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ABSTRACT 

This paper introduces Trill – a new query processor for analytics. 

Trill fulfills a combination of three requirements for a query 

processor to serve the diverse big data analytics space: (1) Query 

Model: Trill is based on a tempo-relational model that enables it to 

handle streaming and relational queries with early results, across 

the latency spectrum from real-time to offline; (2) Fabric and 

Language Integration: Trill is architected as a high-level language 

library that supports rich data-types and user libraries, and 

integrates well with existing distribution fabrics and applications; 

and (3) Performance: Trill’s throughput is high across the latency 

spectrum. For streaming data, Trill’s throughput is 2-4 orders of 

magnitude higher than comparable streaming engines. For offline 

relational queries, Trill’s throughput is comparable to a major 
modern commercial columnar DBMS. 

Trill uses a streaming batched-columnar data representation with a 

new dynamic compilation-based system architecture that addresses 

all these requirements. In this paper, we describe Trill’s new design 

and architecture, and report experimental results that demonstrate 

Trill’s high performance across diverse analytics scenarios. We 

also describe how Trill’s ability to support diverse analytics has 

resulted in its adoption across many usage scenarios at Microsoft.  

1. INTRODUCTION 
Modern businesses accumulate large amounts of data from various 

sources such as sensors, devices, machine logs, and user activity 

logs. As a consequence, there is a growing focus on deriving value 

from the data by enabling timely analytics. In practice, big data 

analytics requires a diverse range of types of analytics, with a 

variety of latency settings over which the analytics is applied:  

1) Real-time streaming queries: These include queries on real-time 

data, which may reference slow-changing data such as social 

network graphs or data from data markets [14]. For example, notify 
a smartphone user if any of their Facebook friends are nearby.  

2) Temporal queries on historical logs: This includes back-testing 

streaming queries on historical logs; e.g., compute the average 

click-through-rate of ads in a 10-minute window, on a 30-day log. 

3) Progressive relational queries on collected data: Data scientists 

perform a series of interactive exploratory queries over logs to 

better understand the data. Computing progressively, i.e., providing 

immediate early results on partial data and refining as more data is 

streamed in, allows productive and cost-effective exploration. 

These analytics are interconnected: for instance, queries may 

correlate real-time with historical logs, or real-time data may be 

logged for progressive analysis using an interactive tool. The 

diverse and interconnected nature of analytics has resulted in an 

ecosystem of disparate tools, data formats, and techniques [13]. 

Combining these tools with application-specific glue logic in order 

to execute end-to-end workflows is a tedious and error-prone 

process, with poor performance and the need for translation at each 

step. Further, the lack of a unified data model and semantics 

precludes reusing logic across tools, developing queries on 

historical data and then deploying them directly to live streams.  

1.1 Requirements for Diverse Analytics 
We identify three key requirements for an analytics engine to 

successfully serve this diverse environment (here, we focus on the 

above-mentioned analytics types and settings; other requirements 

such as graph analytics are interesting areas for future work): 

1) Query Model: Existing analytics engines either target a specific 

point in the diverse analytics space (e.g., DBMS for offline 

relational) or expose low-level APIs (such as an incremental key-

value abstraction [29][38]) that place the burden of specifying non-

declarative logic on the application developer. 

The tempo-relational (temporal) query model [31][1] conceptually 

unifies the diverse analytics space. Briefly, this model represents 

datasets as a time-versioned database, where each tuple is 

associated with a validity time interval. Temporal datasets are 

presented as an incremental stream to a temporal stream processing 

engine (SPE) that processes a query incrementally to produce a 

result temporal dataset. We can use an SPE to: (1) deploy 

continuous queries across real-time streams and historical data; (2) 

back-test real-time queries over historical logs; and (3) run 

relational or temporal queries over log data. Recently, we have also 

shown how a temporal SPE can handle progressive relational 

queries, by using time to denote query progress [2]. 

Some SPEs such as NiagaraST [9] and StreamInsight [8] support a 

full tempo-relational algebra, whereas other SPEs such as Spark 

Streaming [34] and Naiad [35] support limited variants of the 

model. But today’s SPEs fall short as unified analytics engines, 

because they lack fabric integration and high performance across 

the diverse analytics space. 

2) Fabric & Language Integration: Analytics workflows today are 

driven by an application, which uses the engine either directly or 

via a combination of distribution fabrics (such as Storm [29], 

YARN [17], and Orleans [16]) for different parts of the pipeline. 
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To enable integrated execution, an analytics engine must be usable 

as a library from a hosting high-level language (HLL). HLLs such 

as Java and C# provide a rich universe of data-types, libraries, and 

custom logic that needs to integrate seamlessly with the engine. 

DBMSs provide very high performance, but use a server model 

over a restricted universe of SQL data-types (e.g., int and bigint) 

and expressions (e.g., a filter predicate A < 10), with limited 

support for richer logic via integration mechanisms such as SQL 

CLR [36]. Spark [28] integrates with Scala, but exposes a server 

model. StreamInsight uses language-integrated queries (LINQ) 

[32] for seamless query specification from a HLL, but follows a 

server model and restricts data-types. Naiad [35] uses LINQ and 

processes arbitrary HLL data-types and expressions, while 

incremental key-value engines such as Storm expose a low-level 

key-value-based API with rich data-type support. But these systems 

lack performance and a declarative query model. One could build a 

declarative operator layer over such systems, but this layered 

approach can further impact performance. 

3) Performance: High performance is a critical requirement for 

analytics. Specifically, we need an engine to automatically and 

seamlessly adapt performance in terms of latency and throughput, 

across the analytics spectrum from offline to real-time. 

Figure 1 depicts single-machine throughput on today’s engines, for 

a simple filter query on an in-memory dataset (see §7 for workload 

details). SPE-X and DB-X represent a modern commercial SPE and 

columnar DBMS respectively. We see that today’s SPEs have 

lower throughput (by 500X or more) than modern columnar 

DBMSs such as Vertica [14], SQL Server [6], and Shark [28] that 

push the limits of relational performance, approaching memory-

bandwidth speeds for common operations. However, these DBMSs 

lack rich HLL data-type, expression and efficient HLL library 

support. Further, they use the non-incremental model, which targets 

a specific (offline relational) point in the analytics space. 

To summarize, these capabilities – rich query model, fabric and 

language integration, and high performance – appear to 

fundamentally be at odds in today’s systems, as seen in Table 1. 

1.2 Today’s Engine Architectures 
To understand why these requirements are not simultaneously 

addressed by today’s systems, we start by classifying existing 

engine architectures into three categories: event-at-a-time, batch-

at-a-time, and offline. These are shown in Figure 2(a)-(c); their 

throughputs are shown in Figure 1. Low latency motivated the 

traditional event-at-a-time architecture of SPEs such as SPE-X, but 

this limits throughput to very low levels. Naiad [35] processes 

events one batch at a time, which provides better throughput. 

However, we notice that offline DBMSs still provide significantly 

higher throughput (by ~500X) than batch-at-a-time SPEs. 

The reason for this vast performance difference is that language 

integration in systems such as Naiad precludes the use of efficient 

DB-style data organizations such as columnar, i.e., user expressions 

are evaluated as black-boxes over individual rows. Further, the end 

user has to manually navigate the latency spectrum by selecting 

individual batch sizes. Finally, temporal operators have to be 

written as a layer outside the engine, and thus cannot be optimized 

for performance. On the other hand, relational engines support only 

the SQL model over offline data with high latency, and do not 

provide deep fabric or language integration. 

1.3 A New Hybrid System Architecture 
This paper introduces Trill (for a trillion events per day), a new 

analytics engine that addresses all these requirements: 

1) Query Model: Trill is based on the temporal logical data model, 

which enables the diverse spectrum of analytics described earlier: 

real-time, offline, temporal, relational, and progressive. 

2) Fabric & Language Integration: Trill is written as a library in 

an HLL (C#), and thus benefits from arbitrary HLL data-types, a 

rich library ecosystem, integration with arbitrary program logic, 

ingesting data without “handing off” to a server or copying to native 

memory, and easily embedding within scale-out fabrics and as part 

of a Cloud application workflow. 

3) Performance: Trill handles the entire space of analytics 

described earlier, at best-of-breed or better levels of performance 

(see Figure 1). With temporal queries over streaming data, Trill 

processes events at rates that are 2-4 orders-of-magnitude higher 

than existing commercial streaming engines. Further, for the case 

of offline relational (non-temporal) queries over logs, Trill’s query 

performance is comparable to a modern columnar DBMS, while 

supporting a richer query model and language integration. Trill is 

very fast for simple payload types (common for early parts of a 

pipeline), and degrades gracefully as payloads become complex, 

such as machine learning models (common on reduced data). 

Trill achieves all these requirements using a hybrid system 

architecture – see Figure 2(d) – that combines novel ideas and key 

prior ideas from specific points in the analytics spectrum: 

1) Support for Latency Spectrum (§3): Trill queries consist of a 

DAG of operators that process a stream of data-batch messages. 

Each data-batch consists of multiple events carefully laid out in 

timestamp order in main memory. We find that batching is useful 

in an SPE to improve throughput, particularly when combined with 

engineering practices we report in this paper, such as a very careful 

organization of inner per-batch loops in operators. Critically, unlike 

other batched streaming systems such as Spark Streaming [34], our 

temporal model allows batching to be purely physical (not 

commingled with application time) and therefore easily variable: 

query results are always identical to the case of per-event 

processing, regardless of batch sizes or data arrival rates.  

While batching provides high throughput, it may result in high and 

unpredictable latency which can be unacceptable in a streaming 

setting. To solve this, Trill supports a new form of punctuations, 

which allow users to control desired latency. Punctuations work 

alongside batching to transparently tradeoff throughput for latency. 

In Trill, for a user-specified latency, higher input loads result in 

larger batches that provide better throughput, which in turn allows 

the system to better handle the increased load. 

Table 1: Desirable features in existing systems and Trill. 
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2) Columnar Processing in a High-Level Language (§4): Systems 

like Naiad and Spark Streaming batch data, but in order to reach the 

performance of modern DBMSs, Trill uses a columnar data 

organization within batches. We adopt and extend columnar 

techniques [14][12][6] and apply them over temporal data. Our 

control fields (e.g., timestamps) are also columnar, so we pay the 

cost of temporality only when necessary. 

Critically, in order to benefit from columnar processing (proven by 

DBMSs) in an HLL, we use a novel dynamic HLL code generation 

technique that constructs and compiles HLL source code on-the-fly 

for batches and operators, all of which operate over columnar 

batched data. Both columnarization and batching are transparent to 

users, who program over the usual row-oriented view of data 

streams. To achieve this, we leverage the abstract syntax trees of 

lambda expressions [21] (available in today’s HLLs) to interpret 

and rewrite user queries (such as select expressions) into inlined 

columnar accesses inside tight per-batch loops, with few sequential 

memory accesses and no method calls inside the loop. 

Dynamic HLL code generation also enables us to (1) handle strings 

more efficiently by storing them as character arrays within batches, 

and rewriting user expressions to operate directly over these arrays; 

and (2) enable fast serialization by sending columns over the wire 

without any fine-grained encoding or decoding, which provides a 

10X benefit over standard HLL serialization schemes such as Avro. 

3) Fast Streaming Operators (§5): Trill exploits the coarse-grained 

columnar nature of data-batches and the timestamp-order of data 

via a set of new algorithms for streaming operators. We propose a 

powerful grouped user-defined aggregation framework; it uses an 

expression-based user API that lets user-defined extensions achieve 

performance similar to hand-written custom logic. In fact, our built-

in aggregates in Trill are written using the user-defined framework. 

Trill also uses a new stream property derivation framework (§5.3) 

that leverages data characteristics to select from a small set of 

generated physical operators at compile-time.  

4) Library Mode & Multi-core (§6): By default, Trill queries run 

only on the thread that feeds data to it. This “pure library” mode 

makes Trill ideal for embedding within frameworks such as 

Orleans [16] and YARN [17]. For higher performance on multi-

core, Trill supports a new two-level streaming temporal map-

reduce operation, executed using a lightweight optional scheduler. 

Detailed experiments (§7) comparing Trill to a commercial DBMS 

engine and a commercial SPE over real and synthetic data 

demonstrate Trill’s high performance across various settings. Trill 

is being used extensively within Microsoft – §7.6 overviews the 

broad range of usage scenarios we have encountered in practice. 

Finally, we note that while Trill is written in C#, its architecture 

applies to other HLLs such as Java, which have rich libraries that 

need to be usable in a big data analytics setting. 

2. SYSTEM OVERVIEW WITH EXAMPLE 
Consider a stream of user activity in terms of ad clicks, where each 

event is a HLL data-type: 

  struct UserData { 
     long ClickTime; // Time of click on advertisement 
     long UserId;    // ID of user who clicked on ad 
     long AdId;      // ID of the advertisement 
  } 
The application wishes to compute, for each ad, a 5-minute 

windowed count of clicks on that ad, across a 5% sample of users, 

with a tolerable latency of 10 seconds. 

2.1 User Experience 
Users can ingress data into Trill from a variety of sources: real-time 

push-based sources; datasets cached in main memory; or data 

streamed from a file or network. As part of ingress, the user 

specifies a desired latency requirement (time) as an ingress policy. 

Further, they need to identify the application time field in the data 

for their query logic. For example, the user may create a stream 

endpoint as: 

var str = Network.ToStream(e => e.ClickTime, Latency(10secs)); 

Next, the query logic is written in Trill’s temporal LINQ language: 

var query = str.Where(e => e.UserId % 100 < 5) 
   .Select(e => { e.AdId }) 
   .GroupApply(e => e.AdId, 
               s => s.Window(5min).Aggregate(w => w.Count())); 

This query first runs a filter (Where) to sample users. The argument 

to Where in parentheses is called a lambda expression [21]; it 

represents an abstract syntax tree of the logical operation to be 

performed for each row (event) of type UserData in the stream to 

determine if it is dropped. Here, events with UserId % 100 < 5 are 

retained by the filter. Filter is followed by a projection (Select) to 

drop all columns except AdId, and a grouped operation 

(GroupApply) whose first argument is the grouping key (AdId) and 

the second is the per-group operation (windowed count aggregate). 

Note that the window argument is in application time, i.e., query 

semantics and results are unaffected by the latency specification. 

Finally, the result can be “subscribed” to by any listener as follows: 

query.Subscribe(e => Console.Write(e)); // write to console 

A full description of the Trill programming surface is outside the 

scope of this paper, but we note that it supports all the well-known 
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streaming operators, special operations to manipulate time, as well 

as a high-performance extensibility framework (see Section 5). 

2.2 System Overview and Challenges 
We compile the user query using standard techniques [4] into a 

DAG of streaming query operators. Each operator processes and 

produces a stream of messages, the unit of granularity that flows 

through Trill. Data is pushed to Trill from external sources, either 

as fine-grained events or directly as batches of events. Trill batches 

the data at ingress into messages, if needed, and pushes them 

through the operators. The output may be consumed directly as 

messages (for example, to serialize and write to disk or send over 

the network) or converted into fine-grained events for human 

consumption. The key challenges and resulting design decisions are 

summarized below and discussed in the rest of the paper. 

2.2.1 Support for Latency Spectrum (Sec. 3) 
Trill uses an adaptive physical batching model to support the 

latency spectrum from real-time to offline. We support two kinds 

of messages: data-batch and punctuation. A data-batch is simply a 

variable-sized batch of events, whereas a punctuation is a control 

message that forces Trill to produce output, terminating batches if 

necessary. Batching and punctuations help Trill provide high 

performance across the entire latency spectrum. In our example, the 

user specification of 10secs latency results in Trill batching events 

for at most 10secs, at which point a punctuation is inserted into the 

stream to force batches through the system and generate output. We 

discuss adaptive batching with punctuations in Section 3. 

2.2.2 Enabling Columnar with a HLL (Sec. 4) 
As we saw in Section 1, batching alone does not bridge the gap 

between databases and streaming engines. We need to organize the 

data within batches in a columnar format, so that only the relevant 

data is accessed during query processing. In our running example, 

the first Where should read only the column corresponding to 

UserId from main memory and write out a bit-vector per batch to 

indicate tuples that pass the filter. Similarly, the Select should be a 

constant-time operation per batch that simply drops all payload 

columns in the batch other than AdId. 

The challenge is to leverage a columnar organization in operators, 

while providing a row-oriented user view of data in a HLL. Section 

4 introduces our solution: dynamic HLL code generation. This 

technique speeds up operators by rewriting users’ row-oriented 

lambda expressions into columnar accesses inside tight per-batch 

loops. The loops usually have few sequential memory accesses and 

no method calls. Section 4 also presents several other ways in 

which we exploit code generation for performance within the HLL. 

2.2.3 Fast Grouped Streaming Operators (Sec. 5) 
Our running example next needs to compute a windowed count per 

AdId. Trill supports a GroupApply operator [1], which can execute 

any sub-query for each logical grouping key. We need to support 

efficient grouping and design new efficient algorithms for temporal 

operators that fully exploit the batched nature of input and output 

streams and can be used across temporal and progressive relational 

operations. We also introduce new stream properties for exploiting 

data characteristics to select from a small set of generated physical 

operators at compile-time. For instance, the Count operator in our 

example can exploit the fact that window sizes are constant, and 

can therefore expire windows in the order that data is received. 

2.2.4 Library Mode and Multi-Core Support (Sec. 6) 
We often need Trill to work as a pure library that does not own its 

own threads; for instance, when Trill is used inside fabrics that 

manage their own threads. We provide a no-scheduler library mode 

where processing occurs only on a thread that pushes data to Trill. 

Other situations require Trill to provide high performance by using 

all cores – here we use a novel temporal map-reduce operation that 

is executed on multiple cores using a lightweight scheduler that is 

configured by the application. In our running example, this facility 

allows us to scale out both the stateless operations (where and filter) 

and the grouped windowed count to use all the cores on a machine. 

3. SUPPORT FOR LATENCY SPECTRUM 
As described earlier, Trill’s operators process a stream of messages, 

which can either be data-batches or punctuations. 

Data-batches     A data-batch represents a batch of events in Trill. 

Each event in the data-batch consists of a payload and two 

timestamps: (1) sync-time, the logical time at which the event 

occurs; (2) other-time, an additional timestamp, discussed in 

Section 5 that indicates the extent of the data window. Sync-time is 

an important concept in Trill; it denotes the logical instant when a 

fact about the stream content becomes known. Events in a batch 

occur in strictly non-decreasing sync-time order. 

Data-batches allow Trill to tailor throughput based on desired 

latencies, exploiting the fact that larger batches lead to better 

throughputs. Thus, offline relational queries over offline data use 

larger batches, up to a maximum batch size; whereas, progressive 

and real-time queries select batch sizes based on the desired 

interactivity or acceptable result latency (delay), specified by users. 

Punctuations   A punctuation is a control message with a 

timestamp T, based on the user-provided latency specification. A 

punctuation serves two purposes: (1) it denotes the passage of 

application time until T, in the absence of data, in order to clean up 

system state; and (2) it enforces a flushing of data-batch messages 

through Trill, to force processing and output generation until T. 

Each operator internally batches events (up to the maximum batch 

size) before sending the batch to the next operator. Punctuations 

“kick” the system into producing output, which may involve 

pushing out partially-filled data batches. 

Trill injects punctuations based on the user-specified latency (10 

seconds in our running example), which allows us to dynamically 

adapt batch sizes to latency requirements. There is a maximum 

batch size, and the stream may contain multiple batches between 

two punctuations. Interestingly, for a given latency specification, a 

higher input event rate (e.g., during periods of heavy load) results 

in larger batches, which in turn increases system throughput to 

better handle the higher load. This form of adaptive batching 

enables us to use the same engine across a wide range of latency 

requirements, from real-time to offline. 

Finally, we note that our temporal semantics ensure that batching 

is purely physical: it affects only the physical observed latency and 

not the logical query results, which depend only on the data (with 

timestamps) and the query. 

4. ENABLING COLUMNAR WITH A HLL 
While the end-user view of data is row-based, our data-batches 

internally store both control fields and payload fields as columns. 

Specifically, each data-batch contains the following arrays: 

1. SyncTime: This is an array of all the sync-times in the batch. 

2. OtherTime: This is an array of other-time values in the batch. 

3. Bitvector: This is the “event absence” vector – an array with 

one bit per event. A bit value of 0 (or 1) indicates whether the 

corresponding data event exists (or is absent). Our micro-



benchmarks showed that one can perform more than 1 billion 

bitvector tests or sets per second per core. The bitvector allows 

efficient operator algorithms in many cases by avoiding the 

unnecessary movement of data to/from main memory. For 

example, a Where operator can apply the predicate and if the 

predicate fails can set the corresponding bitvector entry to 1. 

These fields are organized into a base class as follows: 

  class DataBatch { 
        long[] SyncTime; 
        long[] OtherTime; 
        Bitvector BV; 
  } 

The payload in Trill is also organized in columnar format, by 

generating (and compiling on-the-fly) a new HLL class that extends 

DataBatch and adds one array field for each field in the payload. 

For example, in case of the UserData payload in our running 

example, we generate a class that looks like: 

  class UserData_Gen : DataBatch { 
        long[] col_ClickTime; 
        long[] col_UserId; 
        long[] col_AdId; 
  } 

Trill supports arbitrary HLL types as payloads. If we cannot 

generate a columnar representation for a given payload type, we 

default to a row-based data-batch layout with a generic payload 

field (TPayload[] Payload), where TPayload is the payload type. 

4.1 Generating Operators 
In order to process generated data-batches, our operators need to 

also be generated since they compute over columns. The query 

compiler inspects each operator’s input and output types and its 

user-provided lambda expressions  to generate a carefully tailored 

batch-oriented operator. These generated operators are chained 

together to form the query DAG to which user data is pushed. 

Our transformation, in general, is to replace all references to a field 

f with references to col_f[i], the ith row in the column corresponding 

to field f. We describe this process for the initial Where and Select 

operators in our example, where we exploit the semantics of the 

operation and the input lambda expressions to achieve very high 

performance. The subsequent operations are covered in Section 5. 

4.1.1 Where (Filtering) 
Consider the first operation in our example: Where(e => e.UserId 

% 100 < 5). This filtering operation is compiled into a custom 

operator, a code module that is compiled and loaded  dynamically. 

The argument to Where is a lambda expression as discussed earlier. 

We convert the body of the function so that it operates over the 

column-oriented view of the data and construct a Where operator 

with the resulting code inlined inside a tight loop that iterates over 

the entire data-batch. For each entry in the data-batch, we check if 

the bitvector is 0 – if yes, we apply the filter (inlined into the loop) 

and if the filter does not pass, we set the bitvector entry to 1. A final 

On() call sends the result batch to a downstream operator. The 

pseudo-code for Where for our example is shown below: 

 

Note that it is not always possible to generate a columnar operator. 

For example, a filter might invoke a black-box method on each 

instance of UserData. In this case, we transform the data to its row-

oriented form using a ColumnToRow() operation, and use the non-

generated static (generic) definition of the operator that executes 

the black-box filter expression directly over elements of the 

UserData[] column in non-generated input data-batches. 

4.1.2 Select (Projection) 
The argument to Select is an expression that transforms a value of 

type TPayload into a value of a new return type TResult. Apart 

from converting the expression into inlined accesses on input and 

output columns, we optimize the handling of selection predicates 

that select a subset of input fields, so that they are constant-time 

operations at the batch level instead of having to iterate over each 

row. We do this by just assigning the pointer to the column for each 

input field to the pointer in the output batch. We call this a pointer-

swing. In our running example, the projection Select(e => { 

e.AdId }) is converted into the following generated operator: 

 
We create a new result data-batch of payload type long and pointer-

swing the control fields. We then pointer-swing the array for AdId 

from the source batch to the destination batch. We finally free the 

relevant columns in the input batch and output the result data-batch. 

Notice that since Where and Select are not temporal, we did not 

have to access the timestamp columns in our operators; they were 

simply pointer-swung to output batches in constant time. Thus, we 

do not pay a runtime cost for temporality for these operations. 

4.2 Exploiting Columnar Batches 
Our columnar batch organization with dynamic code generation of 

operators enables us to support several common use-cases where 

traditional HLL engines lose significant performance. 

4.2.1 Serialization and Deserialization 
Serialization of objects in a high-level language is inefficient due 

to the need for fine-grained encoding and decoding of rows. Trill 

data is stored as columnar data-batches. However, traditional 

serializers encode arrays on a per-element basis. We created a 

serializer for Trill – called Trillium – that can serialize columnar 

Trill streams 15X to 20X faster than standard row-based serializers 

such as Avro [19] (see Section 7.5). Trillium uses three techniques 

for performance: (1) the serializer and deserializer are code-

generated to avoid runtime interpretation; (2) generated data-

batches are handled by transferring arrays directly without any fine-

grained encoding or tests, and using the fill factor of the data-batch 

to limit how much data is transferred; (3) memory pools help reuse 

the memory into which data-batches are deserialized (this is useful 

when we execute a streaming query over a deserialized stream). 

4.2.2 String Handling using MultiString 
Strings in a HLL such as C# or Java are not optimized for 

performance. For example, each string in C# is stored as a separate 

object with a 24-byte overhead per string. Simply using an array of 

strings can create many small heap objects, which causes memory 

and GC overheads. We instead create a MultiString data structure 

void On(UserData_Gen batch) { 
  batch.BV.MakeWritable(); // bitvector copy on write   
  for (int i=0;i<batch.Count; i++) 
     if ((batch.BV[i]==0) &&  
            !(batch.col_UserId[i] % 100 < 5)) 
       batch.BitVector[i] = 1; 
  nextOperator.On(batch); 
} 

void On(UserData_Gen batch) { 
  var r = new AdId_Gen(); // generated result batch 
  r.CloneControlFieldsFrom(batch); 
  // constant time pointer swing of AdId column 
  r.col_AdId = batch.col_AdId.AddReference(); 
  batch.Free(); 
  nextOperator.On(r); 
} 



per string column in a data-batch that stores the individual (true) 

strings end-to-end in a single large string that is accessible as a 

character array (as with the columnar data format, users are 

unaffected by this transformation). The array is augmented with an 

array of offsets and lengths for the true strings. MultiStrings reduce 

memory and processing costs for queries over string data: the string 

split and substring operations can be done by simply creating a new 

offset/length array, which is 50X faster than a usual per-string split 

or substring. Note that a split can generate more rows than its input; 

we ref-count the character array across these output batches, 

creating new offset/length arrays for each batch. 

Regular expression matching work as follows: we first compile the 

pattern once for the query, and then execute a standard regular 

expression matcher directly over the large string. Whenever there 

is a match that spans true-string boundaries, we re-execute the 

matching algorithm starting at the specific true string at that 

location, in order to weed out false positives. This technique allows 

us to execute the regular expression logic without fine-grained 

interruptions, which provides very high throughput optimized for 

cases where matches are infrequent. Upper/lower case conversion 

also works similarly. Substring matching applies the Knuth-Morris-

Pratt [22] algorithm directly on the MultiString. We find that these 

techniques are up to 6X faster than traditional string operations. 

Arbitrary string operations that cannot be applied directly on the 

MultiString are executed by copying over each string to a 

temporary cached string and executing operations on this string; 

interestingly, we find that even this back-off technique is around 

30% faster than using fine-grained strings directly, since it avoids 

memory accesses to randomly located objects. This solution for 

strings extends to other fine-grained heap object types such as lists. 

4.2.3 Columnar Memory Pooling 

Data processing in a HLL can incur the cost of garbage collection 

(GC). Automatic GC can be expensive and introduce latency. The 

alternative of using native memory precludes a seamless integration 

of user-defined HLL data-types. We instead employ memory pools, 

which represent reusable sets of ref-counted HLL data structures. 

Trill generates and uses memory pools for both the data-batch 

columns (arrays) and data structures that need to be frequently 

allocated and released (see [23] for details). Memory pools work 

especially well in a streaming setting since we usually reach a 

“steady state” once the initial allocations have been performed.  

5. GROUPING & STATEFUL OPERATORS 
We next describe Trill’s grouped temporal operators using our 

running example, which computes a per-ad windowed count. The 

key challenge is to build efficient stateful physical operators that 

operate on batched data. Section 5.3 shows how stream properties 

help us choose from a small set of such physical operators.  

5.1 GroupApply 
Trill supports a GroupApply operation, where the user specifies a 

grouping key selector and a sub-query. Logically, GroupApply 

executes the given sub-query on each sub-stream corresponding to 
each distinct key, as determined by the grouping key selector. 

We consider single-threaded query execution for now; multi-core 

execution is covered in Section 6. We implement GroupApply by 

first creating a stateless Group operator that computes and 

materializes a grouping key for each event in the data-batch. 
Specifically, it adds two columns to each data-batch: 

1. Key: An array of grouping key values of all events in the batch. 

2. Hash: An array of hash values (4-byte) of the keys. 

These columns are materialized so that each (grouped) operator in 
the provided sub-query does not need to re-compute them. 

The sub-query (e.g., windowed count) is executed on the resulting 

“grouped stream”. All our operators are designed to accept and 

produce such grouped streams. For example, an aggregate operator, 

that receives data-batches with <group-key, payload> pairs, 

maintains per-group-key state, and outputs a stream of data-batches 
with per-group aggregates <group-key, aggregate>. 

We finally add an Ungroup operator to remove the grouping key 

and exit the GroupApply context. Note that GroupApply can also 

be nested; Group creates a nested key, consisting of the original and 

the new grouping keys, which gets un-nested at the Ungroup. 

5.2 Temporal Operator Algorithms 
Logically, we view a stream as a temporal database (TDB) [31] that 

is presented incrementally, as in CEDR [3], Nile [11], NiagaraST 

[9], etc. Each event is associated with a data window (or interval) 

that denotes its period of validity. This creates snapshots, a 

sequence of data versions across time. The user query is logically 
executed against these snapshots in an incremental manner. 

Events may either arrive directly as an interval, or get broken up 

into a separate insert into (called start-edge) and delete from (called 

end-edge) the TDB. Internally, events have two timestamps (sync-
time and other-time) that are interpreted as follows: 

 When other-time is greater than sync-time, it represents an 

interval with a data window of [sync-time, other-time). 

 When other-time is ∞, it is a start-edge that denotes the 

insertion of an item at sync-time. 

 When other-time is less than sync-time, it is an end-edge that 

occurs at sync-time and deletes an earlier start-edge that 
occurred at the previous timestamp (other-time). 

Consider the stateless Window operator in our running example. It 

simply sets other-time to sync-time + 5mins in order to make the 

data have a 5-minute window duration. Further, it drops end-edges 

by setting their bitvector entry to 1 (since start-edges get converted 

into intervals when we set other-time as shown above). 

5.2.1 User-Defined Snapshot Aggregation 
Grouped aggregation in Trill is done using an operator framework 

called user-defined snapshot, which enables the integration of 

custom incremental HLL logic into stream processing without 

sacrificing performance. It handles the class of operations that 

incrementally compute a result per time snapshot. In fact, all our 

built-in aggregates (including complex multi-valued aggregates 
such as top-k) are implemented using this general framework. 

User Specification    A user implements the following functions: 

  

Here, Func<A, B, ..., X> denotes a function that takes A, B, … 

as input parameter types and outputs a value of type X. All these 

methods are provided as lambda expressions so that Trill can inline 

them into the generated columnar operator code for performance. 

InitialState is a function that takes no input parameters and 

produces an initial state of type TState. Accumulate takes a 

TState, a long timestamp, and an input tuple with payload type 

TInput, and produces a new state of the same type (TState). 

Deaccumulate handles data expiration when windows end, and 

Expression<Func<TState>> InitialState(); 
Expression<Func<TState, long, TInput, TState>> Accumulate(); 
Expression<Func<TState,long, TInput, TState>> Deaccumulate(); 
Expression<Func<TState, TState, TState>> Difference(); 
Expression<Func<TState, TResult>> ComputeResult(); 



works similarly to Accumulate. Finally, Difference allows users to 

define the notion of subtracting one state from another; this allows 

users to perform this more efficiently than deaccumulating state 

one event at a time. Our implementation for Count is shown below: 

 
In our running example, the user can compute a streaming count 

using the Aggregate method, as shown below:  
var result0 = inp0.Aggregate(w => w.Count()); 

We also support simultaneous application of multiple aggregates in 

a single snapshot operator, with the ability to combine results on a 

per-snapshot basis. For example, one could write Average as: 

inp0.Aggregate(w => w.Sum(), w => w.Count(), (s, c) => s / c); 

Operator Implementation    Given the above specifications, Trill 

generates a grouped per-snapshot aggregate operator with inlined 

expressions. Our operator uses three data structures: 

1) AggregateByKey: This is a hash table that stores, for every 

distinct key associated with non-empty aggregate state (TState) at 

the current sync-time, an entry with that key and the aggregate state. 

2) HeldAggregates: This uses a hash table called FastDictionary, 

that stores – for the current sync-time T – the aggregated state 

corresponding to keys for which events arrive with sync-time equal 

to T. This hash table does not support the deletion of individual 

keys, but handles fast iteration through all the entries, and supports 

a fast “clear” of  the hash table when time moves forward. We 

describe FastDictionary in our technical report [23]. 

3) Endpoint Compensation Queue (ECQ): The ECQ contains, for 

each future endpoint (due to an interval event), partially aggregated 

state (HeldAggregates) for that endpoint. In general, the ECQ is a 

priority queue. However, we can often exploit stream properties (cf. 

Section 5.3) to use a FIFO queue or eliminate the ECQ altogether. 

For each data-batch, we iterate through the events in the batch. We 

first look up each event in HeldAggregates. If not found, we look 

in AggregateByKey, and if it contains the key, we ref-copy the state 

into HeldAggregates (and output an end-edge for the old aggregate 

state). We then update the current state for that key using the 

appropriate expression, which is inlined into the operator source 

code: Accumulate for start-edge and interval, and Deaccumulate 

for end-edge. In case of intervals, we also accumulate state for the 

(future) end timestamp into the ECQ. 

When sync-time moves forward, we inline ComputeResult and 

output start-edges for the non-empty aggregates in HeldAggregates 

and clear it. Empty entries are removed from AggregateByKey. We 

then process the endpoints in ECQ between now and the new sync-

time, using Difference to update and output state for each endpoint. 

Similar processing is performed on receiving a punctuation that 

moves the current sync-time forward. Our implementation caches 

the state associated with the current key, so that the common case 

where many events have the same key can be executed very 

efficiently without frequent hash lookups. 

5.2.2 Temporal Join and Other Operators 
Trill supports temporal equi-joins, which are implemented by a 

temporal grouped cross-product (GCP) operator. GCP accepts two 

grouped input streams, and performs a per-group temporal cross-

product across the input streams. Execution of the GCP operator is 

operationally identical to the well-known temporal symmetric hash 

join operator, with stream grouping keys serving as the equi-join 

attributes. Briefly, GCP processes data-batch messages in sync-

time order across its inputs, and maintains two hash-tables – for the 

left and right sides. Start-edges and intervals are added to the hash-

tables if the other side has not reached its end-of-stream. End-edges 

(and interval endpoints that are stored in an ECQ as in snapshot) 

serve to remove entries from the hash-tables. If both input streams 

are start-edge-only, we optimize by avoiding the ECQ altogether. 

A temporal equi-join within a GroupApply uses GCP with a 

compound grouping key consisting of the original key and the equi-

join attribute, which allows it to perform only a single hash lookup. 

It is worth pointing out that we can use the GCP operator to perform 

a progressive asymmetric relational join (build followed by probe), 

by simply time-stamping the right input as [0, ∞) and the left input 

as sync-time values beyond 0. This causes GCP to first fully 

process the right input until end-of-stream, which means that we do 

not need to add any events from the left input into a hash-table. 

We also support a relational merge join to handle the case where 

inputs are sorted by the join key. More details on join and other 

Trill operators are provided in our technical report [23]. 

5.3 Compile-Time Stream Properties 
We optimize performance for common stream characteristics using 

a compile-time stream property derivation framework, which lets 

us create customized physical operators. Stream properties define 

restrictions on the content we expect to see in a given stream. They 

are specified at stream inputs, and are also inferred at compile-time 

from query logic at each point in the query plan. Examples include: 

1. IsIntervalFree(bool): This property indicates that the stream 

contains no intervals; only start- and end-edges. As an example, this 

property allows us elide the ECQ from our aggregate operator. 

2. IsConstantDuration(bool, long): This property is used to 

indicate that all events in the stream have the same fixed (optionally 

specified) duration. This property allows us to maintain the future 

endpoints as a FIFO queue (linear lookup and update) instead of an 

expensive priority queue. The special case of constant duration=∞ 

indicates a start-edge-only stream. This is common when we 

execute progressive queries or non-windowed aggregates. For 

example, a MAX operator can maintain just a single piece of state 

– the maximum value seen up to now. A related IsConstantHop 

property allows us to optimize for tumbling windows. 

3. IsColumnar: This property indicates whether we are in columnar 

or row-oriented mode, and is used to choose between code-gen and 

normal operators. Operators may need to work in row-oriented 

mode because (a) some property of the user type prevents it from 

being used in columnar processing; or (b) an expression in the 
query is too complex or opaque to allow its transformation.  

Trill also includes properties to capture and exploit sort ordering 

and data-batch packing in the input data; see Section 6.2 for details. 

We use stream properties to select from a small set of physical 

operators, as shown in Table 2. We find that these operator variants 
are sufficient to provide high performance for most of our queries. 

6. LIBRARY MODE & MULTI-CORE 
Trill supports two modes of execution. In the default no-scheduler 

mode, Trill works as a pure library that does not itself own any 

threads but performs work on the thread that pushes messages to it. 

For efficient multi-core processing, we built a pluggable scheduler 

framework that allows Trill to parallelize execution on specific 

application-provided threads or cores. The basic idea is that we take 

the physical plan and partition it into query fragments (described 

InitialState: () => 0L 
Accumulate: (oldCount, timestamp, input) => oldCount + 1 
Deaccumulate: (oldCount, timestamp, input) => oldCount - 1 
Difference: (leftCount, rightCount) => leftCount - rightCount 
ComputeResult: count => count 



next). The scheduler is given n threads; each thread picks up data-

batches to push to operators. For progressive queries, we process 

batches in timestamp order for fair progress across queries. Real-

time queries use stimulus-time scheduling [15]. We hold a priority 

queue of query fragments; each scheduler thread picks the fragment 

with highest priority to execute next. Note that each query fragment 

itself may consist of multiple operators, but is executed on the same 

thread (similar to the no-scheduler mode). Our scheduler works at 

the batch granularity, which allows its overhead to be amortized. 

6.1 Streaming Temporal Map-Reduce 
The key building block for multi-core processing in Trill is what 

we call Temporal Map-Reduce – streaming generalizations of the 

well-known Map and Reduce operations, with temporal support. 

Users can either use Map and Reduce explicitly to indicate 

opportunities for parallelism, or use GroupApply which gets 
transparently rewritten by our compiler into Map and Reduce. 

Map takes a query fragment as input, for the purpose of scaling out 

in a stateless manner by spraying input batches to each instance of 

the query fragment. Further, it takes a grouping key argument that 

identifies the key for the subsequent Reduce operation. Reduce 

takes as parameter a query fragment that is logically executed for 

each distinct value of the specified grouping key. For example, our 

running example is rewritten as: 

inp0.Map(str => str.Where(...).Select(...), e => e.UserId) 
    .Reduce(str => str.Window(...).Aggregate(...), 
            (g, c) => new { g, c }); 

Here, the first argument to Map specifies the stateless Where and 

Select operations to be performed in parallel on the input stream, 

while the second argument specifies the grouping key (UserId) to 

shuffle the result streams by. The first argument to Reduce 

computes per-user windowed Count, and the second argument 

allows us to add the grouping key (UserId) back to the result count 

stream at the end of the query. 

Such a specification is mapped by Trill into a physical operator 

graph (shown in Figure 3; left) with multiple query fragments – one 

for each map and reduce sub-query instance – that can be executed 

using our scheduler. Let n denote the degree of parallelism 
available to us (e.g., number of cores on the machine). 

1) Spray: We first take a stream of batches and perform a stateless 

spray of the batches to n downstream endpoints. Spray performs 
constant work per batch and introduces negligible overhead. 

2) Map, Group, Shuffle: On each of the n endpoints, we apply the 

map sub-query. The result stream enters a generated shuffle 

operator that computes (inline) the new grouping key and its 

associated hash on each event. Based on the hash value, we add the 

event to one of n output data-batches (one per hash bucket). There 

are n downstream merge operators in the physical plan. As output 
batches fill up, they are sent to the corresponding merge. 

3) Merge, Reduce, Ungroup: We perform a temporal merge 

(described next) and feed the resulting stream (one per reduce 

bucket) to the reduce sub-query. We then execute Ungroup to un-

nest the grouping key. A final merge operator temporally merges 

the results from each reduce bucket into a single output stream. 

Note that our batched data-flow architecture implies that 

synchronization occurs only at coarse-grained batch boundaries, 

where data is handed off from one query fragment to another.  

Temporal Cascading Binary Merge   The temporal merge in Trill 

is implemented using a tree of streaming binary merges for 

performance [26]. Each binary merge reads sync-time values from 

the left and right input batches, and merges the data in sync-time 

order into a destination batch. We also check for the special case 

(common after the map phase and with progressive queries) where 

one input batch lies ahead of the other in time, in which case we 

can forward the input batches without doing a fine-grained merge. 

Two-Input Reduce   Trill also supports two-input reduce. The 

architecture (see Figure 3; right) is similar, except that there are two 

separate map phases for each of the inputs, and these map outputs 

are shuffled and brought together to a single set of n two-input 

reducers. Trill rewrites binary operators such as temporal joins into 

a two-input reduce so that they can execute on multiple cores.  

6.2 Performance Optimizations 
Since the shuffle (repacking data-batches by key) in temporal map-

reduce is very memory-intensive, we try to avoid it when possible. 

Exploiting Sort-Order and Packing   Trill supports a compile-

time property to identify whether input snapshots are sorted by a 

payload field. In addition, it supports a property where a sorted 

stream is packed according to the following rule: for a given batch 

B, data with a given sort key value K cannot spill to the next batch 

B+1 unless all the data in batch B has the same sort key value K. 

Further, two streams may be packed in a compatible manner, i.e., 

keys in two different batches in stream 1 do not map to the same 

batch in stream 2. Sort-order is used, for example, to replace a 

symmetric hash join by a more efficient merge-join. 

If a stream is packed as described above, temporal map-reduce can 

retain the sort order during spray. Basically, it retains the last key 

in the current batch B before spraying it to endpoint i. In case the 

first event in the next batch B+1 has the same key value, that batch 

is also sprayed to the same endpoint i. Otherwise, the batch B+1 is 

sprayed round-robin to the next endpoint i+1. Likewise, a two-

input map-reduce can retain sort order during spray if the streams 

are packed in a compatible manner. We can then move the grouped 

sub-query to the map phase, avoiding the shuffle. 
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Table 2: Physical operators in Trill. 

Physical Operator Supported Variants 

Filter, Project, SelectMany, 
AlterLifetime 

No variants (supports arbitrary 
HLL expressions) 

Temporal Join General, Start-edge, Start-edge 
+ Order-aware 

WhereNotExists, 
WhereExists, Clip 

No variants 

Snapshot Operator (with 
custom incremental logic) 

General, Start-edge, Constant-
duration, Constant-hop 

Spray & multicast  General, Order-aware 
Group, Shuffle, Ungroup No variants 
Temporal Merge No variants (optimized for 

batches with same sync-time) 

 
Figure 3: Two-stage streaming temporal map-reduce (one and two inputs). 



Exploiting Skew in Input Streams    Another case where we can 

avoid a shuffle is when a 2-input reduce is skewed, i.e., the right 

side is much smaller than the left. We simply broadcast the smaller 

side to all map endpoints, and spray the larger side round-robin. In 

this case, we can perform the 2-input operation without a shuffle. 

A common use of this facility is when doing a temporal join across 

a high- and a low-rate input stream. 

7. EVALUATION & USAGE SCENARIOS 
The goal of evaluation is to examine how Trill’s hybrid architecture 

allows it to perform favorably against state-of-the-art specialized 

engines at different points in the analytics spectrum. We then 

discuss how our features have enabled a range of usage scenarios. 

7.1 Setup and Workloads 
All experiments are conducted on a 2-processor 8-core (16 hyper-

thread) Intel Xeon CPU E5-2660 machine running at 2.2GHz, with 

192GB RAM, and running 64-bit Windows Server 2008 R2. 

Workloads    We use the following datasets in our experiments: 

1. GenData(𝒏, 𝒅, 𝒎): This is a set of two synthetic tables (T1 and 

T2). Each table has two 8-byte columns (C1 and C2) and both tables 

are ordered by C1. T1 has 𝑛 rows, with 𝑑 distinct values in C1. 

Column C2 in T1 has the same 𝑑 values in random order. T2 has 

𝑚 (≥ 𝑑) rows whose C1 includes the 𝑑 distinct values of T2; the 

remaining values are random. C2 in T2 is random as well. 

2. UserSearch: This is a dataset of user search phrases from a 

commercial search engine log. It has two columns: for each 8-byte 

UserId (ordered by UserId), we store a string (search term). Some 

experiments use a hash-tokenized version of this dataset, where 

phrases are pre-split into tokens (words) and hashed into 8-byte 

values. These datasets have two fields: UserId and QueryId. Our 

temporal experiments use a similar dataset over a 15-day time 

period, with an additional 8-byte timestamp field (the data is 

ordered by timestamp in this case). We use real queries over these 

datasets, with dataset sizes varying from 10M to 600M rows. 

3. SearchURL: This is another real search dataset (100M rows, 

11.6GB) that contains five columns: search phrase, its hash value, 

number of times issued, URL clicked after search, number of clicks 

on URL (for that search), and the total URL clicks for that query. 

4. TPC-H: We experiment with grouped multi-aggregation using 

the LINEITEM table of TPC-H at a scale factor of 100GB. 

Baseline Query Engines    For relational queries, we compare 

Trill’s performance against DB-X, a modern commercial database 

system that incorporates a compressed columnar store and supports 

batched operators. Trill uses a default maximum batch size of 80K 

tuples whereas DB-X uses a larger fixed batch size (by more than 

10X). DB-X does not support progressive, incremental, or real-time 

temporal processing. We discard the first two runs to warm both 

engines, and report average performance over the next 5 runs. We 

ensure that DB-X is operating in columnar mode and running from 

memory. Our experiments vary the degree of parallelism (DOP) for 

both engines from 2 to 32 (DB-X did not support a DOP of 1). 

For temporal streaming and progressive queries, we compare Trill 

against SPE-X, a commercial SPE that is based on the event-at-a-

time architecture and a temporal data model. While SPE-X can also 

be used for relational queries, its performance is lower than both 

Trill and DB-X by 2-4 orders of magnitude; hence we do not 

include it in relational experiments. We compare Trill to SPE-X in 

terms of throughput, memory, and latency for temporal queries. 

Unless otherwise indicated, all systems use all the available cores 

on our machine in the experimental results. 

7.2 Temporal Stream Processing 

7.2.1 Data Ingress 
We measure the time it takes to load streaming data into the SPE 

by executing a pass-through query that drops all tuples (to avoid 

incurring an egress cost). We use the tokenized search log as input. 

Loading is performed on a single thread to model real-time ingress. 

We find that SPE-X can load data at 450K events/sec when the 

events are pre-created in memory and loaded from an array. In Trill, 

when the data is pre-loaded into memory in a columnar format, the 

pass-through query takes trivial time (>1 billion events/sec); no 

memory copies occur because only pointers to data-batch messages 

flow through the query plan with no fine-grained work. When the 

data is ingressed as individual in-memory row events from an array, 

a conversion to our batched columnar data format is performed in 

tight loops on-the-fly; here, a pass-through query runs in Trill at 

140M events/sec when we ingress data using a single core. 

7.2.2 Throughput Comparisons 
We compare Trill’s throughput to SPE-X (on all cores) for several 

stateless and stateful streaming operations: (1) filter (no matches); 

(2) filter (all match); (3) project; (4) alter-lifetime (windowing); (5) 

windowed count (W-Count) with a window size of 1 hour and hop 

size of 10 minutes; (6) grouped windowed sum (G-W-Sum) with 

QueryId as grouping key and the same window/hop size as before; 

and (7) temporal join, where we find – for each user (join key) – 

sequences where a user searches for a search term from set A 

followed by a search term from set B within one hour (A and B are 

non-overlapping sets of 25% of all terms in the dataset). We use the 

time-ordered hash-tokenized pre-loaded search log (100M rows) 

for these experiments, and fix query latency at 80K events per 

punctuation. Figure 4(a) shows the results. We see that Trill is 

between 2-4 orders of magnitude faster than SPE-X across the 

range of queries, due to Trill’s superior architecture with features 

such as columnar batching, generated operators with tight loops, 

and fast memory-bandwidth-optimized algorithms. 

7.2.3 Latency (varying punctuation frequency) 
In Figure 4(b), we vary the latency (number of events between 

punctuations) and measure its impact on throughput. As expected, 

Trill is able to take advantage of higher latency by using larger data-

batch sizes, and performance increases significantly. Interestingly, 

throughput drops for very large batch sizes because of the need to 

make large memory allocations and the lower probability of batch 

reuse with memory pools. We also show the throughput of SPE-X 

for W-Count. SPE-X is mostly unaffected by latency since it does 

not take advantage of batched data; in fact, for W-Count, 

performance degrades due to the inability to clean up internal state 

and data structures as frequently. Notably, even with a small 

latency of 100 events per punctuation, Trill benefits significantly 

from careful columnar batching, providing more than two orders-

of-magnitude performance gains over SPE-X for W-Count. 

7.2.4 Window Size 
We next experiment with Trill’s no-scheduler mode in Figure 4(c). 

For fair comparison, we use SPE-X with only one scheduler thread. 

We execute a windowed temporal join that correlates searches per 

user, similar to the query from the previous experiment but looking 

for searches within a window W. Figure 4(c) shows that the 

performance falls as W increases because more items need to be 

retained and joined within the window. Further, while SPE-X has 

slightly lower memory utilization than Trill for very small W (since 

it processes one event at a time), Trill uses lower memory when W 

increases, as it benefits from batched data and sync-time ordering. 



7.3 Relational Query Processing 

7.3.1 Data Ingress 
We compare loading costs for relational data stored in a row-

oriented CSV file. DB-X incurs higher loading costs since the data 

needs to be loaded in a compressed columnar format. To measure 

this, we use 100M rows of the SearchURL CSV log (11.6GB) and 

load it into DB-X and Trill. The DB-X data loader is single-

threaded and takes 592.8secs of CPU time to load the data in 

compressed form. Trill takes 179.6secs on a single thread for this 

data. Trill also supports multi-threaded loading, which takes only 

44.6secs. For a generated dataset with 600M rows (each with two 

4-byte int columns) and size 12.8GB, DB-X takes 688secs whereas 

Trill takes 356secs (single-thread) and 33secs (multi-threaded).  

7.3.2 Relational Query Performance 
Figure 5(a) shows the performance (using all cores) of Trill and 

DB-X for simple operations such as filter, sum, count, and select 

over GenData(600M, 20M, 150M). The Filter2 predicate is 

identical to Filter1, except that Filter2 is pushed to the DB-X 

storage layer, which explains why DB-X performance improves 

significantly on Filter2. Overall, Trill performs comparably to DB-

X for these operations, faring up to 8X better in case of Filter1. 

Figure 5(b) summarizes throughput for Trill and DB-X for 

increasing DOP. The key take-away from this figure is that 

performance is comparable, and both systems scale well (note that 

both axes are log scale). We analyze performance in greater detail 
in the next set of charts, described next. 

Figure 5(c) shows Trill’s throughput normalized to DB-X, with 

varying DOP. A value of 1 indicates that throughput of the two 

engines is identical. We see that Trill has higher performance in all 

cases (except Filter2, where DB-X is slightly better at low DOP). 

We also notice that performance tends to converge at higher DOP 

as both systems hit memory bandwidth limits. 

Figure 5(d) shows Trill’s throughput normalized to DB-X for two 

grouped aggregate queries (by C1 and C2) and an equi-join query 

(on C1). When we aggregate over column C1, Trill leverages the 

fact that it is sorted and avoids the shuffle, leading to better 

performance. DB-X is better when we aggregate by C2, since Trill 

needs to shuffle the data whereas DB-X uses a shared hash table to 

perform the aggregation. Trill’s performance for equi-join is better 

than DB-X, converging to 1 at DOP=32. Here, Trill leverages the 

sort-order of C1 to avoid the shuffle and use a merge join (DB-X is 

superior when Trill uses a shuffle with GCP). As future work, we 

plan to investigate improving Trill’s shuffle performance and 

leveraging shared data structures. We note that while shared data 

structures are superior to shuffle, a shuffle would need to be 

performed anyway when we need to process data across more than 

one machine. Further, our techniques to avoid shuffle using sort 

orders or input skew are applicable even in a multi-node setting.  

7.3.3 Query Search, URL Logs, TPC-H LineItem 
TermComparison   We execute a real query (obtained from a data 

scientist at Microsoft) that analyzes entities that users compare in 

searches. We take the SearchURL log, look for searches that 

contain “versus” or “vs” and use the left and right side substrings 

as entities. We look up (join) each search phrase against the distinct 

entities, and sum the total query clicks per entity. 

Figure 6(a) shows the results. In DB-X, we use the substring 

operation to compute a temp table for the entities (which is very 

slow), whereas Trill’s support for HLL strings and SelectMany 

(where one row is converted into zero or more rows by a user-

defined function) makes this 10X faster. Trill’s join (we use an 

asymmetric hash join) was slightly faster than DB-X in this case. 

TopCorrelated  We execute another real query: given a parameter 

P (“vegas”), compute for each word W in the search log, the ratio 

of (a) number of distinct users who searched for both W and P; and 

(b) total number of distinct users who searched for W. This query 

allows analysts to determine the search terms closely correlated to 

P, and helps in ad selection/pricing. 

The first step is to create a table of (user, word) pairs by splitting 

search phrases from the log by the space delimiter. Unfortunately, 

databases are inefficient at split (by more than 10X) since it has to 

be implemented as a UDF (SQL does not natively support Split or 

SelectMany). Trill performs the split in 2.6secs (we do not use 
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MultiStrings in this query; they are evaluated in Section 7.5), 

producing ~31M tokenized results. Figure 6(a) shows performance 

for the rest of the query pipeline not including split, where we see 

that Trill is slightly faster (up to 2X at DOP=2). 

TPC-H Lineitem   Figure 6(a) compares Trill against DB-X for 

TPC-H Q1 which computes 8 grouped-aggregates (we elide the 

filter on ship-date from Q1). Trill sprays data and uses a hash-table 

per core with a final aggregation, whereas DB-X uses a shared hash 

table; we see that performance is close (within 50% at worst). 

7.4 Progressive Query Processing 
We use the search log query and execute a query that computes the 

popularity of search terms in the dataset. We vary progressiveness 

in terms of number of result sets produced (or report at every X% 

of the dataset), and plot Trill’s total execution time in Figure 6(b), 

as well as time to produce the first result. With one result set, the 

query produces its result only at the end of the query. We see that 

increasing progressiveness for this query has a slight impact 

(~15%) on total execution time, but significantly reduces the time 

(by 10X) to produce the first result set. A study of progressiveness 

using a commercial SPE can be found in our recent work [2]. 

7.5 Code Generation, Strings, Serialization 
Code Generation    We measured the cost of dynamic code 

generation in Trill. On average, we found compilation to take 

~75ms per generated operator, and other work such as expression 

transformation and assembly loading to take <50ms per operator. 

We aggressively cache the compiled type definitions, and can also 

parallelize code generation if necessary (see [23] for details)  

String Processing    We use the SearchLog dataset with 100M 

rows, containing 4GB of Unicode search phrases, and execute 

string operations in Trill and DB-X (with columnar string field). In 

case of DB-X, we report results for both varchar (one byte per 

character) and nvarchar (Unicode with 2-byte characters). Trill uses 

only Unicode strings. We experiment with (1) string containment 

for “free”; (2) equals for “vegas”; (3) starts with “free”; (4) ends 

with “download”; (5) regular expression “%free%download%”; 

and (6) offset of substring for “vegas”. Trill uses the MultiString 

format described in Section 4.2.2 to store string columns. We see 

from Figure 6(c) that Trill (Unicode) is up to 5X faster than DB-X 

(non-Unicode) and up to 30X faster than DB-X (Unicode). 

Pavlo et al. [27] report benchmark results that show Vertica and 

DBMS-X performing “grep” at around 60MB/sec on one node 

(Hadoop was 2X slower at 25MB/sec) on a 2.4GHz Core 2 Duo 

processor. Newer results from [28] indicate that Shark (Hive on 

Spark) executes grep at ~833MB/sec per node (machine specs not 

mentioned) on memory-resident data. In contrast, grep in Trill 

operates at 7.2GB/sec on Unicode strings, on our 16-core machine. 

Serialization    Figure 6(d) compares Avro [19] to Trillium (cf. 

Section 4.2.1) for a stream of payloads with two 8-byte fields. To 

avoid the disk bottleneck, we use a memory stream for these 

experiments. We see that Trillium is around 15X faster, due to the 

columnar format of Trill data which allows it to avoid fine-grained 

encoding and decoding. Further, when processing streaming data 

(that is dropped immediately in this experiment), Trillium is 20X 

faster than Avro – the speedup beyond 15X is due to memory 

pooling, which can reuse the streaming data-batch column arrays. 

7.6 Current Usage Scenarios 
We describe how Trill is being used today; these scenarios serve to 

illustrate how performance, fabric and language integration, and 
query model enabled Trill to support a diverse range of use cases. 

1) Orleans-hosted real-time: Orleans [16] is a programming model 

and fabric that enables low-latency (in milliseconds) distributed 

streaming computations with units of work called grains. Orleans 

owns threads and manages distribution. Thus, users use Trill as a 

pure library (using its no-thread mode) to express temporal 
streaming queries as part of their Orleans grain code.  

2) Analytics within SCOPE: SCOPE [20] is a map-reduce platform 

for query processing that allows arbitrary .NET code as custom 

reducers. As with Orleans, SCOPE owns threads and schedules 

reducer code; thus, users embed Trill as a no-thread library within 

their reducers in order to perform temporal analytics [1] over search 

data such as clicks, impressions, and page views. Another such 

fabric used with Trill is REEF [18], which is built on YARN [17]. 

3) Monitoring Server: Trill is used to monitor system logs 

generated by machines in a data center, and visualize real-time 

performance. Here, Trill is used as a server that processes data from 
multiple sources in close to real-time (several seconds of latency). 

4) Trace Log Analysis Tools: A large number of time-oriented 

traces are generated by applications and operating systems. Trill is 

used as part of stand-alone tools and Cloud services, to allow users 
to analyze such traces, for example, to detect anomalies or patterns. 

5) Back-end for Analytics: Tempe (formerly called Stat! [5]) is a 

Web-based interactive analytics environment that allows users to 

author queries and visualize results progressively. It uses Trill as a 

back-end server to run temporal and progressive relational queries. 

8. RELATED WORK 
Streaming Engines   Starting with the seminal work of STREAM 

[30] and Borealis [10], there now exist many SPEs; both from 

research (e.g., NiagaraST [9], Nile [11], Naiad [35]) and industry 

(e.g., StreamInsight [8], Storm [29], Reactive [4], MillWheel [38]). 

A comparison of such systems was covered in Table 1 (Section 1). 

Spark Streaming only targets multi-second latencies and coarsens 

time for performance, but ties system batching to application time 

and query semantics: for example, a 1-sec hopping window 
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aggregate forces 1-sec batches, even when executing on an offline 

log. DataCell [37] follows a different architecture of augmenting a 

DBMS to support incremental stream processing, but this system 

provides significantly lower throughputs than Trill and lacks fabric 

and language integration. In contrast, Trill’s library-based hybrid 

architecture achieves all the features outlined in Table 1. 

Traditional Databases   Modern DBMSs leverage techniques such 

as columnar organization, compression, and SIMD processing for 

high performance [6][12][14][25]. As depicted in Table 1, DBMSs 

do not offer rich fabric or language integration, do not handle real-

time or temporal analytics, and make choices that favor their 

particular design point. For example, databases are non-

incremental and spend significant time reordering and compressing 

data. In contrast, Trill provides high performance across the 

spectrum by processing a stream of varying-sized columnar batches 

with single-pass algorithms and no compression. Trill also exploits 

pre-existing sort orders (if any). That said, enabling lightweight 

online compression schemes is part of our future work. Trill uses 

temporal operators for relational queries, with timestamps used for 

scheduling. For example, Trill’s symmetric hash join turns into an 

asymmetric relational join if we set the build side to have lower 

timestamps than the probe side. Finally, unlike most DBMSs, Trill 

is a library that provides deep fabric and language integration. 

Big Data Systems   Multiple big data analytics systems have been 

proposed over the last several years. Map-Reduce was one of the 

first such systems, and is still popular for non-incremental analytics 

on disk-based data. Phoenix++ [7] is a variant of map-reduce for 

in-memory analytics; unlike Trill, it is neither temporal nor 

streaming, and exposes a low-level key-value API. YARN [17] and 

REEF [18] generalize Hadoop to a distributed resource manager. 

Storm is a streaming analytics framework that can potentially 

embed Trill within its bolts. Spark [28] provides a resilient 

distributed dataset abstraction over which users can write 

transformations. BlinkDB [33] supports interactive queries over 

Spark. S-STORE [39] integrates low-latency streaming with OLTP 

analytics, which is complementary to our goal of high-performance 

temporal analytics across a wide latency spectrum. Trill, in contrast 

to these platforms, is a library-based temporal engine that pushes 

the envelope of performance for a wide range of analytics, and can 

be embedded within scale-out fabrics. Some comparisons with 

benchmark results for these systems are given in Section 7.  

9. CONCLUSIONS 
Trill is a new query processor that fulfills three requirements for an 

engine to serve the diverse big data analytics space: (1) Query 

Model: Trill is based on a tempo-relational model that enables it to 

handle streaming and relational queries with early results across the 

latency spectrum from real-time to offline; (2) Fabric and 

Language Integration: Trill is architected as a high-level language 

library that supports rich data-types and user libraries, and 

integrates well with existing distribution fabrics and applications; 

and (3) Performance: Trill’s throughput is high across the latency 

spectrum. For streaming data, Trill’s throughput is 2-4 orders of 

magnitude higher than comparable SPEs. For relational queries, 

Trill’s throughput is comparable to a modern commercial columnar 

DBMS. This paper describes and experimentally validates Trill’s 

new hybrid system architecture and design that has enabled the 

above combination of features, and has resulted in Trill’s usage as 
a library within Microsoft across a number of fabrics and scenarios. 
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