer
workload to evaluate the local/remote memory reads/writes.
The networking SEND/RECV are characterized using a sim-
ple ECHO workload. We measure the messaging layer prim-
itive performance by repeatedly reading from/writing to one
I/O channel. Our microbenchmarks yield the following ob-
servations.

First, the in-networking processor has a deep non-uniform
memory subsystem with the following attributes: (1) local
DRAM access is more than 10X faster than remote host ac-
cess; (2) remote host writes outperform remote host reads.
This motivates why we introduce three kinds of data ob-
jects (i.e, distributed shared object, local memory objects,
and software managed cache). When building applications,
one should lay out the application working set carefully us-
ing these three types of objects. Second, the iPipe stack takes
at most 0.13µs and 0.22 µs for packet receiving and send-
ing, irrespective of the packet size (since the hardware man-
aged packet buffer for each packet is always fixed at 2KB).
Third, the messaging primitives consume 0.10µs and 0.22µs
for sending/receiving packets with 1KB payloads. The host
memory synchronization overheads are amortized. We also
measured the throughput and found that it could saturate the
10Gbps bandwidth for all message sizes.

5.3 Throughput and core usage

Figure 8 and Table 3 reports the host CPU cores used when
achieving the maximum throughput. We also presents the av-
erage CPU usage for our iPipe host core. Since the core goes
to idle periodically when there are no incoming requests, it
doesn’t fully use the host core. Compared with the DPDK
case, iPipe saves 1 core for the RTA worker, 2.66 cores for
the DT coordinator, 2 cores for the DT participant, 1.43 cores
for the RKV leader, and 1.77 core for the RKV follower.

 0

 0.5

 1

 1.5

 2

 2.5

 3

RTA
Woker

DT
Coord.

DT
Participant

RKV
Leader

RKV
Follower

C
o
re

 (
#
)

DPDK iPipe

Figure 8: Host used CPU cores comparison between
DPDK and iPipe on three different applications. For iP-
ipe case, we report the average CPU usage.

5.4 Application latency

Latency v.s. throughput. Figure 9 presents the latency
(observed by clients) and throughput as we increase the
client request rate, comparing among three cases (i.e., DPDK
with 1 core, DPDK that can achieve the highest throughput,
and iPipe).

First, at low to medium request rate, NIC-side offloading
reduces request execution latency by 3.0µs, 15.8µs, 9.3µs of
three applications. These benefits come from three facts: (1)
PCIe transaction savings (since parts of application logic di-
rectly run on the NIC); (2) fast networking primitives along
with hardware accelerated buffer managements; (3) wimpy
computations that have similar execution performance when
running on the host processor. DT benefits the most as both
the coordinator and participants run on the in-networking
process and host CPU doesn’t involve in the performance
critical path.

Second, when only using one CPU core with DPDK, iPipe
improves 27.8%, 75.0%, and 26.2% throughput of three ap-
plications, respectively. This is because the NIC cores brings
in more computing power. When using more host cores, both
cases achieve the same throughput.

99th tail latency. Figure 10 reports the average and tail
(99th) latency of three applications when achieving 80% of
the maximum throughput. iPipe reduces 12.1µs, 6.0µs, and
9.7µs for three applications, respectively. This is not only
due to the fast request processing (discussed above), but also
because that (1) the actor scheduler running on the network-
ing processor will migrate heavy actors when it hurts latency;
(2) the traffic manager starts to throttle the traffic when the
NIC core cannot fetch packets fast enough.

5.5 Multi-tenancy and iPipe

We evaluate the iPipe dynamic resource management
(DRM) under various application consolidation scenarios
shown in Figures 11 and 12. Also, in this experiment, we

10

Primitives 4B 8B 16B 32B 64B 128B 256B 512B 1024B
iPipe lmem read (ns) 15.8 20.3 31.7 35.0 36.7 70.9 100.8 101.7 110.0
iPipe lmem write (ns) 16.7 23.3 31.7 35.0 38.3 90.8 105.8 106.7 111.7
iPipe nstack-RX (us) 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13
iPipe nstack-TX (us) 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.22
iPipe rmem read (us) 1.46 1.46 1.47 1.47 1.51 1.54 1.60 1.71 1.86
iPipe rmem write (us) 0.86 0.85 0.86 0.86 0.88 0.89 0.94 0.99 1.13
iPipe send message (us) 0.01 0.02 0.04 0.05 0.06 0.09 0.09 0.10 0.10
iPipe recv message (us) 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.16

Table 2: Latency of iPipe NIC-side primitives under different data size. The size of nstack and messaging are payload.
The cache line size of the networking processor is 128B.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5

L
a

te
n

c
y
 (

u
s
)

Throughput (Mop/s)

DPDK-1core-RTA
DPDK-RTA
iPipe-RTA

(a) RTA.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1 1.2

L
a

te
n

c
y
 (

u
s
)

Throughput (Mop/s)

DPDK-1core-DT
DPDK-DT
iPipe-DT

(b) DT.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

L
a

te
n

c
y
(u

s
)

Throughput (Mop/s)

DPDK-1core-RKV
DPDK-RKV
iPipe-RKV

(c) RKV.

Figure 9: Latency versus throughput for three applications, compared among DPDK-1core, DPDK, and iPipe cases.

 0

 20

 40

 60

 80

 100

 120

RTA DT RKV

L
a
te

n
c
y
 (

u
s
)

DPDK-average
iPipe-average

dpdk-tail
iPipe-tail

Figure 10: Average and tail latency when achiev-
ing 80% maximum throughput, compared between
DPDK and iPipe cases.

 0

 20

 40

 60

 80

 100

 120

 140

RKV RKV+RKV RKV+DT RKV+RTA
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
a
il

la
te

n
c
y
 (

u
s
)

T
h
ro

u
g
h
p
u
t
(M

R
P

S
)

Tai-lat. w/o iPipe-DRM
Tail-lat. w/ iPipe-DRM
Throu. w/o iPipe-DRM
Throu. w/ iPipe-DRM

Figure 11: Tail latency and throughput of the RKV
application, when consolidating with RKV, DT, and
RTA, compared between w/ and w/o iPipe DRM.

 0

 50

 100

 150

 200

RTA DT RKV
 0

 0.2

 0.4

 0.6

 0.8

 1

T
a
il

la
te

n
c
y
 (

u
s
)

T
h
ro

u
g
h
p
u
t
(M

R
P

S
)

Tail-lat. w/o iPipe-DRM
Tail-lat. w/ iPipie-DRM
Throu. w/o iPipe-DRM
Throu. w/ iPipe-DRM

Figure 12: Tail latency and throughput comparison
between w/ and w/o iPipe dynamic resource manage-
ment when consolidating three applications.

 0

 5

 10

 15

 20

1NIC 2NICs 3NICs 4NICs

T
h
ro

u
g
h
p
u
t
(M

R
P

S
)

SmartNIC (#)

RTA
DT

RKV

Figure 13: Maximum throughput (MRPS) when
adding more SmartNICs for three applications. This
experiment uses a 2U Supermicro beefy server.

11

RTA DT RKV
DPDK 4.65 1.12 1.15
iPipe 4.65 1.17 1.09

Table 3: Maximum throughput (in million requests/sec-
ond) comparison between DPDK and iPipe cases.

configure all three workloads with the same request size.
There are three observations. First, iPipe DRM can mitigate
execution interference in terms of tail latency. When con-
solidating the RKV with DT and RTA, DRM helps reduces
14.7µs and 8.0µs tail latency, respectively (We don’t see a
tail latency increase when two RKVs run together). When
co-locating three of them, on average, DRM saves 11.5µs
tail latency of three applications. Second, iPipe DRM is able
to guarantee fair bandwidth allocation. Considering the ap-
plication scenario (Figure 12), without DRM, RTA achieves
nearly twice (0.35MRPS) of throughput as the other two
(0.10/0.12MRPS). When applying DRM, three applications
achieve similar share (0.15/0.18/0.16MRPS). Third, DRM
incurs little execution overheads. When running RKV alone
w/ and w/o DRM (Figrue 11), its latency and throughput
varies little.

5.6 Multiple NICs and iPipe

This section evaluates the scalability of iPipe in terms of
supporting multiple programmable NICs. We take the 2U
Supermicro box as the testbed. As we have only one big
server, when deploying three applications, we run all actors
locally (without external communication). As a result, we
reduce the number of data shards for both DT and RKV (to
avoid the computation overloading). Each programmable
NIC has its own I/O channel. To eliminate the case that
computations are bounded by the host CPU cores, we at-
tach two programmable NICs to each 8-core processor. As
shown in Figure 13, the throughput of each of the three ap-
plications scales well with more NICs. For example, RKV
increases from 1.09MRPS, to 2.03MRPS, 2.77MRPS, 3.74
MRPS with 2/3/4 NICS.

6 Related work
Programmable NIC acceleration. There are some recent
studies that use emerging programmable NICs for applica-
tion acceleration. For example, ClickNP [36] provides a
flexible and high performance networking function frame-
work. It applies the Click [32] dataflow programming model
and allows joint CPU/NIC processing on network functions
(through PCIe I/O channels). Researchers have also explored
the possibility of dynamically offloading stateful middlebox
functions onto a programmable NIC [43]. HotCocoa [6]
aims to offload the entire congestion control algorithm onto
the programmable NIC using a set of hardware abstractions.
Floem [1] provides a set of programming abstractions (e.g.,
logic queue, per-packet state, and caching construct) that

helps programmers to easily split applications across the
CPU and the NIC. iPipe differs from the above systems in the
following ways: (1) it targets RPC-based datacenter work-
loads and provides an actor-based programming model; (2)
it examines the offloading of general-purpose application-
specific computations onto a programmable NIC, with the
runtime system ensuring that NIC’s hardware constraints are
not violated; (3) it supports multi-tenancy and concurrent use
of the programmable NIC by multiple applications.

RDMA-based datacenter applications. Recent years have
seen a growing use of RDMA in datacenter environments
due to its low-latency, high-bandwidth, and low CPU utiliza-
tion benefits. These applications include key-value store sys-
tem [42, 19, 28], DSM system [44, 19], database and trans-
actional system [12, 20, 51, 29]. Generally, RDMA provides
fast data access capabilities but provides limited opportuni-
ties to reduce the host CPU computing load. While one-
sided RDMA operations allow applications to bypass remote
server CPUs, they are hardly used in general distributed sys-
tems given the narrow set of remote memory access prim-
itives associated with them. In contrast, iPipe provides a
framework to offload simple but general computations onto
programmable NICs. It does however borrow some tech-
niques approaches from related RDMA projects (e.g., lazy
updates for the send/receive rings in FaRM [19]).

In-network computations. The recently RMT
switches [7] and smart NICs [41, 10, 45, 40, 48] enable
programmability along the packet data plane. Researchers
have proposed the use of in-network computation, where
one can offload compute operations from endhosts into
these network devices in order to reduce datacenter traffic
and improve applications performance. For example,
IncBricks [38] is an in-network caching fabric with some
basic computing primitives. NetCache [27] is another
in-network caching design, which uses a packet-processing
pipeline on a Barefoot Tofino switch to detect, index, store,
invalidate, and serve key-value items. DAIET [3] conducts
data aggregation (for MapReduce and TensorFlow) along
the network path using programmable switches. In contrast
to these projects that use programmable switches and
middleboxes, iPipe targets programmable NICs.

7 Conclusion

This paper proposes iPipe, a framework that allows program-
mers to develop datacenter applications using a NIC-side in-
networking processor. iPipe addresses the programmability,
offloading constraints, and multi-tenancy challenges by sup-
porting an actor programming model and providing a set of
utility APIs via the iPipe runtime system. We build three
datacenter workloads using iPipe and prototype them on a
commodity programmable NICs. Our evaluations show that
by offloading lightweight computations to the NIC, one can
achieve latency benefits as well as host CPU savings.

12

References
[1] Floem: Programming system for nic-accelerated network applica-

tions. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18) (Carlsbad, CA, 2018), USENIX Associa-
tion.

[2] AGHA, G. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, Cambridge, MA, USA, 1986.

[3] AMEDEO, S., IBRAHIM, A., ABDULLA, A., MARCO, C., AND
PANOS, K. In-network computation is a dumb idea whose time has
come.

[4] APACHE. The Apache Cassandra Database. http://cassandra.

apache.org, 2017.

[5] APACHE. The Apache HBase. https://hbase.apache.org, 2017.

[6] ARASHLOO, M. T., GHOBADI, M., REXFORD, J., AND WALKER,
D. Hotcocoa: Hardware congestion control abstractions. In Proceed-
ings of the 16th ACM Workshop on Hot Topics in Networks (New York,
NY, USA, 2017), HotNets-XVI, ACM, pp. 108–114.

[7] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKE-
OWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for sdn. In ACM SIGCOMM Computer Communication
Review (2013), vol. 43, ACM, pp. 99–110.

[8] CAVIUM. Cavium OCTEON Multi-core Processor. http://www.

cavium.com/octeon-mips64.html, 2017.

[9] CAVIUM. Octeon Development Kits. http://www.cavium.com/

octeon_software_develop_kit.html, 2017.

[10] CAVIUM. Cavium LiquidIO SmartNICs. https://cavium.com/

pdfFiles/LiquidIO_II_CN78XX_Product_Brief-Rev1.pdf,
2018.

[11] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH,
D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND GRUBER,
R. E. Bigtable: A distributed storage system for structured data. In
7th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 06) (Seattle, WA, 2006), USENIX Association.

[12] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast and
general distributed transactions using rdma and htm. In Proceedings
of the Eleventh European Conference on Computer Systems (2016),
ACM, p. 26.

[13] CISCO. The New Need for Speed in the Datacenter Net-
work. http://www.cisco.com/c/dam/en/us/products/

collateral/switches/nexus-9000-series-switches/

white-paper-c11-734328.pdfdf, 2015.

[14] CISCO. Cisco Global Cloud Index: Forecast and Methodology,
2015-2020. http://www.cisco.com/c/dam/en/us/solutions/
collateral/service-provider/global-cloud-index-gci/

white-paper-c11-738085.pdf, 2016.

[15] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J., GHEMAWAT, S., GUBAREV, A., HEISER, C.,
HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,
LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN,
S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR,
C., WANG, R., AND WOODFORD, D. Spanner: Google’s globally-
distributed database. In 10th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 12) (Hollywood, CA, 2012),
USENIX Association, pp. 261–264.

[16] CRISTIAN, F., ET AL. Coordinator log transaction execution protocol,
1990.

[17] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly avail-
able key-value store. In ACM SIGOPS operating systems review
(2007), vol. 41, ACM, pp. 205–220.

[18] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND HODSON,
O. Farm: Fast remote memory. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14) (Seattle, WA,
2014), USENIX Association, pp. 401–414.

[19] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND CAS-
TRO, M. Farm: Fast remote memory. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementa-
tion (2014), pp. 401–414.

[20] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B., REN-
ZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO, M. No
compromises: distributed transactions with consistency, availability,
and performance. In Proceedings of the 25th symposium on operating
systems principles (2015), ACM, pp. 54–70.

[21] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3: Com-
pact and concurrent memcache with dumber caching and smarter
hashing. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13) (Lombard,
IL, 2013), USENIX, pp. 371–384.

[22] FIRESTONE, D. Hardware-Accelerated Networks at Scale in the
Cloud. https://conferences.sigcomm.org/sigcomm/2017/

files/program-kbnets/keynote-2.pdf, 2017.

[23] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,
SHENKER, S., AND STOICA, I. Dominant resource fairness: Fair
allocation of multiple resource types. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implemen-
tation (Berkeley, CA, USA, 2011), NSDI’11, USENIX Association,
pp. 323–336.

[24] GOLDHAMMER, A., AND AYER JR, J. Understanding performance
of pci express systems. Xilinx WP350, Sept 4 (2008).

[25] HANSON, T. D. Uthash Hashtable. https://troydhanson.

github.io/uthash/, 2017.

[26] HEWITT, C., BISHOP, P., AND STEIGER, R. A universal modular
actor formalism for artificial intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence (San Fran-
cisco, CA, USA, 1973), IJCAI’73, Morgan Kaufmann Publishers Inc.,
pp. 235–245.

[27] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOSTER, N.,
KIM, C., AND STOICA, I. Netcache: Balancing key-value stores with
fast in-network caching. In Proceedings of the 26th Symposium on
Operating Systems Principles (2017), ACM, pp. 121–136.

[28] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using rdma ef-
ficiently for key-value services. In ACM SIGCOMM Computer Com-
munication Review (2014), vol. 44, ACM, pp. 295–306.

[29] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst: Fast,
scalable and simple distributed transactions with two-sided (RDMA)
datagram rpcs. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16) (Savannah, GA, 2016), USENIX
Association, pp. 185–201.

[30] KAMINSKY, A. K. M., AND ANDERSEN, D. G. Design guidelines
for high performance rdma systems. In 2016 USENIX Annual Techni-
cal Conference (2016), p. 437.

[31] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND
KRISHNAMURTHY, A. High performance packet processing with
flexnic. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2016), ASPLOS ’16, ACM, pp. 67–81.

[32] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Transactions
on Computer Systems (TOCS) 18, 3 (2000), 263–297.

[33] KUNG, H.-T., AND ROBINSON, J. T. On optimistic methods for
concurrency control. ACM Transactions on Database Systems (TODS)
6, 2 (1981), 213–226.

13

http://cassandra.apache.org
http://cassandra.apache.org
https://hbase.apache.org
http://www.cavium.com/octeon-mips64.html
http://www.cavium.com/octeon-mips64.html
http://www.cavium.com/octeon_software_develop_kit.html
http://www.cavium.com/octeon_software_develop_kit.html
https://cavium.com/pdfFiles/LiquidIO_II_CN78XX_Product_Brief-Rev1.pdf
https://cavium.com/pdfFiles/LiquidIO_II_CN78XX_Product_Brief-Rev1.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-734328.pdfdf
http://www.cisco.com/c/dam/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-734328.pdfdf
http://www.cisco.com/c/dam/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-734328.pdfdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://conferences.sigcomm.org/sigcomm/2017/files/program-kbnets/keynote-2.pdf
https://conferences.sigcomm.org/sigcomm/2017/files/program-kbnets/keynote-2.pdf
https://troydhanson.github.io/uthash/
https://troydhanson.github.io/uthash/

[34] LAMPORT, L., ET AL. Paxos made simple. ACM Sigact News 32, 4
(2001), 18–25.

[35] LEVELDB. LevelDB Key-Value Store. http://leveldb.org,
2017.

[36] LI, B., TAN, K., LUO, L. L., PENG, Y., LUO, R., XU, N., XIONG,
Y., CHENG, P., AND CHEN, E. Clicknp: Highly flexible and high
performance network processing with reconfigurable hardware. In
Proceedings of the 2016 ACM SIGCOMM Conference (2016), ACM,
pp. 1–14.

[37] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M. Mica:
A holistic approach to fast in-memory key-value storage. In Proceed-
ings of the 11th USENIX Conference on Networked Systems Design
and Implementation (Berkeley, CA, USA, 2014), NSDI’14, USENIX
Association, pp. 429–444.

[38] LIU, M., LUO, L., NELSON, J., CEZE, L., KRISHNAMURTHY, A.,
AND ATREYA, K. Incbricks: Toward in-network computation with
an in-network cache. In Proceedings of the Twenty-Second Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems (2017), ACM, pp. 795–809.

[39] MANGODB. MangoDB Document-oriented database. https://

www.mongodb.com, 2017.

[40] MELLANOX. Mellanox Innova Ethernet Adapter. http:

//www.mellanox.com/page/products_dyn?product_family=

228&mtag=programmable_adapter_cards_l, 2017.

[41] MELLANOX. Mellanox BuleField SmartNIC. http:

//www.mellanox.com/page/products_dyn?product_family=

275&mtag=bluefield_smart_nic, 2018.

[42] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided rdma reads
to build a fast, cpu-efficient key-value store. In USENIX Annual Tech-
nical Conference (2013), pp. 103–114.

[43] MOON, Y., PARK, I., LEE, S., AND PARK, K. Accelerating flow
processing middleboxes with programmable nics.

[44] NELSON, J., HOLT, B., MYERS, B., BRIGGS, P., CEZE, L., KA-
HAN, S., AND OSKIN, M. Latency-tolerant software distributed
shared memory. In USENIX Annual Technical Conference (2015),
pp. 291–305.

[45] NETRONOME. Netronome Agilio SmartNIC. https://www.

netronome.com/products/agilio-cx/, 2018.

[46] NEUGEBAUER, R., ANTICHI, G., ZAZO, J. F., AUDZEVICH, Y.,
LÓPEZ-BUEDO, S., AND MOORE, A. W. Understanding pcie per-
formance for end host networking. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communication
(New York, NY, USA, 2018), SIGCOMM ’18, ACM, pp. 327–341.

[47] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE,
H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB,
P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V. Scaling
memcache at facebook. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13) (Lombard, IL, 2013), USENIX, pp. 385–398.

[48] PUTNAM, A., CAULFIELD, A. M., CHUNG, E. S., CHIOU, D.,
CONSTANTINIDES, K., DEMME, J., ESMAEILZADEH, H., FOWERS,
J., GOPAL, G. P., GRAY, J., ET AL. A reconfigurable fabric for ac-
celerating large-scale datacenter services. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on (2014),
IEEE, pp. 13–24.

[49] SRINIVASAN, S., AND MYCROFT, A. Kilim: Isolation-typed actors
for java. In European Conference on Object-Oriented Programming
(2008), Springer, pp. 104–128.

[50] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast in-
memory transaction processing using rdma and htm. In Proceedings
of the 25th Symposium on Operating Systems Principles (New York,
NY, USA, 2015), SOSP ’15, ACM, pp. 87–104.

[51] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast in-
memory transaction processing using rdma and htm. In Proceedings
of the 25th Symposium on Operating Systems Principles (2015), ACM,
pp. 87–104.

[52] WIKIPEDIA. Expotential Moving Average. https://en.

wikipedia.org/wiki/Moving_average, 2018.

[53] WIKIPEDIA. Max-min fairness. https://en.wikipedia.org/

wiki/Max-min_fairness, 2018.

[54] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISHNAMURTHY,
A., AND PORTS, D. R. K. Building consistent transactions with in-
consistent replication. In Proceedings of the 25th Symposium on Op-
erating Systems Principles (New York, NY, USA, 2015), SOSP ’15,
ACM, pp. 263–278.

14

http://leveldb.org
https://www.mongodb.com
https://www.mongodb.com
http://www.mellanox.com/page/products_dyn?product_family=228&mtag=programmable_adapter_cards_l
http://www.mellanox.com/page/products_dyn?product_family=228&mtag=programmable_adapter_cards_l
http://www.mellanox.com/page/products_dyn?product_family=228&mtag=programmable_adapter_cards_l
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://en.wikipedia.org/wiki/Moving_average
https://en.wikipedia.org/wiki/Moving_average
https://en.wikipedia.org/wiki/Max-min_fairness
https://en.wikipedia.org/wiki/Max-min_fairness

	Introduction
	Background & Motivation
	Programmable NICs
	Key idea and challenges

	iPipe framework
	An application written using iPipe
	Actor programming model
	iPipe runtime and APIs
	Distributed shared objects
	Local memory objects and software managed cache
	Actor scheduler
	Cross PCIe message passing tier
	Shim networking stack
	Dynamic resource management
	Host-side runtime

	Implementation
	Choice of DMA primitives
	Index caching
	More applications on iPipe

	Evaluation
	Prototyped system
	Latency of iPipe primitives
	Throughput and core usage
	Application latency
	Multi-tenancy and iPipe
	Multiple NICs and iPipe

	Related work
	Conclusion

