
Trill: A High-Performance Incremental Query Processor for
Diverse Analytics

Badrish Chandramouli, Jonathan Goldstein, Mike Barnett,
Robert DeLine, Danyel Fisher, John C. Platt, James F. Terwilliger, John Wernsing

Microsoft Research

{badrishc, jongold, mbarnett, rdeline, danyelf, jplatt, jamest, johnwer}@microsoft.com

ABSTRACT

This paper introduces Trill – a new query processor for analytics.

Trill fulfills a combination of three requirements for a query

processor to serve the diverse big data analytics space: (1) Query

Model: Trill is based on a tempo-relational model that enables it to

handle streaming and relational queries with early results, across

the latency spectrum from real-time to offline; (2) Fabric and

Language Integration: Trill is architected as a high-level language

library that supports rich data-types and user libraries, and

integrates well with existing distribution fabrics and applications;

and (3) Performance: Trill’s throughput is high across the latency

spectrum. For streaming data, Trill’s throughput is 2-4 orders of

magnitude higher than comparable streaming engines. For offline

relational queries, Trill’s throughput is comparable to a major
modern commercial columnar DBMS.

Trill uses a streaming batched-columnar data representation with a

new dynamic compilation-based system architecture that addresses

all these requirements. In this paper, we describe Trill’s new design

and architecture, and report experimental results that demonstrate

Trill’s high performance across diverse analytics scenarios. We

also describe how Trill’s ability to support diverse analytics has

resulted in its adoption across many usage scenarios at Microsoft.

1. INTRODUCTION
Modern businesses accumulate large amounts of data from various

sources such as sensors, devices, machine logs, and user activity

logs. As a consequence, there is a growing focus on deriving value

from the data by enabling timely analytics. In practice, big data

analytics requires a diverse range of types of analytics, with a

variety of latency settings over which the analytics is applied:

1) Real-time streaming queries: These include queries on real-time

data, which may reference slow-changing data such as social

network graphs or data from data markets [14]. For example, notify
a smartphone user if any of their Facebook friends are nearby.

2) Temporal queries on historical logs: This includes back-testing

streaming queries on historical logs; e.g., compute the average

click-through-rate of ads in a 10-minute window, on a 30-day log.

3) Progressive relational queries on collected data: Data scientists

perform a series of interactive exploratory queries over logs to

better understand the data. Computing progressively, i.e., providing

immediate early results on partial data and refining as more data is

streamed in, allows productive and cost-effective exploration.

These analytics are interconnected: for instance, queries may

correlate real-time with historical logs, or real-time data may be

logged for progressive analysis using an interactive tool. The

diverse and interconnected nature of analytics has resulted in an

ecosystem of disparate tools, data formats, and techniques [13].

Combining these tools with application-specific glue logic in order

to execute end-to-end workflows is a tedious and error-prone

process, with poor performance and the need for translation at each

step. Further, the lack of a unified data model and semantics

precludes reusing logic across tools, developing queries on

historical data and then deploying them directly to live streams.

1.1 Requirements for Diverse Analytics
We identify three key requirements for an analytics engine to

successfully serve this diverse environment (here, we focus on the

above-mentioned analytics types and settings; other requirements

such as graph analytics are interesting areas for future work):

1) Query Model: Existing analytics engines either target a specific

point in the diverse analytics space (e.g., DBMS for offline

relational) or expose low-level APIs (such as an incremental key-

value abstraction [29][38]) that place the burden of specifying non-

declarative logic on the application developer.

The tempo-relational (temporal) query model [31][1] conceptually

unifies the diverse analytics space. Briefly, this model represents

datasets as a time-versioned database, where each tuple is

associated with a validity time interval. Temporal datasets are

presented as an incremental stream to a temporal stream processing

engine (SPE) that processes a query incrementally to produce a

result temporal dataset. We can use an SPE to: (1) deploy

continuous queries across real-time streams and historical data; (2)

back-test real-time queries over historical logs; and (3) run

relational or temporal queries over log data. Recently, we have also

shown how a temporal SPE can handle progressive relational

queries, by using time to denote query progress [2].

Some SPEs such as NiagaraST [9] and StreamInsight [8] support a

full tempo-relational algebra, whereas other SPEs such as Spark

Streaming [34] and Naiad [35] support limited variants of the

model. But today’s SPEs fall short as unified analytics engines,

because they lack fabric integration and high performance across

the diverse analytics space.

2) Fabric & Language Integration: Analytics workflows today are

driven by an application, which uses the engine either directly or

via a combination of distribution fabrics (such as Storm [29],

YARN [17], and Orleans [16]) for different parts of the pipeline.

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 41st International Conference on Very

Large Data Bases, August 31st – September 4th, 2015, Kohala Coast, Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 4

Copyright 2014 VLDB Endowment 2150-8097/14/12

To enable integrated execution, an analytics engine must be usable

as a library from a hosting high-level language (HLL). HLLs such

as Java and C# provide a rich universe of data-types, libraries, and

custom logic that needs to integrate seamlessly with the engine.

DBMSs provide very high performance, but use a server model

over a restricted universe of SQL data-types (e.g., int and bigint)

and expressions (e.g., a filter predicate A < 10), with limited

support for richer logic via integration mechanisms such as SQL

CLR [36]. Spark [28] integrates with Scala, but exposes a server

model. StreamInsight uses language-integrated queries (LINQ)

[32] for seamless query specification from a HLL, but follows a

server model and restricts data-types. Naiad [35] uses LINQ and

processes arbitrary HLL data-types and expressions, while

incremental key-value engines such as Storm expose a low-level

key-value-based API with rich data-type support. But these systems

lack performance and a declarative query model. One could build a

declarative operator layer over such systems, but this layered

approach can further impact performance.

3) Performance: High performance is a critical requirement for

analytics. Specifically, we need an engine to automatically and

seamlessly adapt performance in terms of latency and throughput,

across the analytics spectrum from offline to real-time.

Figure 1 depicts single-machine throughput on today’s engines, for

a simple filter query on an in-memory dataset (see §7 for workload

details). SPE-X and DB-X represent a modern commercial SPE and

columnar DBMS respectively. We see that today’s SPEs have

lower throughput (by 500X or more) than modern columnar

DBMSs such as Vertica [14], SQL Server [6], and Shark [28] that

push the limits of relational performance, approaching memory-

bandwidth speeds for common operations. However, these DBMSs

lack rich HLL data-type, expression and efficient HLL library

support. Further, they use the non-incremental model, which targets

a specific (offline relational) point in the analytics space.

To summarize, these capabilities – rich query model, fabric and

language integration, and high performance – appear to

fundamentally be at odds in today’s systems, as seen in Table 1.

1.2 Today’s Engine Architectures
To understand why these requirements are not simultaneously

addressed by today’s systems, we start by classifying existing

engine architectures into three categories: event-at-a-time, batch-

at-a-time, and offline. These are shown in Figure 2(a)-(c); their

throughputs are shown in Figure 1. Low latency motivated the

traditional event-at-a-time architecture of SPEs such as SPE-X, but

this limits throughput to very low levels. Naiad [35] processes

events one batch at a time, which provides better throughput.

However, we notice that offline DBMSs still provide significantly

higher throughput (by ~500X) than batch-at-a-time SPEs.

The reason for this vast performance difference is that language

integration in systems such as Naiad precludes the use of efficient

DB-style data organizations such as columnar, i.e., user expressions

are evaluated as black-boxes over individual rows. Further, the end

user has to manually navigate the latency spectrum by selecting

individual batch sizes. Finally, temporal operators have to be

written as a layer outside the engine, and thus cannot be optimized

for performance. On the other hand, relational engines support only

the SQL model over offline data with high latency, and do not

provide deep fabric or language integration.

1.3 A New Hybrid System Architecture
This paper introduces Trill (for a trillion events per day), a new

analytics engine that addresses all these requirements:

1) Query Model: Trill is based on the temporal logical data model,

which enables the diverse spectrum of analytics described earlier:

real-time, offline, temporal, relational, and progressive.

2) Fabric & Language Integration: Trill is written as a library in

an HLL (C#), and thus benefits from arbitrary HLL data-types, a

rich library ecosystem, integration with arbitrary program logic,

ingesting data without “handing off” to a server or copying to native

memory, and easily embedding within scale-out fabrics and as part

of a Cloud application workflow.

3) Performance: Trill handles the entire space of analytics

described earlier, at best-of-breed or better levels of performance

(see Figure 1). With temporal queries over streaming data, Trill

processes events at rates that are 2-4 orders-of-magnitude higher

than existing commercial streaming engines. Further, for the case

of offline relational (non-temporal) queries over logs, Trill’s query

performance is comparable to a modern columnar DBMS, while

supporting a richer query model and language integration. Trill is

very fast for simple payload types (common for early parts of a

pipeline), and degrades gracefully as payloads become complex,

such as machine learning models (common on reduced data).

Trill achieves all these requirements using a hybrid system

architecture – see Figure 2(d) – that combines novel ideas and key

prior ideas from specific points in the analytics spectrum:

1) Support for Latency Spectrum (§3): Trill queries consist of a

DAG of operators that process a stream of data-batch messages.

Each data-batch consists of multiple events carefully laid out in

timestamp order in main memory. We find that batching is useful

in an SPE to improve throughput, particularly when combined with

engineering practices we report in this paper, such as a very careful

organization of inner per-batch loops in operators. Critically, unlike

other batched streaming systems such as Spark Streaming [34], our

temporal model allows batching to be purely physical (not

commingled with application time) and therefore easily variable:

query results are always identical to the case of per-event

processing, regardless of batch sizes or data arrival rates.

While batching provides high throughput, it may result in high and

unpredictable latency which can be unacceptable in a streaming

setting. To solve this, Trill supports a new form of punctuations,

which allow users to control desired latency. Punctuations work

alongside batching to transparently tradeoff throughput for latency.

In Trill, for a user-specified latency, higher input loads result in

larger batches that provide better throughput, which in turn allows

the system to better handle the increased load.

Table 1: Desirable features in existing systems and Trill.

Require-

ment

Feature
Stream Processing

Engines
Columnar
Databases

Trill
Examples



Stream-
Insight,
STREAM

Storm
Naiad,
Spark

Streams

Vertica,
Shark, SQL

Server

Query
Model

Temporal Yes Yes Yes No Yes
Incremental Yes Yes Yes No Yes

Fabric &
Language
Integration

HLL
Integration

Some No Yes No Yes

Library on
Fabrics

No No No No Yes

Perfor-
mance

Throughput Low Low Mid High High
Batched

Ops
No No Yes Yes Yes

Latency
Spectrum

Yes No No No Yes

Columnar No No No Yes Yes

2) Columnar Processing in a High-Level Language (§4): Systems

like Naiad and Spark Streaming batch data, but in order to reach the

performance of modern DBMSs, Trill uses a columnar data

organization within batches. We adopt and extend columnar

techniques [14][12][6] and apply them over temporal data. Our

control fields (e.g., timestamps) are also columnar, so we pay the

cost of temporality only when necessary.

Critically, in order to benefit from columnar processing (proven by

DBMSs) in an HLL, we use a novel dynamic HLL code generation

technique that constructs and compiles HLL source code on-the-fly

for batches and operators, all of which operate over columnar

batched data. Both columnarization and batching are transparent to

users, who program over the usual row-oriented view of data

streams. To achieve this, we leverage the abstract syntax trees of

lambda expressions [21] (available in today’s HLLs) to interpret

and rewrite user queries (such as select expressions) into inlined

columnar accesses inside tight per-batch loops, with few sequential

memory accesses and no method calls inside the loop.

Dynamic HLL code generation also enables us to (1) handle strings

more efficiently by storing them as character arrays within batches,

and rewriting user expressions to operate directly over these arrays;

and (2) enable fast serialization by sending columns over the wire

without any fine-grained encoding or decoding, which provides a

10X benefit over standard HLL serialization schemes such as Avro.

3) Fast Streaming Operators (§5): Trill exploits the coarse-grained

columnar nature of data-batches and the timestamp-order of data

via a set of new algorithms for streaming operators. We propose a

powerful grouped user-defined aggregation framework; it uses an

expression-based user API that lets user-defined extensions achieve

performance similar to hand-written custom logic. In fact, our built-

in aggregates in Trill are written using the user-defined framework.

Trill also uses a new stream property derivation framework (§5.3)

that leverages data characteristics to select from a small set of

generated physical operators at compile-time.

4) Library Mode & Multi-core (§6): By default, Trill queries run

only on the thread that feeds data to it. This “pure library” mode

makes Trill ideal for embedding within frameworks such as

Orleans [16] and YARN [17]. For higher performance on multi-

core, Trill supports a new two-level streaming temporal map-

reduce operation, executed using a lightweight optional scheduler.

Detailed experiments (§7) comparing Trill to a commercial DBMS

engine and a commercial SPE over real and synthetic data

demonstrate Trill’s high performance across various settings. Trill

is being used extensively within Microsoft – §7.6 overviews the

broad range of usage scenarios we have encountered in practice.

Finally, we note that while Trill is written in C#, its architecture

applies to other HLLs such as Java, which have rich libraries that

need to be usable in a big data analytics setting.

2. SYSTEM OVERVIEW WITH EXAMPLE
Consider a stream of user activity in terms of ad clicks, where each

event is a HLL data-type:

 struct UserData {
 long ClickTime; // Time of click on advertisement
 long UserId; // ID of user who clicked on ad
 long AdId; // ID of the advertisement
 }
The application wishes to compute, for each ad, a 5-minute

windowed count of clicks on that ad, across a 5% sample of users,

with a tolerable latency of 10 seconds.

2.1 User Experience
Users can ingress data into Trill from a variety of sources: real-time

push-based sources; datasets cached in main memory; or data

streamed from a file or network. As part of ingress, the user

specifies a desired latency requirement (time) as an ingress policy.

Further, they need to identify the application time field in the data

for their query logic. For example, the user may create a stream

endpoint as:

var str = Network.ToStream(e => e.ClickTime, Latency(10secs));

Next, the query logic is written in Trill’s temporal LINQ language:

var query = str.Where(e => e.UserId % 100 < 5)
 .Select(e => { e.AdId })
 .GroupApply(e => e.AdId,
 s => s.Window(5min).Aggregate(w => w.Count()));

This query first runs a filter (Where) to sample users. The argument

to Where in parentheses is called a lambda expression [21]; it

represents an abstract syntax tree of the logical operation to be

performed for each row (event) of type UserData in the stream to

determine if it is dropped. Here, events with UserId % 100 < 5 are

retained by the filter. Filter is followed by a projection (Select) to

drop all columns except AdId, and a grouped operation

(GroupApply) whose first argument is the grouping key (AdId) and

the second is the per-group operation (windowed count aggregate).

Note that the window argument is in application time, i.e., query

semantics and results are unaffected by the latency specification.

Finally, the result can be “subscribed” to by any listener as follows:

query.Subscribe(e => Console.Write(e)); // write to console

A full description of the Trill programming surface is outside the

scope of this paper, but we note that it supports all the well-known

punctuation

columnar

batch

Inlined expr;

restricted lang

 (SQL)

columnar

tables

timestamp

columns

… …
…

…

payload columns

payload

columns

row event (one

at a time) arrays of

row events

(a) (b) (c) (d)

black-box

expressions

black-box

expressions

Inlined expr.

using dynamic

code-gen; rich

language (HLL)

User view of data

is row-based

…

…

…

…

… …

…

…

…

…

…

…

…

…

Figure 2: System architectures: (a) Traditional SPE; (b) Naiad; (c) Columnar DB;

(d) Trill’s hybrid architecture.

0.1

1

10

100

1000

10000

SPE-X Naiad DB-X TrillT
h

ro
u

g
h

p
u

t
(x

 1
M

 e
v
/s

e
c
)

Figure 1: Single-machine filter

throughput; different engines.

streaming operators, special operations to manipulate time, as well

as a high-performance extensibility framework (see Section 5).

2.2 System Overview and Challenges
We compile the user query using standard techniques [4] into a

DAG of streaming query operators. Each operator processes and

produces a stream of messages, the unit of granularity that flows

through Trill. Data is pushed to Trill from external sources, either

as fine-grained events or directly as batches of events. Trill batches

the data at ingress into messages, if needed, and pushes them

through the operators. The output may be consumed directly as

messages (for example, to serialize and write to disk or send over

the network) or converted into fine-grained events for human

consumption. The key challenges and resulting design decisions are

summarized below and discussed in the rest of the paper.

2.2.1 Support for Latency Spectrum (Sec. 3)
Trill uses an adaptive physical batching model to support the

latency spectrum from real-time to offline. We support two kinds

of messages: data-batch and punctuation. A data-batch is simply a

variable-sized batch of events, whereas a punctuation is a control

message that forces Trill to produce output, terminating batches if

necessary. Batching and punctuations help Trill provide high

performance across the entire latency spectrum. In our example, the

user specification of 10secs latency results in Trill batching events

for at most 10secs, at which point a punctuation is inserted into the

stream to force batches through the system and generate output. We

discuss adaptive batching with punctuations in Section 3.

2.2.2 Enabling Columnar with a HLL (Sec. 4)
As we saw in Section 1, batching alone does not bridge the gap

between databases and streaming engines. We need to organize the

data within batches in a columnar format, so that only the relevant

data is accessed during query processing. In our running example,

the first Where should read only the column corresponding to

UserId from main memory and write out a bit-vector per batch to

indicate tuples that pass the filter. Similarly, the Select should be a

constant-time operation per batch that simply drops all payload

columns in the batch other than AdId.

The challenge is to leverage a columnar organization in operators,

while providing a row-oriented user view of data in a HLL. Section

4 introduces our solution: dynamic HLL code generation. This

technique speeds up operators by rewriting users’ row-oriented

lambda expressions into columnar accesses inside tight per-batch

loops. The loops usually have few sequential memory accesses and

no method calls. Section 4 also presents several other ways in

which we exploit code generation for performance within the HLL.

2.2.3 Fast Grouped Streaming Operators (Sec. 5)
Our running example next needs to compute a windowed count per

AdId. Trill supports a GroupApply operator [1], which can execute

any sub-query for each logical grouping key. We need to support

efficient grouping and design new efficient algorithms for temporal

operators that fully exploit the batched nature of input and output

streams and can be used across temporal and progressive relational

operations. We also introduce new stream properties for exploiting

data characteristics to select from a small set of generated physical

operators at compile-time. For instance, the Count operator in our

example can exploit the fact that window sizes are constant, and

can therefore expire windows in the order that data is received.

2.2.4 Library Mode and Multi-Core Support (Sec. 6)
We often need Trill to work as a pure library that does not own its

own threads; for instance, when Trill is used inside fabrics that

manage their own threads. We provide a no-scheduler library mode

where processing occurs only on a thread that pushes data to Trill.

Other situations require Trill to provide high performance by using

all cores – here we use a novel temporal map-reduce operation that

is executed on multiple cores using a lightweight scheduler that is

configured by the application. In our running example, this facility

allows us to scale out both the stateless operations (where and filter)

and the grouped windowed count to use all the cores on a machine.

3. SUPPORT FOR LATENCY SPECTRUM
As described earlier, Trill’s operators process a stream of messages,

which can either be data-batches or punctuations.

Data-batches A data-batch represents a batch of events in Trill.

Each event in the data-batch consists of a payload and two

timestamps: (1) sync-time, the logical time at which the event

occurs; (2) other-time, an additional timestamp, discussed in

Section 5 that indicates the extent of the data window. Sync-time is

an important concept in Trill; it denotes the logical instant when a

fact about the stream content becomes known. Events in a batch

occur in strictly non-decreasing sync-time order.

Data-batches allow Trill to tailor throughput based on desired

latencies, exploiting the fact that larger batches lead to better

throughputs. Thus, offline relational queries over offline data use

larger batches, up to a maximum batch size; whereas, progressive

and real-time queries select batch sizes based on the desired

interactivity or acceptable result latency (delay), specified by users.

Punctuations A punctuation is a control message with a

timestamp T, based on the user-provided latency specification. A

punctuation serves two purposes: (1) it denotes the passage of

application time until T, in the absence of data, in order to clean up

system state; and (2) it enforces a flushing of data-batch messages

through Trill, to force processing and output generation until T.

Each operator internally batches events (up to the maximum batch

size) before sending the batch to the next operator. Punctuations

“kick” the system into producing output, which may involve

pushing out partially-filled data batches.

Trill injects punctuations based on the user-specified latency (10

seconds in our running example), which allows us to dynamically

adapt batch sizes to latency requirements. There is a maximum

batch size, and the stream may contain multiple batches between

two punctuations. Interestingly, for a given latency specification, a

higher input event rate (e.g., during periods of heavy load) results

in larger batches, which in turn increases system throughput to

better handle the higher load. This form of adaptive batching

enables us to use the same engine across a wide range of latency

requirements, from real-time to offline.

Finally, we note that our temporal semantics ensure that batching

is purely physical: it affects only the physical observed latency and

not the logical query results, which depend only on the data (with

timestamps) and the query.

4. ENABLING COLUMNAR WITH A HLL
While the end-user view of data is row-based, our data-batches

internally store both control fields and payload fields as columns.

Specifically, each data-batch contains the following arrays:

1. SyncTime: This is an array of all the sync-times in the batch.

2. OtherTime: This is an array of other-time values in the batch.

3. Bitvector: This is the “event absence” vector – an array with

one bit per event. A bit value of 0 (or 1) indicates whether the

corresponding data event exists (or is absent). Our micro-

benchmarks showed that one can perform more than 1 billion

bitvector tests or sets per second per core. The bitvector allows

efficient operator algorithms in many cases by avoiding the

unnecessary movement of data to/from main memory. For

example, a Where operator can apply the predicate and if the

predicate fails can set the corresponding bitvector entry to 1.

These fields are organized into a base class as follows:

 class DataBatch {
 long[] SyncTime;
 long[] OtherTime;
 Bitvector BV;
 }

The payload in Trill is also organized in columnar format, by

generating (and compiling on-the-fly) a new HLL class that extends

DataBatch and adds one array field for each field in the payload.

For example, in case of the UserData payload in our running

example, we generate a class that looks like:

 class UserData_Gen : DataBatch {
 long[] col_ClickTime;
 long[] col_UserId;
 long[] col_AdId;
 }

Trill supports arbitrary HLL types as payloads. If we cannot

generate a columnar representation for a given payload type, we

default to a row-based data-batch layout with a generic payload

field (TPayload[] Payload), where TPayload is the payload type.

4.1 Generating Operators
In order to process generated data-batches, our operators need to

also be generated since they compute over columns. The query

compiler inspects each operator’s input and output types and its

user-provided lambda expressions to generate a carefully tailored

batch-oriented operator. These generated operators are chained

together to form the query DAG to which user data is pushed.

Our transformation, in general, is to replace all references to a field

f with references to col_f[i], the ith row in the column corresponding

to field f. We describe this process for the initial Where and Select

operators in our example, where we exploit the semantics of the

operation and the input lambda expressions to achieve very high

performance. The subsequent operations are covered in Section 5.

4.1.1 Where (Filtering)
Consider the first operation in our example: Where(e => e.UserId

% 100 < 5). This filtering operation is compiled into a custom

operator, a code module that is compiled and loaded dynamically.

The argument to Where is a lambda expression as discussed earlier.

We convert the body of the function so that it operates over the

column-oriented view of the data and construct a Where operator

with the resulting code inlined inside a tight loop that iterates over

the entire data-batch. For each entry in the data-batch, we check if

the bitvector is 0 – if yes, we apply the filter (inlined into the loop)

and if the filter does not pass, we set the bitvector entry to 1. A final

On() call sends the result batch to a downstream operator. The

pseudo-code for Where for our example is shown below:

Note that it is not always possible to generate a columnar operator.

For example, a filter might invoke a black-box method on each

instance of UserData. In this case, we transform the data to its row-

oriented form using a ColumnToRow() operation, and use the non-

generated static (generic) definition of the operator that executes

the black-box filter expression directly over elements of the

UserData[] column in non-generated input data-batches.

4.1.2 Select (Projection)
The argument to Select is an expression that transforms a value of

type TPayload into a value of a new return type TResult. Apart

from converting the expression into inlined accesses on input and

output columns, we optimize the handling of selection predicates

that select a subset of input fields, so that they are constant-time

operations at the batch level instead of having to iterate over each

row. We do this by just assigning the pointer to the column for each

input field to the pointer in the output batch. We call this a pointer-

swing. In our running example, the projection Select(e => {

e.AdId }) is converted into the following generated operator:

We create a new result data-batch of payload type long and pointer-

swing the control fields. We then pointer-swing the array for AdId

from the source batch to the destination batch. We finally free the

relevant columns in the input batch and output the result data-batch.

Notice that since Where and Select are not temporal, we did not

have to access the timestamp columns in our operators; they were

simply pointer-swung to output batches in constant time. Thus, we

do not pay a runtime cost for temporality for these operations.

4.2 Exploiting Columnar Batches
Our columnar batch organization with dynamic code generation of

operators enables us to support several common use-cases where

traditional HLL engines lose significant performance.

4.2.1 Serialization and Deserialization
Serialization of objects in a high-level language is inefficient due

to the need for fine-grained encoding and decoding of rows. Trill

data is stored as columnar data-batches. However, traditional

serializers encode arrays on a per-element basis. We created a

serializer for Trill – called Trillium – that can serialize columnar

Trill streams 15X to 20X faster than standard row-based serializers

such as Avro [19] (see Section 7.5). Trillium uses three techniques

for performance: (1) the serializer and deserializer are code-

generated to avoid runtime interpretation; (2) generated data-

batches are handled by transferring arrays directly without any fine-

grained encoding or tests, and using the fill factor of the data-batch

to limit how much data is transferred; (3) memory pools help reuse

the memory into which data-batches are deserialized (this is useful

when we execute a streaming query over a deserialized stream).

4.2.2 String Handling using MultiString
Strings in a HLL such as C# or Java are not optimized for

performance. For example, each string in C# is stored as a separate

object with a 24-byte overhead per string. Simply using an array of

strings can create many small heap objects, which causes memory

and GC overheads. We instead create a MultiString data structure

void On(UserData_Gen batch) {
 batch.BV.MakeWritable(); // bitvector copy on write
 for (int i=0;i<batch.Count; i++)
 if ((batch.BV[i]==0) &&
 !(batch.col_UserId[i] % 100 < 5))
 batch.BitVector[i] = 1;
 nextOperator.On(batch);
}

void On(UserData_Gen batch) {
 var r = new AdId_Gen(); // generated result batch
 r.CloneControlFieldsFrom(batch);
 // constant time pointer swing of AdId column
 r.col_AdId = batch.col_AdId.AddReference();
 batch.Free();
 nextOperator.On(r);
}

per string column in a data-batch that stores the individual (true)

strings end-to-end in a single large string that is accessible as a

character array (as with the columnar data format, users are

unaffected by this transformation). The array is augmented with an

array of offsets and lengths for the true strings. MultiStrings reduce

memory and processing costs for queries over string data: the string

split and substring operations can be done by simply creating a new

offset/length array, which is 50X faster than a usual per-string split

or substring. Note that a split can generate more rows than its input;

we ref-count the character array across these output batches,

creating new offset/length arrays for each batch.

Regular expression matching work as follows: we first compile the

pattern once for the query, and then execute a standard regular

expression matcher directly over the large string. Whenever there

is a match that spans true-string boundaries, we re-execute the

matching algorithm starting at the specific true string at that

location, in order to weed out false positives. This technique allows

us to execute the regular expression logic without fine-grained

interruptions, which provides very high throughput optimized for

cases where matches are infrequent. Upper/lower case conversion

also works similarly. Substring matching applies the Knuth-Morris-

Pratt [22] algorithm directly on the MultiString. We find that these

techniques are up to 6X faster than traditional string operations.

Arbitrary string operations that cannot be applied directly on the

MultiString are executed by copying over each string to a

temporary cached string and executing operations on this string;

interestingly, we find that even this back-off technique is around

30% faster than using fine-grained strings directly, since it avoids

memory accesses to randomly located objects. This solution for

strings extends to other fine-grained heap object types such as lists.

4.2.3 Columnar Memory Pooling

Data processing in a HLL can incur the cost of garbage collection

(GC). Automatic GC can be expensive and introduce latency. The

alternative of using native memory precludes a seamless integration

of user-defined HLL data-types. We instead employ memory pools,

which represent reusable sets of ref-counted HLL data structures.

Trill generates and uses memory pools for both the data-batch

columns (arrays) and data structures that need to be frequently

allocated and released (see [23] for details). Memory pools work

especially well in a streaming setting since we usually reach a

“steady state” once the initial allocations have been performed.

5. GROUPING & STATEFUL OPERATORS
We next describe Trill’s grouped temporal operators using our

running example, which computes a per-ad windowed count. The

key challenge is to build efficient stateful physical operators that

operate on batched data. Section 5.3 shows how stream properties

help us choose from a small set of such physical operators.

5.1 GroupApply
Trill supports a GroupApply operation, where the user specifies a

grouping key selector and a sub-query. Logically, GroupApply

executes the given sub-query on each sub-stream corresponding to
each distinct key, as determined by the grouping key selector.

We consider single-threaded query execution for now; multi-core

execution is covered in Section 6. We implement GroupApply by

first creating a stateless Group operator that computes and

materializes a grouping key for each event in the data-batch.
Specifically, it adds two columns to each data-batch:

1. Key: An array of grouping key values of all events in the batch.

2. Hash: An array of hash values (4-byte) of the keys.

These columns are materialized so that each (grouped) operator in
the provided sub-query does not need to re-compute them.

The sub-query (e.g., windowed count) is executed on the resulting

“grouped stream”. All our operators are designed to accept and

produce such grouped streams. For example, an aggregate operator,

that receives data-batches with <group-key, payload> pairs,

maintains per-group-key state, and outputs a stream of data-batches
with per-group aggregates <group-key, aggregate>.

We finally add an Ungroup operator to remove the grouping key

and exit the GroupApply context. Note that GroupApply can also

be nested; Group creates a nested key, consisting of the original and

the new grouping keys, which gets un-nested at the Ungroup.

5.2 Temporal Operator Algorithms
Logically, we view a stream as a temporal database (TDB) [31] that

is presented incrementally, as in CEDR [3], Nile [11], NiagaraST

[9], etc. Each event is associated with a data window (or interval)

that denotes its period of validity. This creates snapshots, a

sequence of data versions across time. The user query is logically
executed against these snapshots in an incremental manner.

Events may either arrive directly as an interval, or get broken up

into a separate insert into (called start-edge) and delete from (called

end-edge) the TDB. Internally, events have two timestamps (sync-
time and other-time) that are interpreted as follows:

 When other-time is greater than sync-time, it represents an

interval with a data window of [sync-time, other-time).

 When other-time is ∞, it is a start-edge that denotes the

insertion of an item at sync-time.

 When other-time is less than sync-time, it is an end-edge that

occurs at sync-time and deletes an earlier start-edge that
occurred at the previous timestamp (other-time).

Consider the stateless Window operator in our running example. It

simply sets other-time to sync-time + 5mins in order to make the

data have a 5-minute window duration. Further, it drops end-edges

by setting their bitvector entry to 1 (since start-edges get converted

into intervals when we set other-time as shown above).

5.2.1 User-Defined Snapshot Aggregation
Grouped aggregation in Trill is done using an operator framework

called user-defined snapshot, which enables the integration of

custom incremental HLL logic into stream processing without

sacrificing performance. It handles the class of operations that

incrementally compute a result per time snapshot. In fact, all our

built-in aggregates (including complex multi-valued aggregates
such as top-k) are implemented using this general framework.

User Specification A user implements the following functions:

Here, Func<A, B, ..., X> denotes a function that takes A, B, …

as input parameter types and outputs a value of type X. All these

methods are provided as lambda expressions so that Trill can inline

them into the generated columnar operator code for performance.

InitialState is a function that takes no input parameters and

produces an initial state of type TState. Accumulate takes a

TState, a long timestamp, and an input tuple with payload type

TInput, and produces a new state of the same type (TState).

Deaccumulate handles data expiration when windows end, and

Expression<Func<TState>> InitialState();
Expression<Func<TState, long, TInput, TState>> Accumulate();
Expression<Func<TState,long, TInput, TState>> Deaccumulate();
Expression<Func<TState, TState, TState>> Difference();
Expression<Func<TState, TResult>> ComputeResult();

works similarly to Accumulate. Finally, Difference allows users to

define the notion of subtracting one state from another; this allows

users to perform this more efficiently than deaccumulating state

one event at a time. Our implementation for Count is shown below:

In our running example, the user can compute a streaming count

using the Aggregate method, as shown below:
var result0 = inp0.Aggregate(w => w.Count());

We also support simultaneous application of multiple aggregates in

a single snapshot operator, with the ability to combine results on a

per-snapshot basis. For example, one could write Average as:

inp0.Aggregate(w => w.Sum(), w => w.Count(), (s, c) => s / c);

Operator Implementation Given the above specifications, Trill

generates a grouped per-snapshot aggregate operator with inlined

expressions. Our operator uses three data structures:

1) AggregateByKey: This is a hash table that stores, for every

distinct key associated with non-empty aggregate state (TState) at

the current sync-time, an entry with that key and the aggregate state.

2) HeldAggregates: This uses a hash table called FastDictionary,

that stores – for the current sync-time T – the aggregated state

corresponding to keys for which events arrive with sync-time equal

to T. This hash table does not support the deletion of individual

keys, but handles fast iteration through all the entries, and supports

a fast “clear” of the hash table when time moves forward. We

describe FastDictionary in our technical report [23].

3) Endpoint Compensation Queue (ECQ): The ECQ contains, for

each future endpoint (due to an interval event), partially aggregated

state (HeldAggregates) for that endpoint. In general, the ECQ is a

priority queue. However, we can often exploit stream properties (cf.

Section 5.3) to use a FIFO queue or eliminate the ECQ altogether.

For each data-batch, we iterate through the events in the batch. We

first look up each event in HeldAggregates. If not found, we look

in AggregateByKey, and if it contains the key, we ref-copy the state

into HeldAggregates (and output an end-edge for the old aggregate

state). We then update the current state for that key using the

appropriate expression, which is inlined into the operator source

code: Accumulate for start-edge and interval, and Deaccumulate

for end-edge. In case of intervals, we also accumulate state for the

(future) end timestamp into the ECQ.

When sync-time moves forward, we inline ComputeResult and

output start-edges for the non-empty aggregates in HeldAggregates

and clear it. Empty entries are removed from AggregateByKey. We

then process the endpoints in ECQ between now and the new sync-

time, using Difference to update and output state for each endpoint.

Similar processing is performed on receiving a punctuation that

moves the current sync-time forward. Our implementation caches

the state associated with the current key, so that the common case

where many events have the same key can be executed very

efficiently without frequent hash lookups.

5.2.2 Temporal Join and Other Operators
Trill supports temporal equi-joins, which are implemented by a

temporal grouped cross-product (GCP) operator. GCP accepts two

grouped input streams, and performs a per-group temporal cross-

product across the input streams. Execution of the GCP operator is

operationally identical to the well-known temporal symmetric hash

join operator, with stream grouping keys serving as the equi-join

attributes. Briefly, GCP processes data-batch messages in sync-

time order across its inputs, and maintains two hash-tables – for the

left and right sides. Start-edges and intervals are added to the hash-

tables if the other side has not reached its end-of-stream. End-edges

(and interval endpoints that are stored in an ECQ as in snapshot)

serve to remove entries from the hash-tables. If both input streams

are start-edge-only, we optimize by avoiding the ECQ altogether.

A temporal equi-join within a GroupApply uses GCP with a

compound grouping key consisting of the original key and the equi-

join attribute, which allows it to perform only a single hash lookup.

It is worth pointing out that we can use the GCP operator to perform

a progressive asymmetric relational join (build followed by probe),

by simply time-stamping the right input as [0, ∞) and the left input

as sync-time values beyond 0. This causes GCP to first fully

process the right input until end-of-stream, which means that we do

not need to add any events from the left input into a hash-table.

We also support a relational merge join to handle the case where

inputs are sorted by the join key. More details on join and other

Trill operators are provided in our technical report [23].

5.3 Compile-Time Stream Properties
We optimize performance for common stream characteristics using

a compile-time stream property derivation framework, which lets

us create customized physical operators. Stream properties define

restrictions on the content we expect to see in a given stream. They

are specified at stream inputs, and are also inferred at compile-time

from query logic at each point in the query plan. Examples include:

1. IsIntervalFree(bool): This property indicates that the stream

contains no intervals; only start- and end-edges. As an example, this

property allows us elide the ECQ from our aggregate operator.

2. IsConstantDuration(bool, long): This property is used to

indicate that all events in the stream have the same fixed (optionally

specified) duration. This property allows us to maintain the future

endpoints as a FIFO queue (linear lookup and update) instead of an

expensive priority queue. The special case of constant duration=∞

indicates a start-edge-only stream. This is common when we

execute progressive queries or non-windowed aggregates. For

example, a MAX operator can maintain just a single piece of state

– the maximum value seen up to now. A related IsConstantHop

property allows us to optimize for tumbling windows.

3. IsColumnar: This property indicates whether we are in columnar

or row-oriented mode, and is used to choose between code-gen and

normal operators. Operators may need to work in row-oriented

mode because (a) some property of the user type prevents it from

being used in columnar processing; or (b) an expression in the
query is too complex or opaque to allow its transformation.

Trill also includes properties to capture and exploit sort ordering

and data-batch packing in the input data; see Section 6.2 for details.

We use stream properties to select from a small set of physical

operators, as shown in Table 2. We find that these operator variants
are sufficient to provide high performance for most of our queries.

6. LIBRARY MODE & MULTI-CORE
Trill supports two modes of execution. In the default no-scheduler

mode, Trill works as a pure library that does not itself own any

threads but performs work on the thread that pushes messages to it.

For efficient multi-core processing, we built a pluggable scheduler

framework that allows Trill to parallelize execution on specific

application-provided threads or cores. The basic idea is that we take

the physical plan and partition it into query fragments (described

InitialState: () => 0L
Accumulate: (oldCount, timestamp, input) => oldCount + 1
Deaccumulate: (oldCount, timestamp, input) => oldCount - 1
Difference: (leftCount, rightCount) => leftCount - rightCount
ComputeResult: count => count

next). The scheduler is given n threads; each thread picks up data-

batches to push to operators. For progressive queries, we process

batches in timestamp order for fair progress across queries. Real-

time queries use stimulus-time scheduling [15]. We hold a priority

queue of query fragments; each scheduler thread picks the fragment

with highest priority to execute next. Note that each query fragment

itself may consist of multiple operators, but is executed on the same

thread (similar to the no-scheduler mode). Our scheduler works at

the batch granularity, which allows its overhead to be amortized.

6.1 Streaming Temporal Map-Reduce
The key building block for multi-core processing in Trill is what

we call Temporal Map-Reduce – streaming generalizations of the

well-known Map and Reduce operations, with temporal support.

Users can either use Map and Reduce explicitly to indicate

opportunities for parallelism, or use GroupApply which gets
transparently rewritten by our compiler into Map and Reduce.

Map takes a query fragment as input, for the purpose of scaling out

in a stateless manner by spraying input batches to each instance of

the query fragment. Further, it takes a grouping key argument that

identifies the key for the subsequent Reduce operation. Reduce

takes as parameter a query fragment that is logically executed for

each distinct value of the specified grouping key. For example, our

running example is rewritten as:

inp0.Map(str => str.Where(...).Select(...), e => e.UserId)
 .Reduce(str => str.Window(...).Aggregate(...),
 (g, c) => new { g, c });

Here, the first argument to Map specifies the stateless Where and

Select operations to be performed in parallel on the input stream,

while the second argument specifies the grouping key (UserId) to

shuffle the result streams by. The first argument to Reduce

computes per-user windowed Count, and the second argument

allows us to add the grouping key (UserId) back to the result count

stream at the end of the query.

Such a specification is mapped by Trill into a physical operator

graph (shown in Figure 3; left) with multiple query fragments – one

for each map and reduce sub-query instance – that can be executed

using our scheduler. Let n denote the degree of parallelism
available to us (e.g., number of cores on the machine).

1) Spray: We first take a stream of batches and perform a stateless

spray of the batches to n downstream endpoints. Spray performs
constant work per batch and introduces negligible overhead.

2) Map, Group, Shuffle: On each of the n endpoints, we apply the

map sub-query. The result stream enters a generated shuffle

operator that computes (inline) the new grouping key and its

associated hash on each event. Based on the hash value, we add the

event to one of n output data-batches (one per hash bucket). There

are n downstream merge operators in the physical plan. As output
batches fill up, they are sent to the corresponding merge.

3) Merge, Reduce, Ungroup: We perform a temporal merge

(described next) and feed the resulting stream (one per reduce

bucket) to the reduce sub-query. We then execute Ungroup to un-

nest the grouping key. A final merge operator temporally merges

the results from each reduce bucket into a single output stream.

Note that our batched data-flow architecture implies that

synchronization occurs only at coarse-grained batch boundaries,

where data is handed off from one query fragment to another.

Temporal Cascading Binary Merge The temporal merge in Trill

is implemented using a tree of streaming binary merges for

performance [26]. Each binary merge reads sync-time values from

the left and right input batches, and merges the data in sync-time

order into a destination batch. We also check for the special case

(common after the map phase and with progressive queries) where

one input batch lies ahead of the other in time, in which case we

can forward the input batches without doing a fine-grained merge.

Two-Input Reduce Trill also supports two-input reduce. The

architecture (see Figure 3; right) is similar, except that there are two

separate map phases for each of the inputs, and these map outputs

are shuffled and brought together to a single set of n two-input

reducers. Trill rewrites binary operators such as temporal joins into

a two-input reduce so that they can execute on multiple cores.

6.2 Performance Optimizations
Since the shuffle (repacking data-batches by key) in temporal map-

reduce is very memory-intensive, we try to avoid it when possible.

Exploiting Sort-Order and Packing Trill supports a compile-

time property to identify whether input snapshots are sorted by a

payload field. In addition, it supports a property where a sorted

stream is packed according to the following rule: for a given batch

B, data with a given sort key value K cannot spill to the next batch

B+1 unless all the data in batch B has the same sort key value K.

Further, two streams may be packed in a compatible manner, i.e.,

keys in two different batches in stream 1 do not map to the same

batch in stream 2. Sort-order is used, for example, to replace a

symmetric hash join by a more efficient merge-join.

If a stream is packed as described above, temporal map-reduce can

retain the sort order during spray. Basically, it retains the last key

in the current batch B before spraying it to endpoint i. In case the

first event in the next batch B+1 has the same key value, that batch

is also sprayed to the same endpoint i. Otherwise, the batch B+1 is

sprayed round-robin to the next endpoint i+1. Likewise, a two-

input map-reduce can retain sort order during spray if the streams

are packed in a compatible manner. We can then move the grouped

sub-query to the map phase, avoiding the shuffle.

S

M M

R R R R

S

M M

R R R R

S

M M

cascading
binary
merge

reduce

map

spray

cascading
binary
merge

shuffle

Table 2: Physical operators in Trill.

Physical Operator Supported Variants

Filter, Project, SelectMany,
AlterLifetime

No variants (supports arbitrary
HLL expressions)

Temporal Join General, Start-edge, Start-edge
+ Order-aware

WhereNotExists,
WhereExists, Clip

No variants

Snapshot Operator (with
custom incremental logic)

General, Start-edge, Constant-
duration, Constant-hop

Spray & multicast General, Order-aware
Group, Shuffle, Ungroup No variants
Temporal Merge No variants (optimized for

batches with same sync-time)

Figure 3: Two-stage streaming temporal map-reduce (one and two inputs).

Exploiting Skew in Input Streams Another case where we can

avoid a shuffle is when a 2-input reduce is skewed, i.e., the right

side is much smaller than the left. We simply broadcast the smaller

side to all map endpoints, and spray the larger side round-robin. In

this case, we can perform the 2-input operation without a shuffle.

A common use of this facility is when doing a temporal join across

a high- and a low-rate input stream.

7. EVALUATION & USAGE SCENARIOS
The goal of evaluation is to examine how Trill’s hybrid architecture

allows it to perform favorably against state-of-the-art specialized

engines at different points in the analytics spectrum. We then

discuss how our features have enabled a range of usage scenarios.

7.1 Setup and Workloads
All experiments are conducted on a 2-processor 8-core (16 hyper-

thread) Intel Xeon CPU E5-2660 machine running at 2.2GHz, with

192GB RAM, and running 64-bit Windows Server 2008 R2.

Workloads We use the following datasets in our experiments:

1. GenData(𝒏, 𝒅, 𝒎): This is a set of two synthetic tables (T1 and

T2). Each table has two 8-byte columns (C1 and C2) and both tables

are ordered by C1. T1 has 𝑛 rows, with 𝑑 distinct values in C1.

Column C2 in T1 has the same 𝑑 values in random order. T2 has

𝑚 (≥ 𝑑) rows whose C1 includes the 𝑑 distinct values of T2; the

remaining values are random. C2 in T2 is random as well.

2. UserSearch: This is a dataset of user search phrases from a

commercial search engine log. It has two columns: for each 8-byte

UserId (ordered by UserId), we store a string (search term). Some

experiments use a hash-tokenized version of this dataset, where

phrases are pre-split into tokens (words) and hashed into 8-byte

values. These datasets have two fields: UserId and QueryId. Our

temporal experiments use a similar dataset over a 15-day time

period, with an additional 8-byte timestamp field (the data is

ordered by timestamp in this case). We use real queries over these

datasets, with dataset sizes varying from 10M to 600M rows.

3. SearchURL: This is another real search dataset (100M rows,

11.6GB) that contains five columns: search phrase, its hash value,

number of times issued, URL clicked after search, number of clicks

on URL (for that search), and the total URL clicks for that query.

4. TPC-H: We experiment with grouped multi-aggregation using

the LINEITEM table of TPC-H at a scale factor of 100GB.

Baseline Query Engines For relational queries, we compare

Trill’s performance against DB-X, a modern commercial database

system that incorporates a compressed columnar store and supports

batched operators. Trill uses a default maximum batch size of 80K

tuples whereas DB-X uses a larger fixed batch size (by more than

10X). DB-X does not support progressive, incremental, or real-time

temporal processing. We discard the first two runs to warm both

engines, and report average performance over the next 5 runs. We

ensure that DB-X is operating in columnar mode and running from

memory. Our experiments vary the degree of parallelism (DOP) for

both engines from 2 to 32 (DB-X did not support a DOP of 1).

For temporal streaming and progressive queries, we compare Trill

against SPE-X, a commercial SPE that is based on the event-at-a-

time architecture and a temporal data model. While SPE-X can also

be used for relational queries, its performance is lower than both

Trill and DB-X by 2-4 orders of magnitude; hence we do not

include it in relational experiments. We compare Trill to SPE-X in

terms of throughput, memory, and latency for temporal queries.

Unless otherwise indicated, all systems use all the available cores

on our machine in the experimental results.

7.2 Temporal Stream Processing

7.2.1 Data Ingress
We measure the time it takes to load streaming data into the SPE

by executing a pass-through query that drops all tuples (to avoid

incurring an egress cost). We use the tokenized search log as input.

Loading is performed on a single thread to model real-time ingress.

We find that SPE-X can load data at 450K events/sec when the

events are pre-created in memory and loaded from an array. In Trill,

when the data is pre-loaded into memory in a columnar format, the

pass-through query takes trivial time (>1 billion events/sec); no

memory copies occur because only pointers to data-batch messages

flow through the query plan with no fine-grained work. When the

data is ingressed as individual in-memory row events from an array,

a conversion to our batched columnar data format is performed in

tight loops on-the-fly; here, a pass-through query runs in Trill at

140M events/sec when we ingress data using a single core.

7.2.2 Throughput Comparisons
We compare Trill’s throughput to SPE-X (on all cores) for several

stateless and stateful streaming operations: (1) filter (no matches);

(2) filter (all match); (3) project; (4) alter-lifetime (windowing); (5)

windowed count (W-Count) with a window size of 1 hour and hop

size of 10 minutes; (6) grouped windowed sum (G-W-Sum) with

QueryId as grouping key and the same window/hop size as before;

and (7) temporal join, where we find – for each user (join key) –

sequences where a user searches for a search term from set A

followed by a search term from set B within one hour (A and B are

non-overlapping sets of 25% of all terms in the dataset). We use the

time-ordered hash-tokenized pre-loaded search log (100M rows)

for these experiments, and fix query latency at 80K events per

punctuation. Figure 4(a) shows the results. We see that Trill is

between 2-4 orders of magnitude faster than SPE-X across the

range of queries, due to Trill’s superior architecture with features

such as columnar batching, generated operators with tight loops,

and fast memory-bandwidth-optimized algorithms.

7.2.3 Latency (varying punctuation frequency)
In Figure 4(b), we vary the latency (number of events between

punctuations) and measure its impact on throughput. As expected,

Trill is able to take advantage of higher latency by using larger data-

batch sizes, and performance increases significantly. Interestingly,

throughput drops for very large batch sizes because of the need to

make large memory allocations and the lower probability of batch

reuse with memory pools. We also show the throughput of SPE-X

for W-Count. SPE-X is mostly unaffected by latency since it does

not take advantage of batched data; in fact, for W-Count,

performance degrades due to the inability to clean up internal state

and data structures as frequently. Notably, even with a small

latency of 100 events per punctuation, Trill benefits significantly

from careful columnar batching, providing more than two orders-

of-magnitude performance gains over SPE-X for W-Count.

7.2.4 Window Size
We next experiment with Trill’s no-scheduler mode in Figure 4(c).

For fair comparison, we use SPE-X with only one scheduler thread.

We execute a windowed temporal join that correlates searches per

user, similar to the query from the previous experiment but looking

for searches within a window W. Figure 4(c) shows that the

performance falls as W increases because more items need to be

retained and joined within the window. Further, while SPE-X has

slightly lower memory utilization than Trill for very small W (since

it processes one event at a time), Trill uses lower memory when W

increases, as it benefits from batched data and sync-time ordering.

7.3 Relational Query Processing

7.3.1 Data Ingress
We compare loading costs for relational data stored in a row-

oriented CSV file. DB-X incurs higher loading costs since the data

needs to be loaded in a compressed columnar format. To measure

this, we use 100M rows of the SearchURL CSV log (11.6GB) and

load it into DB-X and Trill. The DB-X data loader is single-

threaded and takes 592.8secs of CPU time to load the data in

compressed form. Trill takes 179.6secs on a single thread for this

data. Trill also supports multi-threaded loading, which takes only

44.6secs. For a generated dataset with 600M rows (each with two

4-byte int columns) and size 12.8GB, DB-X takes 688secs whereas

Trill takes 356secs (single-thread) and 33secs (multi-threaded).

7.3.2 Relational Query Performance
Figure 5(a) shows the performance (using all cores) of Trill and

DB-X for simple operations such as filter, sum, count, and select

over GenData(600M, 20M, 150M). The Filter2 predicate is

identical to Filter1, except that Filter2 is pushed to the DB-X

storage layer, which explains why DB-X performance improves

significantly on Filter2. Overall, Trill performs comparably to DB-

X for these operations, faring up to 8X better in case of Filter1.

Figure 5(b) summarizes throughput for Trill and DB-X for

increasing DOP. The key take-away from this figure is that

performance is comparable, and both systems scale well (note that

both axes are log scale). We analyze performance in greater detail
in the next set of charts, described next.

Figure 5(c) shows Trill’s throughput normalized to DB-X, with

varying DOP. A value of 1 indicates that throughput of the two

engines is identical. We see that Trill has higher performance in all

cases (except Filter2, where DB-X is slightly better at low DOP).

We also notice that performance tends to converge at higher DOP

as both systems hit memory bandwidth limits.

Figure 5(d) shows Trill’s throughput normalized to DB-X for two

grouped aggregate queries (by C1 and C2) and an equi-join query

(on C1). When we aggregate over column C1, Trill leverages the

fact that it is sorted and avoids the shuffle, leading to better

performance. DB-X is better when we aggregate by C2, since Trill

needs to shuffle the data whereas DB-X uses a shared hash table to

perform the aggregation. Trill’s performance for equi-join is better

than DB-X, converging to 1 at DOP=32. Here, Trill leverages the

sort-order of C1 to avoid the shuffle and use a merge join (DB-X is

superior when Trill uses a shuffle with GCP). As future work, we

plan to investigate improving Trill’s shuffle performance and

leveraging shared data structures. We note that while shared data

structures are superior to shuffle, a shuffle would need to be

performed anyway when we need to process data across more than

one machine. Further, our techniques to avoid shuffle using sort

orders or input skew are applicable even in a multi-node setting.

7.3.3 Query Search, URL Logs, TPC-H LineItem
TermComparison We execute a real query (obtained from a data

scientist at Microsoft) that analyzes entities that users compare in

searches. We take the SearchURL log, look for searches that

contain “versus” or “vs” and use the left and right side substrings

as entities. We look up (join) each search phrase against the distinct

entities, and sum the total query clicks per entity.

Figure 6(a) shows the results. In DB-X, we use the substring

operation to compute a temp table for the entities (which is very

slow), whereas Trill’s support for HLL strings and SelectMany

(where one row is converted into zero or more rows by a user-

defined function) makes this 10X faster. Trill’s join (we use an

asymmetric hash join) was slightly faster than DB-X in this case.

TopCorrelated We execute another real query: given a parameter

P (“vegas”), compute for each word W in the search log, the ratio

of (a) number of distinct users who searched for both W and P; and

(b) total number of distinct users who searched for W. This query

allows analysts to determine the search terms closely correlated to

P, and helps in ad selection/pricing.

The first step is to create a table of (user, word) pairs by splitting

search phrases from the log by the space delimiter. Unfortunately,

databases are inefficient at split (by more than 10X) since it has to

be implemented as a UDF (SQL does not natively support Split or

SelectMany). Trill performs the split in 2.6secs (we do not use

0.1 1 10 100 1000

Temporal Join

Grouped Sum (window)

Count (window)

AlterLifetime

Project

Select (all)

Select (none)

Throughput (x 1 million events/sec)

SPE-X (multi-core)
Trill (1 core)
Trill (multi-core)

0.1

1

10

100

1000

10000

10 100 1000 10000 100000 1000000

T
h

ro
u

g
h

p
u

t
(x

 1
 m

ill
io

n
 e

v
/s

e
c
)

Latency (elements per batch)

Select (Trill) W-Count (Trill)
Temporal Join (Trill) G-W-Sum (Trill)
W-Count (SPE-X)

0

200

400

600

800

1000

1200

1400

0

1

2

3

4

5

1 10 60 100 300 600 1000 1440

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

T
h

ro
u

g
h

p
u

t
(x

 1
 m

ill
io

n
)

e
v
/s

e
c

Window Size (minutes)

Trill (throughput)
SPE-X (throughput)
Trill (memory)
SPE-X (memory)

Figure 4: Trill vs. SPE-X: (a) Throughput; (b) Latency vs. Throughput; (c) Single-core temporal join; varying window size.

0

500

1000

1500

2000

2500

3000

Filter1
(C2)

Filter2
(C2)

Sum
(C2)

Sum
(C1)

Count Select
(C2) +
Filter

Trill DB-X

T
h

ro
u

g
h

p
u

t
(x

 1
 m

ill
io

n
 r

o
w

s
/s

e
c
)

1

100

10000

2 4 8 16 32T
h

ro
u

g
h

p
u

t
(M

 r
o

w
/s

e
c
)

Degree of parallelism (#threads)
Trill: Filter2 (C2) DB-X: Filter2 (C2)
Trill: Sum (C1) DB-X: Sum (C1)
Trill: Select (C2) DB-X: Select (C2)
Trill: G-Agg (C1) DB-X: G-Agg (C1)
Trill: Equi-Join (C1) DB-X: Equi-Join (C1)

0.125

0.25

0.5

1

2

4

8

2 4 8 16 32

T
ri
ll

T
h
ro

u
g

h
p
u
t
(N

o
rm

a
liz

e
d
)

Degree of Parallelism (# threads)

Filter1 (C2) Filter2 (C2)
Sum (C2) Sum (C1)
Count Select (C2)

0.125

0.25

0.5

1

2

4

8

2 4 8 16 32

T
ri
ll

T
h
ro

u
g

h
p
u
t
(N

o
rm

a
liz

e
d
)

Degree of Parallelism (# threads)

G-Agg (C1)

G-Agg (C2)

Equi-Join (C1)

Figure 5: Trill vs. DB-X: (a) Simple queries (DOP=32); (b) Scale-out summary; increasing DOP; (c) Trill throughput (normalized

to DB-X); increasing DOP for filter, select, aggregate; (d) Trill throughput (normalized) for grouped-agg & equi-join.

MultiStrings in this query; they are evaluated in Section 7.5),

producing ~31M tokenized results. Figure 6(a) shows performance

for the rest of the query pipeline not including split, where we see

that Trill is slightly faster (up to 2X at DOP=2).

TPC-H Lineitem Figure 6(a) compares Trill against DB-X for

TPC-H Q1 which computes 8 grouped-aggregates (we elide the

filter on ship-date from Q1). Trill sprays data and uses a hash-table

per core with a final aggregation, whereas DB-X uses a shared hash

table; we see that performance is close (within 50% at worst).

7.4 Progressive Query Processing
We use the search log query and execute a query that computes the

popularity of search terms in the dataset. We vary progressiveness

in terms of number of result sets produced (or report at every X%

of the dataset), and plot Trill’s total execution time in Figure 6(b),

as well as time to produce the first result. With one result set, the

query produces its result only at the end of the query. We see that

increasing progressiveness for this query has a slight impact

(~15%) on total execution time, but significantly reduces the time

(by 10X) to produce the first result set. A study of progressiveness

using a commercial SPE can be found in our recent work [2].

7.5 Code Generation, Strings, Serialization
Code Generation We measured the cost of dynamic code

generation in Trill. On average, we found compilation to take

~75ms per generated operator, and other work such as expression

transformation and assembly loading to take <50ms per operator.

We aggressively cache the compiled type definitions, and can also

parallelize code generation if necessary (see [23] for details)

String Processing We use the SearchLog dataset with 100M

rows, containing 4GB of Unicode search phrases, and execute

string operations in Trill and DB-X (with columnar string field). In

case of DB-X, we report results for both varchar (one byte per

character) and nvarchar (Unicode with 2-byte characters). Trill uses

only Unicode strings. We experiment with (1) string containment

for “free”; (2) equals for “vegas”; (3) starts with “free”; (4) ends

with “download”; (5) regular expression “%free%download%”;

and (6) offset of substring for “vegas”. Trill uses the MultiString

format described in Section 4.2.2 to store string columns. We see

from Figure 6(c) that Trill (Unicode) is up to 5X faster than DB-X

(non-Unicode) and up to 30X faster than DB-X (Unicode).

Pavlo et al. [27] report benchmark results that show Vertica and

DBMS-X performing “grep” at around 60MB/sec on one node

(Hadoop was 2X slower at 25MB/sec) on a 2.4GHz Core 2 Duo

processor. Newer results from [28] indicate that Shark (Hive on

Spark) executes grep at ~833MB/sec per node (machine specs not

mentioned) on memory-resident data. In contrast, grep in Trill

operates at 7.2GB/sec on Unicode strings, on our 16-core machine.

Serialization Figure 6(d) compares Avro [19] to Trillium (cf.

Section 4.2.1) for a stream of payloads with two 8-byte fields. To

avoid the disk bottleneck, we use a memory stream for these

experiments. We see that Trillium is around 15X faster, due to the

columnar format of Trill data which allows it to avoid fine-grained

encoding and decoding. Further, when processing streaming data

(that is dropped immediately in this experiment), Trillium is 20X

faster than Avro – the speedup beyond 15X is due to memory

pooling, which can reuse the streaming data-batch column arrays.

7.6 Current Usage Scenarios
We describe how Trill is being used today; these scenarios serve to

illustrate how performance, fabric and language integration, and
query model enabled Trill to support a diverse range of use cases.

1) Orleans-hosted real-time: Orleans [16] is a programming model

and fabric that enables low-latency (in milliseconds) distributed

streaming computations with units of work called grains. Orleans

owns threads and manages distribution. Thus, users use Trill as a

pure library (using its no-thread mode) to express temporal
streaming queries as part of their Orleans grain code.

2) Analytics within SCOPE: SCOPE [20] is a map-reduce platform

for query processing that allows arbitrary .NET code as custom

reducers. As with Orleans, SCOPE owns threads and schedules

reducer code; thus, users embed Trill as a no-thread library within

their reducers in order to perform temporal analytics [1] over search

data such as clicks, impressions, and page views. Another such

fabric used with Trill is REEF [18], which is built on YARN [17].

3) Monitoring Server: Trill is used to monitor system logs

generated by machines in a data center, and visualize real-time

performance. Here, Trill is used as a server that processes data from
multiple sources in close to real-time (several seconds of latency).

4) Trace Log Analysis Tools: A large number of time-oriented

traces are generated by applications and operating systems. Trill is

used as part of stand-alone tools and Cloud services, to allow users
to analyze such traces, for example, to detect anomalies or patterns.

5) Back-end for Analytics: Tempe (formerly called Stat! [5]) is a

Web-based interactive analytics environment that allows users to

author queries and visualize results progressively. It uses Trill as a

back-end server to run temporal and progressive relational queries.

8. RELATED WORK
Streaming Engines Starting with the seminal work of STREAM

[30] and Borealis [10], there now exist many SPEs; both from

research (e.g., NiagaraST [9], Nile [11], Naiad [35]) and industry

(e.g., StreamInsight [8], Storm [29], Reactive [4], MillWheel [38]).

A comparison of such systems was covered in Table 1 (Section 1).

Spark Streaming only targets multi-second latencies and coarsens

time for performance, but ties system batching to application time

and query semantics: for example, a 1-sec hopping window

0.0625

0.125

0.25

0.5

1

2

4

8

16

2 4 8 16 32

T
ri
ll

T
h
ro

u
g

h
p
u
t
(N

o
rm

a
liz

e
d
)

Degree of Parallelism (# threads)

TermComparison

TopCorrelated

TPCH-Q1

0

2

4

6

8

10

12

14

1
(100%)

5 (20%) 10
(10%)

20 (5%) 50 (2%)

T
im

e
 T

a
k
e

n
 (

s
e

c
o

n
d

s
)

#progress reports (report every X% of
data)

Total execution time

Time to first result

0
2
4
6
8

10
12
14
16
18
20

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

Trill (unicode)

DB-X (non-uni)

DB-X (unicode)

1

10

100

1000

10000

Serialize Deserialize
(cache)

Deserialize
(stream)

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Trillium

Avro

Figure 6: (a) Normalized performance; real search/URL & TPC-H data; (b) Effect of progressiveness in Trill; (c) Performance

over strings; (d) Serialization rate: Trillium vs. Avro.

aggregate forces 1-sec batches, even when executing on an offline

log. DataCell [37] follows a different architecture of augmenting a

DBMS to support incremental stream processing, but this system

provides significantly lower throughputs than Trill and lacks fabric

and language integration. In contrast, Trill’s library-based hybrid

architecture achieves all the features outlined in Table 1.

Traditional Databases Modern DBMSs leverage techniques such

as columnar organization, compression, and SIMD processing for

high performance [6][12][14][25]. As depicted in Table 1, DBMSs

do not offer rich fabric or language integration, do not handle real-

time or temporal analytics, and make choices that favor their

particular design point. For example, databases are non-

incremental and spend significant time reordering and compressing

data. In contrast, Trill provides high performance across the

spectrum by processing a stream of varying-sized columnar batches

with single-pass algorithms and no compression. Trill also exploits

pre-existing sort orders (if any). That said, enabling lightweight

online compression schemes is part of our future work. Trill uses

temporal operators for relational queries, with timestamps used for

scheduling. For example, Trill’s symmetric hash join turns into an

asymmetric relational join if we set the build side to have lower

timestamps than the probe side. Finally, unlike most DBMSs, Trill

is a library that provides deep fabric and language integration.

Big Data Systems Multiple big data analytics systems have been

proposed over the last several years. Map-Reduce was one of the

first such systems, and is still popular for non-incremental analytics

on disk-based data. Phoenix++ [7] is a variant of map-reduce for

in-memory analytics; unlike Trill, it is neither temporal nor

streaming, and exposes a low-level key-value API. YARN [17] and

REEF [18] generalize Hadoop to a distributed resource manager.

Storm is a streaming analytics framework that can potentially

embed Trill within its bolts. Spark [28] provides a resilient

distributed dataset abstraction over which users can write

transformations. BlinkDB [33] supports interactive queries over

Spark. S-STORE [39] integrates low-latency streaming with OLTP

analytics, which is complementary to our goal of high-performance

temporal analytics across a wide latency spectrum. Trill, in contrast

to these platforms, is a library-based temporal engine that pushes

the envelope of performance for a wide range of analytics, and can

be embedded within scale-out fabrics. Some comparisons with

benchmark results for these systems are given in Section 7.

9. CONCLUSIONS
Trill is a new query processor that fulfills three requirements for an

engine to serve the diverse big data analytics space: (1) Query

Model: Trill is based on a tempo-relational model that enables it to

handle streaming and relational queries with early results across the

latency spectrum from real-time to offline; (2) Fabric and

Language Integration: Trill is architected as a high-level language

library that supports rich data-types and user libraries, and

integrates well with existing distribution fabrics and applications;

and (3) Performance: Trill’s throughput is high across the latency

spectrum. For streaming data, Trill’s throughput is 2-4 orders of

magnitude higher than comparable SPEs. For relational queries,

Trill’s throughput is comparable to a modern commercial columnar

DBMS. This paper describes and experimentally validates Trill’s

new hybrid system architecture and design that has enabled the

above combination of features, and has resulted in Trill’s usage as
a library within Microsoft across a number of fabrics and scenarios.

Acknowledgments We would like to thank Eldar Akchurin,

Andrei Aron, Paul Larson, David Maier, Colin Meek, Olivier Nano,

Ivo Santos, Peter Zabback, and the anonymous reviewers for their
detailed comments, help, and support.

REFERENCES

[1] Badrish Chandramouli, Jonathan Goldstein, Songyun Duan. Temporal
Analytics on Big Data for Web advertising. In ICDE, 2012.

[2] Badrish Chandramouli, Jonathan Goldstein, Abdul Quamar. Scalable
Progressive Analytics on Big Data in the Cloud. In VLDB, 2014.

[3] R. Barga et al. Consistent Streaming Through Time: A Vision for
Event Stream Processing. In CIDR, 2007.

[4] Reactive Extensions for .NET. http://aka.ms/rx.

[5] M. Barnett et al. Stat! - An Interactive Analytics Environment for Big
Data. In SIGMOD, 2013.

[6] P. Larson et al. Enhancements to SQL Server Column Stores. In
VLDB, 2013.

[7] J. Talbot et al. Phoenix++: Modular MapReduce for Shared-Memory
Systems. In Intl. Workshop on MapReduce and its Applications, 2011.

[8] Microsoft StreamInsight. http://aka.ms/stream.

[9] D. Maier, J. Li, P. Tucker, K. Tufte, V. Papadimos: Semantics of Data
Streams and Operators. ICDT 2005: 37-52.

[10] D. Abadi et al. The design of the Borealis stream processing engine.

In CIDR, 2005.
[11] M. Hammad et al.: Nile: A Query Processing Engine for Data Streams.

ICDE 2004: 851.

[12] Actian Vectorwise DBMS. http://www.actian.com/.

[13] H. Lim et al. How to fit when no one size fits. In CIDR, 2013.

[14] Vertica. http://www.vertica.com/.

[15] B. Chandramouli et al. Accurate Latency Estimation in a Distributed
Event Processing System. In ICDE, 2011.

[16] P. Bernstein et al. Orleans: Distributed Virtual Actors for
Programmability and Scalability. MSR Technical Report (MSR-TR-
2014-41, 24). http://aka.ms/Ykyqft.

[17] Apache Hadoop 2.3.0 (YARN). http://aka.ms/Quslzk.

[18] B. Chun et al. REEF: Retainable Evaluator Execution Framework.
PVLDB 6(12): 1370-1373 (2013).

[19] Microsoft Avro Library. http://aka.ms/Nxbdwg.

[20] R. Chaiken et al. SCOPE: easy and efficient parallel processing of
massive data sets. PVLDB, 1(2), 2008.

[21] Expression Trees. http://aka.ms/K0fzli.

[22] D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing (1977).

[23] B. Chandramouli et al. The Trill Incremental Analytics Engine.
Microsoft Research Technical Report MSR-TR-2014-54, April 2014.
http://aka.ms/trill-tr.

[24] M. Stonebraker et al. C-Store – A Column-Oriented DBMS. In
VLDB, 2005.

[25] P. A. Boncz, M. Zukowski, and N.Nes, MonetDB/X100: Hyper-
pipelining query execution. CIDR, 2005, 225-237.

[26] M.-C. Albutiu et al. Massively parallel sort-merge joins in main
memory multi-core database systems. In VLDB, 2012.

[27] A. Pavlo et al. A comparison of approaches to large-scale data
analysis. In SIGMOD, 2009.

[28] C. Engle et al. Shark: Fast Data Analysis Using Coarse-grained
Distributed Memory. In SIGMOD, 2012.

[29] Apache Storm. http://storm.incubator.apache.org/.

[30] B. Babcock et al. Models and issues in data stream systems. In PODS
2002.

[31] C. Jensen et al. Temporal Specialization. In ICDE, 1992.

[32] The LINQ Project. http://aka.ms/rjhi00.

[33] BlinkDB. http://blinkdb.org/.

[34] M. Zaharia et al. Discretized Streams: Fault-Tolerant Streaming
Computation at Scale. In SOSP, 2013.

[35] D. Murray et al. Naiad: A Timely Dataflow System. In SOSP, 2013.

[36] SQL Server CLR integration. http://aka.ms/Bbtg44.

[37] E. Liarou et al. Enhanced Stream Processing in a DBMS Kernel. In

EDBT, 2013.

[38] T. Akidau et al. MillWheel: Fault-Tolerant Stream Processing at
Internet Scale. In VLDB, 2013.

[39] U. Cetintemel et al. S-Store: A Streaming NewSQL System for Big
Velocity Applications. In VLDB, 2014.

