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Abstract 
Volcano 1s a new dataflow query processmg system we have developed for database systems research and educauon 

The umform Interface between operators makes Volcano extenstble by new operators All operators are designed and coded as 
d they were meant for a smgle-process system only When attemptmg to parallelue Volcano, we had to choose between two 
models of parallchzatlon, called here the h&t and operufor models We descnbe the reasons for not choosmg the bracket 
model. maoduce the novel operator model. and provtde detatls of Volcano’s uchunge operator that parallehzes all other opcra- 
tors It allows mtra-operator paralleltsm on parttttoned datasets and both verhcal and horuontal mtersperator parallehsm The 
exchange operator encapsulates all parallehsm tssues and therefore makes tmplementatton of parallel database algonthms slgmfi- 
candy easier and more robust. Included m tlus encapsulatton 1s the translation between demand-driven dataflow w&m 
processes and data-driven datailow between processes Smce the m&ace between Volcano operators IS stmtlar to the one 
used m “real.” commercial systems. the techniques dcscrtbed here can be used to parallehze other query processmg engmes 

1. Introduction 
In order to provtde a testbed for database systems 

educatton and research, we decoded to unplement an extenst- 
ble and modular query processmg system One important 
goal was to a&eve flextbtltty and extenstbthty without sac- 
nficmg efftciency The result is a small system, conststmg 
of less than two dozen core modules with a total of about 
15,000 lmes of C code These modules mclude a file sys- 
tem, buffer managemenk sortmg. topdown B*-trees. and 
two algonthms each for natural JOUI. semt-Jotn. outer Jam, 
anti-Jam. aggregatton. duplicate ehmmatlon, dtvtston, union. 
mtersection, difference, antt-dtfference. and Cartesum pro- 
duct Moreover, a smgle module allows parallel processmg 
of all algonthms listed above 

The last module, called the exchange module, 1s the 
focus of thts paper It was designed and unplemented after 
most of the other query processing modules The design 
goal was to parallclize all exlstmg query processtng algo- 
nthms w1h0ut modtfytng thetr unplementauons 
Equtvalcntly. the goal was to allow parallcltzmg new algo- 
nthms not yet mvented wnhout requtnng that these algo- 
nthms be implemented with concern for parallehsm ThlS 

goal was met almost enurely, the only change to the extst- 
mg modules concemcd device names and numbers to allow 
honzontal partltlonmg over multtple disks. also called disk 
stnpmg (251 

Parallchzmg a query evaluation engme usmg an 
operator IS a novel rdea earlier research proJecls used 
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template processes that encompass spectfic operators We 
call the new method of parallehzmg the operator model In 
th.~s paper. we desmbe tlus new method and contrast II 
wtth the method used m GAMMA and Bubba, which we 
call the brucket model Stnce we developed, unplemented, 
and tested the operator model wrthm the framework of the 
Volcano system, we will describe it as reahzed m Volcano 

Volcano was destgned to be extensible, its design and 
tmplementatton follows many of the ideas outlmed by 
Batoty et al for the GENESIS design [5] In thts paper, 
we do not focus on or substantiate the clatm to extenstblhty 
and mstead refer the reader to [17], suffice it to pomt out 
that tf new operators use and provtde Volcano’s standard 
interface between operators, they can easily be included tn a 
Volcano query evaluation plan and paralleltzed by the 
exchange operator 

Volcano’s mechantsm to synchronize mullrple opcra- 
tars 111 complex query trees wtthm a smgle process and to 
exchange data items between operators are very stmtlar to 
many commerctal database systems. e g, Ingrcs and the 
System R family of database systems Thcrcforc. It seems 
fatrly stralghtfonvard to apply the tcchntques developed for 
Volcano’s exchange operator and outhned m thus papr to 
parallehze the query proccssmg engines of such systems 

This paper 1s organized as follows In the followmg 
section, WC bncfly review prcvlous work that mflucnccd our 
design. and mtmducc the brucker model of parallchzauon 
In Section 3. we provtde a more dctulcd descnptlon of 
volcano The operator model of parallchzatlon and 
Volcano’s ,CY&WI~C operator are descrlbcd in Sccuon 4 
We present expcnmental performance mcasurcments m See- 
tlon 5 &tat show the exchange operator’s low ovcrhcd 
Section 6 conta~ a summary and our conclustons from this 
effort. 
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2. Previous Work 
Smcc so many different system have been developed 

to process large dataset efficiently. we only survey the sys- 
tems that have strongly mflucnced the design of Volcano 

At the start III 1987. we felt that some dcclslons III 
WISS [ 111 and GAMMA [ 121 were not optunal for perfor- 
mance or gencrallty For mstance, the dcclslons to protect 
W&S’s butfcr space by copyang a data record m or out for 
each request and to re-request a buffer page for every 
record dunng a scan seemed to mfhct too much overhead’ 
However. many of the design decisions III Volcano were 
saongly mfluenced by expenences WIIJI WISS and 
GAMMA The design of the data exchange mechamsm 
between operators, the focus of tfus paper, 1s one of the 
few radical departures from GAMMA’s design 

Dunng the design of the EXODUS storage manager 
[lo], many of these tssues were revIsited lAssons learned 
and tradeoffs explored m these discussions certamly helped 
form the ideas behmd Volcano ‘Ihe development of E [24] 
utfiuenced the strong emphasu on lterators for query pro- 
cesslng The design of GENESIS (51 emphasued the 
tmportance of a urufonn iterator mterface 

Fmally, a number of conventional (relabonal) and 
extensible systems have mfluenced our dealgn Without 

futther dlscusnon. we mentton Ingres [27]. System R (31, 
Bubba [2). Starburst [26], Postgres 1281, and XPRS [29] 
Furthermore, there has been a large amount of research and 
development m the database machme area, such that there 
IS an mtematlonal workshop on the topic Almost ail data- 
base machme proposals and tmplementauons uttlue parailel- 
srn m some form We certamly have learned from tJus 
work and tried to mclude us leasons m the design and 
unplementatlon of Volcano In parttcular. we have strived 
for sunphclty in the design, mech411LFms that can support a 
mulutude of polures, and efficiency m ail detzuls We 
beheve that the query execution engme should prov& 
mechamsms. and that the query optmuzer should mcorporate 
and decide on pohcles 

Indepcndcntly of our work, Tandem Computers has 
des~grted an operator called the prwuilel operator which IS 
very smular to Volcano’s exchange operator It haa proven 
useful III Tandem’s query execuuon engmc [14], but IS not 
yet documented m the open hterature We learned about 
ttus operator through one of the referees Furthermore, the 
dtstnbuted database system R* used a techmque sumlar to 
ours to transfer data between nodes [31] However, this 
operatton was used only to effect data transfer and did not 
support data or mtra-operator paralleltsm 

2.1. The Bracket Model of Parallelization 
When attcmptmg to parallchze exlstmg smglc-process 

Volcano software, we considered two paradigms or models 
of parallchzatlon The first on+ which we call the bracket 
nwdel, has been used m a number of systems, for example 
GAMMA [12] and Bubba [2] The second one, which we 
call the operafor model. IS novel and IS described m dctal 
tn Sectton 4 

’ This statement only pertams to the ongmal version of 
WISS as dcscnbcd m [ 1 I] Both decls~ons were rcconsldcred for 
the version of WISS used m GAMMA 

Figure 1 Bracket Model of Paralleliion. 

In the bracket model, there 1s a genenc process tern- 
plate that can receive and send data and can execute 
exactly one operator at any pomt of tune A schematic 
chagnun of such a template process IS shown m Figure 1 
wth two possible operators, ~otn and aggregatton The 
code that makes up the genenc template mvokes the opera- 
tor whch then controls execution, network I/O on the 
recewng and sendmg sides are performed as service to the 
operator on requaf tmplemented as procedures to be called 
by the opaator. The number of mpuu that can be acuve 
at any point of Ume 1s llrmted to two smce there are only 
unary and bmary operators UI most database systems The 
operator 1s surrounded by generic tanplate code which 
stue1d.s It from tts envuonmmt for example Ihe operator(s) 
that poduce its mput and consume ns output. 

One problem w& the bracket model IS that each 
locus of control needs to be created Thlz IS typically done 
by a separate scheduler process. requulng s&ware dcvelop- 
ment beyond the actual operators, both uuually and for each 
extension to the set of query processing algonthms Thus. 
the bracket model seems unsmtable for an extensible sys- 
tem 

In a query proceasmg system usmg the bracket 
model, operators are coded in such a way that network Vo 
IS theu only means of obtammg mput and dehvcnng output 
(with the cxceplion of scan and store operators) The rea- 
son IS that each operator ui its own locus of control and 
network flow control must be used to coordmate muluplc 
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operators, e g , to match two operators’ speed m a 
producer-consumer relauonsiup Unfortunately. tlus also 
means that passmg a data ttem from one operator to 
another always mvolves expenstve utter-process cormmm~ca- 
uon (IPC) system calls, even m the cases when an cntue 
query 1s evaluated on a smgle machme (and could therefore 
be evaluated wuhout IPC 1~1 a smgle process) or when data 
do not need to be repartmoned among nodes m a network 
An example for the latter 1s the three-way ~oln query 
“~oL”Cse!AsclB” m the W~sconsm Benchmark [6.9] whtch 
uses the same loin attnbute for both two-way JOUIS ThUS, 

m queries wrth multtple operators (meanmg almost all 
quenes). IPC and us overhead are mandatory rather than 
optional 

In most (smgle-process) query processmg engmes. 
operators schedule each other much more efficiently by 
means of procedure calls rather the system calls The con- 
cepts and methods needed for operators to schedule each 
other usmg procedure calls are the sublect of the next sec- 
uon 

3. Volcano System Design 
In this sectton, we provrde an overvtew of the 

modules m Volcano Volcano’s file system IS rather con- 
venuonal It mcludes a modules to manage devtces, buffer 
pools, files. records, and B+-treea For a detaried ducus- 
sron, we refer to [17] 

The file system routmes are used by the query pro- 
cessing routmes to evaluate complex query plans Quenes 
are expressed as complex algebra expresstons, the operators 
of tlus algebra are query proceasutg aigonthms All algebra 
operators are tmplemented as lrerators, I e, they support a 
sunpie open-next-close protocol sun&r to conventtonal ftie 
scam 

Associated w~tit each aigonthm 1s a state record 
The arguments for the aigonthms are kept m the state 
record All operattons on records, e g, compansons and 
hashmg, are performed by support funcfm~~ whtch are given 
m the state records as arguments to the rterators Thus, the 
query processing modules could be unplemented wuhout 
knowledge or constratnt on the mtemai SUUCNre of data 
obJec& 

In qucnes mvolvmg more than one operator (I e, 
almost all quenes), state records are lmked together by 
means of tnpw pomters The mput potmers are also kept 
m the state records They are pomters to a QEP StNcNre 
that conststs of four pomters to the entry potnts of the 
three procedures unplementmg the operator (open, next, and 
close) and a state record AU state mformatton for an 
tterator 1s kept m IU state record, thus. an aigornhm may 
be used multtple ttmes m a query by mcludmg more than 
one state record m the query An operator does not need 
to know what ktnd of operator produces ns mput, and 
whether tts mput comes from a complex query tree or from 
a stmple file scan We call thts concept anonymous inputs 
or streums Streams are a sunpie but powerful abstractton 
that allows combmmg any number of operators to evaluate 
a complex query Together wn.h the tterator control para- 
digm. streams represent the most efficient executton model 
m terms of umc (overhead for synchroruvng operators) and 
space (number of records that must resrde tn memory at 
any pomt of time) for smgle process query evaluatton 

Callmg open for the top-most operator results in 
instanhations for the associated sutc record, e g, allocatton 
of a hash table, and m open calls for all mputs In thlS 

way, all itcrators m a query are inmated rccursivcly In 
order to process the query. tte.xt for the top-most operator IS 
called repeatedly unttl it falls wnh an end of stream mdtca- 
tor Fmally, the cfose call recurstvely “shuts down” all 
iterators m the query Ths model of query execution 
matches very closely the one bemg mcluded m the E pro- 
grammtng language design [24] and the aigebratc query 
evaiuatron system of the Starburst extenstble relauonai data- 
base system [22] 

The tree-structured query evaluauon plan ts used to 
execute quertes by demand-driven dataflow The return 
value of nexf is. besides a staNs value, a struct~e called 
NEXT-RECORD that consists of a record tdenufter and a 
record address m the buffer pool Thts record 1s punted 
(fixed) m the buffer The protocol about flxmg and unflx- 
mg records 1s as follows Each record pmned m the buffer 
IS owned by exactly one operator at any pomt m tune 
After recetvmg a record, the operator can hold on to tt for 
a wtule. e g , m a hash table, unfix tt, e g , when a predt- 
cate fails, or pass it on to the next operator Complex 
operattons like pm that create new records have to fix 
them m the buffer before passmg them on, and have to 
unfix their mput records 

For mtermedtate results, Volcano uses vlrtuai devcces 
Pages of such a device extst only m the buffer, and are 
drscarded when unfixed. Usmg thts mecharusm allows 
aasrgnmg umque RID’s to mterrnedtate result records, and 
aliows managmg such records m all operators as if they 
resided on a real (dtsk) devtce The operaton are not 
affected by the ua of vntuai devtces, and can be pro- 
grammed as rf all mput comes from a dtsk-restdent file and 
output 1s wntten to a dtak file 

4. The Operator Model of Parallelization 
When portmg Volcano to a multi-processor machme, 

we felt tt destrabie to use the smgle-process query process- 
mg code described above mt!touf any chMge The result IS 
very clean, self-schedulmg parallel processmg We call this 
novel approach the operator model of paralleitzmg a query 
evaiuatron engme In thts model, ail tssues of control are 
locahxed m one operator that uses and provtdcs the standard 
tterator mterface to the operators above and below m a 
query tree 

The module responsible for parallel cxecutton and 
synchroruzatton is called the exchange iterator m Volcano 
Nouce that rt IS an uerator wtth open, next. and close pro- 
cedures, therefore, it can be mscrtcd at any one place or at 
muittple places m a complex query tree Figure 2 shows a 
complex query executton plan that mcludcs data proccssmg 
operators, e g file scan and lam. and exchange operators 

Thts secuon describes how the exchange tterator 
tmpiements verucal and honzontal parallcltsm followed by a 
detatied example and a dtscusston of altemattve modes of 
operation of Volcano’s exchange operator 
4.1. Vertical Parallelism 

The first funcuon of exchange 1s to provtdc verfccaf 
pwaNehm or prpelmmg between processes The open pro- 
cedure creates a new process after crcatmg a data structure 
m shared memory called a port for synchroruzauon and data 
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exchange The chtid process, created ustng the UNIX fork 
system cali. 1s an exact dupircate of the parent process 
The exchange operator then takes dtfferent paths m the 
parent and child processes 

The parent process serves as the cotwmer and the 
child process as the producer m Volcano. The exchange 
operator m the consumer process acts as a normal iterator. 
the only difference from other tterators IS that tt recetves tts 
mput via mter-process commumcatmn rather than tterator 
(procedure) calls After creatmg the chtld process, 
open-exchange m the consumer 1s done Nexs-exchange 
wmts for data to arrive vta the port and reNms them a 
record at a tune Close_exchangc mforms the Producer that 
It can close. watta for an acknowiedgement, and reNma 

The exchange operator m the producer process 
becomes the drnter for the query tree below the exchange 
operator ustng open, next. and close on us mput The out- 
put of m IS collected m packets. wiuch are arrays of 
NEXT-RECORD SttucNres The packet stze 1s art argument 
m the exchange tterator’s state record. and can be set 
between 1 and 32,000 records When a packet IS filled, tt 

IS trtsertcd mto a lmked list ongmatmg tn the port and a 
semaphore ts used to mform the consumer bout the new 
packet. Records m packets are fixed m the shared buffer 
and must be unfixed by a consummg operator 

When tts mput 1s exhausted, the exchange operator m 
the producer process marks the last packet wuh an end-of- 
stream tag. passes tt to the consumer, and watts unul the 
consumer allows closmg all open flies Thu delay is 
necessary m Volcano because files on vutual dcvtces must 
not be closed before ali then records are unpmned m the 
buffer In other words. tt 1s a peculranty due to other 
design dectstons m Volcano rather than inherent ut the 
exchange tterator or the operator model of paraileltzauon 

The aiert reader has noticed that the exchange module 
uses a different dataflow paradigm than ail other operators 
Whtle all other modules are based on demand-drnen 
datatiow (uerators, lazy evaluauon). the producer-consumer 
relationship of exchange uses data-driven dataflow (eager 
evaluauon) There are two reasona for thts change m para- 
digms FUSS we mtend to use the exchange operator also 
for hortzontal pwailelrrm. to be described below, wluch 1s 
easier to implement with datadnven dataflow, Second, thts 
scheme removes the need for request messages Even 
though a scheme wtth request messages, eg, usmg a sema- 
phore, would probably perform acceptably on a shared- 
memory machme, we felt that tt creates unnecessary control 
overhead and delays Smce we belteve that very htgh 
degrees of parailel~sm and very htgh-performance query 
evaiuatton requtre a closely tted network, e g, a hypercube. 
of shared-memory machmes, we decrded to use a paradigm 
for data exchange that has has been proven to perform well 
ut a shared-nothmg database maclune [G&13] 

A run-tune switch of exchange enables flow control 
or bock pressure using an addttmrtai semaphore If the pro- 
ducer 1s stgruficantiy faster than the consumer. the producer 
may pm a slgtulicant portion of the buffer, thus tmpedmg 
overali system performance If flow control IS enabled, 
after a producer has mserted a new packet mto the port, tt 
must request the flow control semaphore After a consumer 
has removed a packet from the pea tt releases the flow 
control semaphore The mtttal value of the flow control 
semaphore, eg, 4. determutes how many packets the pro- 
ducers may get ahead of the consumers 

Notice that flow control and demand-driven datafiow 
are not the same One stgmiicant difference IS that flow 
control allows some “slack” m the synchronizauon of pro- 
ducer and consumer and therefore truly overlapped execu- 
tton, while demanddnven dataflow IS a rather ngtd stntc- 
ture of request and delivery m which the consumer watts 
whtle the producer works on tts next output The second 
stgmficant difference IS that data-dnven dataflow IS caSter to 
combme effictcntiy wuh honzontal parallehsm and parutton- 
l*g 
4.2. Horizontal Parallelism 

There are two forms of honzontal parallchsm which 
we call bushy pwallehsm and mtra-operator parallcltsm In 
bushy paralleitsm. different CPU’s execute dtffcrcnt subtrees 
of a complex query tree Bushy parallchsm and vcrtxa! 
paraiieitsm are forms of Wer-operator parallelism Intra- 
operator paralieltsm means that several CPU’s perform the 
same operator on different subsets of a stored datasct or an 
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mterrnediatc result’ 

Bushy parallelism can easily be tmplemented by 
msertmg one or two exchange operators mto a query tree 
For example. UI order to sort two mputs mto a mage-Jam 

m parallel the first or both inputs are separated from the 
merge-Join by an exchange operation’ The parent process 
turns to the second sort unmedrately after forkmg the child 
process that will produce the first input m sorted order 
Thus, the t%o sort operauons are workmg m parallel 

Intra-operator parallelism requues data parttuonmg 
Partttlonlng of stored datasets IS achieved by using muluple 
files, preferably on dfferent devices Partltlorung of mter- 
mediate results 1s unplemented by mcludmg mulbple queues 
III a port If there are multiple consumer processes, each 
uses ~rs own mput queue The producers use a support 
function to decide mto wtuch of the queues (or actually. 
mto which of the packets bemg filled by the producer) an 
output record must go Usmg a support hmctlon allows 
unplernentmg round-robm-, key-range-, or hash-partltlonmg 

If an operator or an operator subtree 1s executed m 
parallel by a group of processes, one of them LS designated 
the master When a query tree 1s opened, only one process 
1s runrung, wtuch 1s naturally the master When a master 
forks a child process tn a producer-consumer relatlonshlp. 
the ciuld process becomes the master w&m its group The 
fmt action of the master producer 1s to determute how 
many slaves are needed by callmg an appropnate support 
function If the producer operatton 1s to run m parallel, the 
master producer forks the other producer processes 

Gerber pointed out that such a cenaahzed scheme 1s 
suboptunal for high degrees of parallehsm [IS] When we 
changed our uutlal unplementatlon from forlung all producer 
processes by the master to usmg a propagatwn tree scheme, 
we observed slgmftcant performance unpmvements In such 
a scheme, the master forks one slave, then both fork a new 
slave each, then all four fork a new slave each, etc ThlS 
scheme has been used very effectively for broadcast com- 
mumcation and synchroruzauon III bmary hypercubes 

Even after optmuzmg the forkmg scheme, its over- 
head IS not neghgtble We have considered usmg primed 
processes, i e, processes that are always present and wut 
for work packcls Primed processes arc used m many com- 
mercial database systems Smce portable dlstnbutlon of 
complied code (for support functions) IS not trnlal. we 
delayed this change and plan on usmg pruned processes 

2 A fourth form of parallehsm IS mtcrquery parallehsm, 
t e, the ability of a database management system to work on 
several quencs concurrently In the current version. Volcano 
does not support inter-query parallehsm A fifth and SIX&I form 
of parallcllsm that can be used for database operations mvolve 
hardware vector processmg [30] and p~pelmmg m the tnstructton 
execution Smcc Volcano 1s a software architecture and follow- 
mg the analysis m [8]. we do not consider hardware parallelism 
further 

’ Irt general. sorted streams can be plped dlrcctly mto the 
JOT. both in the single-process and the multi-process case 
Volcano’s sort operator mcludes a parameter “final merge fan-m” 
that allows sharmg the merge space by two sort operators per- 
formmg the final merge m an mterleaved fashion as requested by 
the merge Join operator 

only when we move to an envuonrnent with muluple 
shared-memory machmes’ Others have also observed the 
htgh cost of process creation and have provided alternatives. 
m parucular “light-weight” processes m various forms. c g . 
m Mach [I] 

After all producer processes are forked. they run 
without further synchroruzauon among themselves. with two 
excepuons First. when accessmg a shared data structure, 
e g , the port to the consumers or a buffer table, short-term 
locks must be acquned for the durauon of one liked-list 
msemon Second, when a producer group 1s also a consu- 
mer group, I e, there are at least two exchange operators 
and three process groups mvolved m a vertical plpelme, the 
processes that are both consumers and producers synchromze 
twice Dunng the (very short) mterval between synchrom- 
zauons. the master of dus group creates a port which serves 
aU processes m its group 

When a close request IS propagated down the tree 
and reaches the fint exchange operator, the master 
consumer’s &se-erchunge procedure informs all producer 
processu that they are allowed to close down using the 
semaphore mentIoned above m the dlscusslon on verucal 
paralleltsm If the producer processes are also consumers, 
the master of the process group mforms its producers, etc. 
In Uus way, all operators are shut down m an orderly 
fas’astuon. and the enure query evaluatmn 1s self-schedulmg 
4.3. An Example 

Let us consider an example Assume a query with 
four operators, A, B , C. and D such that A calls B ‘s. B 
calls C ‘s. and C calls D ‘s open, close. and nat pro- 
cedures Now assume that this query plan 1s to be run m 
three process groups, called A, EC. and D Tlus requires 
an exchange operator between operators A and B, say X. 
and one between C and D. say Y B and C contmue to 
pass records via a sunple procedure caU to the C’s m 
procedure without crossmg process boundaries Assume 
further that A runs as a smgle process, Aa while BC and 
D run m parallel m processes 1)Ca to BC 2 and DO to D 3. 
for a total of eight processes 

A calls X’s open. close, and next procedures instead 
of E’s (Figure 2a). without knowledge that a process boun- 
dary WIU be crossed, a consequence of anonymous inputs in 
Volcano When X 1s opened it creates a port with one 
mput queue for A0 and forks KO (Figure 2b), which in 
tum forks BC1 and DC2 (Rgure 2c) When the BC group 
opens Y. BCo to DC2 synchroruze. and wait until the Y 
opaator UI process SC0 has uutdl=d a port with three 
mput queues DC0 creates the port and stores its location 
at an address known only to the BC processes Then BCO 
to BC2 synchronize agam, and BCI and BC2 get the port 
mformauon from its lccauon Next, BCo forks Do (Figure 
2d) which m turn forks DI to D3 (Figure 2e) 

When the D operators have exhausted their inputs in 
Do to Ds they return an end-o/-stream mdlcator to the 
driver parts of Y In each D process. Y flags its last 
packets to each of the BC processes (le. a total of 3x4=12 
flag@ packets) with an end-o/-stream tag and then waits 
on a semaphore for permlsslon to close The copies of the 

’ In fact. dus work IS currently under way 
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Figure 3a-c. Creating the BC processes. 
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Figure 3d-e. Creating the D processes. 

A 

CII 
A 

Figure 31-b. Closing all processes down. 
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Y operator In the BC processes count the number of tagged C w Y’s nut procedure wdl retum an end-of-stream mdl- 
packets, after four tags (the number of producers or D cator In effect, the end-or-stream mdzator has been pro- 
processes). they have exhausted their mputs, and a call by pagated from the D operators to the C operators In due 
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turn.. C. fl, and then the driver part of X will receive an 
end-of-stream mdlcator After recetvmg three tagged pack- 
ets, X’s next procedure III Ao ~111 mdlcate end-of-stream to 
A 

When end-of-stream reaches the root operator of the 
query, A, the query tree IS closed Closmg the exchange 
operator X mcludes releasmg the semaphore that allows the 
BC processes to shut down (Figure 3f) The X dnver m 
each BC process closes its mput, operator B B closes C. 
and C cfoAes Y Closmg Y m BC1 and BC2 IS an empty 
operatlon When the process BCo closes Lhe exchange 
operator Y, Y permits the D processes to shut down by 
releasmg a semaphore After the processes of the D group 
have closed all files and deallocated all temporary data 
structures, e g , hash tables, they m&cate the fact to Y III 
BCo usmg another semaphore, and Y’s close procedure 
returns to IU caller, C’s close procedure, while the D 
processes terminate (Figure 3g) When ail BC processes 
have closed down, X’s close procedure mdlcates the fact to 
A0 and query evaluation termmates (Figure 3h) 
4.4. Varrants of the Exchange Operator 

There are a number of sltuatlons for whch the 
archunge operator described so far requued some modlfica- 
nons or extensions In dus section, we outlme ad&bonal 
capablhtles unplemented m Volcano’s exchange operator 

For some operauons. it 1s desuable to repkate or 
broadcast a stream to all consumers For example, one of 
the two partltlomng methods for hashdlvlslon [19] requrres 
that the dlvlsor be replicated and used with each parufion 
of the dividend Another example is Baru’s parallel JO" 
algorithm m which one of the two mput relations 1s not 
moved at all wlule the other relauon Is sent through ail 
processors [4] To support these algonthms, the exchange 
operator can be directed (by settmg a switch m the state 
record) to send all records to aU consumers. after pmrung 
them appropriately multiple tunes 111 the buffer pool 
Nouce that it IS not necessary to copy the records smce 
they reside m a shared buffer pool, it 1s sufficient to pm 
them such that each consumer can unpm them as If it were 
the only process usmg them After we implemented this 
feature. parallehzmg our hash-dlvlslon programs usmg both 
dtvlsor partlttomng and quotient partmorung [19] took only 
about three hours and yleldcd not mslgruficant speedups 

When WC unplemented and benchmarked parallel sort- 
mg [21], WC found It useful to add two more features to 
achange First. we wanted to implement a merge network 
111 wiuch some processors produce sorted streams merge 
concurrently by other processors Volcano’s sort lterator 
can be used to generate a sorted stTeam A merge lterator 
was easily dcrlved from the sort module It uses a smgle 
level merge, Instead of the cascaded merge of runs used in 
sort. The Input of a merge iterator IS an e*chanqe Dlf- 
ferently from other operators, the merge iterator rcqulres to 
dlstmguuh the input records by theu producer As an 
example, for a Jom operation It does not matter where the 
mput records were created, and all inputs can bc accumu- 
lated m a smglc Input stream For a merge operauon, tt 1s 
crucial to drstmgulsh the mput records by theu producer m 
order to merge muluple sorted streams correctly 

We modtficd the erchange module such that It C~II 
keep the input records separated accordmg to theu produc- 
as, swnched by setting an argument field m the state 

record A thud argument to text-exchange IS used to com- 
mumcate the requued producer from the merge to the 
exchange lterator Further modlficatlons mcluded rncrcasmg 
the number of input buffers used by exchange. Ihc number 
of semaphores (mcludmg for flow control) used between 
producer and consumer part of exchunge. and tie logic for 
end-ofistream All these modificauons were implemented in 
such a way that they support multi-level merge trees. e g , a 
parallel bmary merge tree as used m [7] The mergmg 
paths are selected automatrcally such that the load IS dlstrl- 
buted as evenly as possible III each level 

Second. we unplemented a sort algorithm that sorts 
data randomly partltloned over multiple disks mto a range- 
partlhoned file with sorted partmons. I e, a sorted file dls- 
tnbuted over multiple disks When using the same number 
of processors and disks. we used two processes per CPU, 
one to perform the file scan and partmon the records and 
another one to sort them We realized that creating and 
runmng more processes than processors mfllcted a slgmfi- 
cant cost, smce these processes competed for the CPU’s and 
therefore requued operatmg system scheduling While the 
schedulmg overhead may not be too agmficant. m our 
envuonment with a central run queue allowmg processes to 
nugrate freely and a large cache associated with each CPU. 
the frequent cache mlgratlon adds a sigruficant cost. 

In order to make better use of the avalable process- 
mg Power, we decided to reduce the number of processes 
by half, effectively moving to one process per disk This 
requued modttlcatlons to the exchange operator Untd then. 
the exchange operator could “hve only at the top or the 
bottom of the operator tree UI a process Since the modlti- 
cation, the exchange operator can also be III the mlddle of 
a process’ operator tree When the exchange operator IS 
opened, it does not fork any processes but establishes a 
commumcatlon port for data exchange The nexf operatron 
requests records from its input tree, possibly sendmg them 
off to other processes m the group, unul a record for its 
own partttmn IS found 

ti mode. of operation’ also makes now control 
obsolete A process runs a producer (and produces input 
for the other processes) only If It does not have mput for 
the consumer Therefore, 11 the producers are m danger of 
overrunnmg the consumers. none of the producer operators 
gets scheduled, and the consumers consume the avalable 
records 

In summary, the operator model of parallel query 
evaluauon provides for self-schcdulmg parallel query cvalua- 
tlon m an extensible database system The most unportant 
properues of tfus novel approach are that the new module 
implements three forms of parallel processing WIthIn a Sm- 
gle module, that It makes parallel query processmg entirely 
self-schedubng. and that it did not requue arty changes in 
the exlstmg query processmg modules. thus leveragmg sigm- 
ticantly the time and effort spent on them and allowmg 
easy parallel unplementatlon of new algorithms 

s Whether exchange forks new producer processes (the ori- 
gmal exchange design dcscr~be m SectIon 4 1) or uses the exist- 
mg process group to execute the producer operations Is a run- 
tune switch 
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5. Overhead and Performance 
From the begmnmg of the. Volcano pro~ec4 we were 

very concemcd about performance and overhead In thus 
secuon. we report on expenmcntal measurements of the 
overhead mduced by the exchange operator This is not 
meant to be an extenstve or complete analysts of the 
operator’s performance and overhead, the purpose of ttus 
sechon 1s to demonstrate that the overhead can be kept m 
acceptable louts 

We measured elapsed ttmes of a program that creates 
records, fills them with four random integers, passes the 
records over three process boundanes. and then unfutes the 
records m the buffer The measurements are elapsed tunes 
on a Sequent Symmetry wnh twelve Intel 16 MHz 80386 
CPU’s This 1s a shared-memory machme with a 64 KB 
cache for each CPU Each CPU dehvers about 4 MIPS m 
thts machme The times were measured usmg the hardware 
nucrosecond clock avatlable on such machmes Sequent’s 
DYNTX operatmg system provtdes exactly the same mter- 
face as Berkeley 4 2 BSD or System V UNJX and runs 
(I e, executes system calls) on all processors 

Fast, we measured the program without any exchange 
operator Crcatmg 100,000 records and releastng them m 
the buffer took 20 28 seconds Next, we measured the pro- 
gram with the exchange operator swltched to the mode tn 
which tt does not create new processes In other words, 
compared to the last expertmen& we added the overhead of 
three procedure calls for each record For thts run, we 
measured 28 00 seconds Thus, the three exchange opera- 
tors m thts mode added (28 OOsec - 20 28sec) / 3 / 100,000 
= 25 73psec overhead per record and exchange operator 

When we swttched the exchange operator to create 
new processes, thus creatmg a ptpelme of four processes, 
we observed an elapsed tune of 16 21 seconds wtth flow 
conaol enabled, or 16 16 seconds with flow control dts- 
abled The fact that these hmes ars less than the tune for 
stngle-process program execution mdtcates that data transfer 
using the exchange operator IS very fass and that ptpeltned 
multt-process executton 1s warranted 

We were particularly concerned about the granulamy 
of data exchange between processes and tts Impact on 
Volcano’s performance In a separate experiment, we reran 
the program multtple ttmes varytng the number of records 
per exchange packet. Table 1 shows the performance for 
transfernng 100,000 records from a producer process group 
through two mtcrmedtate process groups to a smgle 

Packet Size Elapsed Tune 
(Records] [Seconds] 

1 176 4 
2 97 6 
5 45 27 

10 27 67 
20 20 15 
50 15 71 

100 13 76 
200 12 87 
250 1273 

Table 1 Exchange Performance 

consumer process Each of these three groups mcluded 
three processes, Thus, each of the producer processes created 
33,333 records All these cxperuncnts were conducted with 
flow control enabled with fhrcc ‘slack” packets per 
exchange We used dtffercnt partltlonmg (hash) functions 
for each exchange lterator to cnsurc that records were pass- 
mg along all posslblc data paths, not only along three 
mdepcndent ptpelmes 

As can be seen m Table 3. the performance penalty 
for very small packets was stgruficant The elapsed tune 
was almost cut in half when the packet size was mcreased 
from 1 to 2 records, from 176 seconds to 98 seconds As 
the packet stze was maeased further, the elapsed ttme 
shrank accordmgly, to 15 71 seconds for 50 records per 
packet and 12 73 seconds for 250 records per packet 

It seemed reasonable to speculate that for small pack- 
ets, most of the elapsed hme was spent on data exchange 
To venfy Gus hypothesis, we calculated regresston and 
conelatton coefficients of the number of data packets 
(100,000 dlvlded over the packet size) and the elapsed 
ttmes We found an mtercept (base ume) of 12 18 seconds, 
a slope of 0001654 seconds per packet and a correltion 
of more than 099 Constdenng that we exchanged data 
over three process boundartes and that on two of those 
botmdanes there were three producers and three consumers, 
we esttmate that the overhead was 1654~s~~ / 1 667 = 
992+tsec pa packet and process boundary 

Two conclustons can be drawn from these expen- 
ments Fit verncal parallchsm can pay off even for very 
sunple query plans 9 the overhead of data transfer IS small 
Second, smce the packet stze can be set to any value. the 
ovahead of Volcano’s exchange lterator IS neghgtble 

6. Summary and Conclusions 
We have described Volcano, a new query evaluauon 

system. and how parallel query evaluation 1s encapsulated tn 
a stngle module or operator The system is operational on 
both angle- and multt-processor systems, and has been used 
for a number m database query proccssmg studies [19- 
21.231 

Volcano utthzes dataflow tcchmques withm processes 
as well as between processes Wtthm a process. demand- 
dnven dataflow 1s implemented by means of tterators 
Between pmcesses. datadnven dataflow 1s used to exchange 
data between producers and consumers efficlcntly If neces- 
sary, Volcano’s data-driven datatlow can be augmcntcd w?th 
flow control or back pressure Honzontal pamtlontng IS 
used both on stored and tntermedlatc datascts to allow 
mua-operator paralleltsm The design of the exchange 
operator embodtes the parallel cxccuuon mechanism for 
verttcal. bushy, and mtra-operator parallchsm, and It per- 
forms the transltlons from demanddnven to data-driven 
dataflow and back 

Usmg an operator to encapsulate parallelism as 
explored m the Volcano project has a number of advantages 
over the bracket model Fust. It hdcs the fact that paral- 
leltsm IS used from all other operators Thus, other Opera- 
tors can be unplcmented without consldcratlon for parallel- 
1sm Second. smce the exchange operator uses the same 
Interface to its tnput and output, tt can be placed anywhere 
m a tree and combmed with any other operators Hence. It 
can be used to parallchze new operators. and effccttvely 
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combmes extcnstbtltty and parallehsm Thud, tt &es not 
require a separate scheduler process smce scheduling 
(tncludmg uuttahzatton, flow control, and final clean-up) ts 
part of the operator and therefore performed wtthm the stan- 
dard open-next-close tterator paradigm ti rums mto an 
advantage 111 two situauons When a new operator is 
mtegrated mto the system, the scheduler and the template 
process would have to be modified. whtle the exchange 
operator does not requtre any modtficatlons When the sys- 
tem ts ported to a new envuonment. only one module 
rqures mo&ficattons, the exchange tterator, not two 
modules, the template process and the scheduler Fourth, tt 
does not requtre that operators 111 a parallel query evaluauon 
system use IF’C to exchange data Thus. each process can 
execute an arbitrary subfzee of a complex query evaluanon 
plan F&h, a smgle process can have any number of 
mputs, not Just one or two Fmaily, the operator can be 
(and has been) unplemented 111 such a way that tt can mul- 
uplex a smgle process between a producer and a consumer 
In some respects. it effictently tmplements application- 
spedic co-routmes or threads 

We plan on several extensions of the exchange opera- 
tor First, we plan on extendmg our design and unplemen- 
tatlon to support both shared and dtstnbuted memory 
(“shared-nothmg archtecture”) and to allow combuung these 
concepts III a closely tted network of shared-memory mulu- 
computers while mamtauung the encapsulatmn propemes. 
‘hs rmght reqture usmg a pool of “pruned” processes and 
mterpretmg support functtons We beheve that m the long 
run, lugh-performance database machmes. both for transac- 
port and query processmg, wtll employ thts archttecture 
Seoond, we plan on devtsmg a error and exceptton manage- 
ment scheme that makes exception notlficatlon and hsndlmg 
transparent across process and machme boundanea. Thud, 
we plan on usmg the exchange operator to parallellze query 
processmg tn ObJect-onented database systems [la]. Jn our 
model, a complex object IS represented m memory by a 
pomter to the root component @mned m the buffer) WI&I 
pomters to the sub-components (also pmned) and passed 
between operators by passmg the root component [18] 
Whrle the current destgn already allows passmg complex 
obJeCts m a shared-memory envtronment, more funcuonahty 
ts needed m a dtstrtbuted-memory system where objects 
need to be packaged for network transfer 

Volcano is the fust unplemented query evaluaaon 
system that combmes extenslbllq and parallelism Encap- 
sulatmg all paralleksm tssues tnrn one module was essential 
to makmg thts combtnauon possible The encapsulauon of 
paralleltsm m Volcano allows for new query processtng 
algortthms to be coded for smgle-process executton but run 
m a zllghly parallel environment without modificauons We 
expect that dus wtll speed parallel algonthm development 
and evaluauon slgmficantly Smce the operator model of 
parallel query processtng and Volcano’s exchange operator 
encapsulates parallebm and both uses and provtdes an Itera- 
tor tnterface suntlar to many exlsttng database systems, the 
concepts explored and outlmed 111 ti paper may very well 
be useful III parallellzmg other database query processmg 
software 
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