
Encapsulation of Parallehsm

in the Volcano Query Processmg System

G0ct.z Graefe

Umverslty of Colorado
Boulder, CO 80309-0430
graefe@boulder colorado edu

Abstract
Volcano 1s a new dataflow query processmg system we have developed for database systems research and educauon

The umform Interface between operators makes Volcano extenstble by new operators All operators are designed and coded as
d they were meant for a smgle-process system only When attemptmg to parallelue Volcano, we had to choose between two
models of parallchzatlon, called here the h&t and operufor models We descnbe the reasons for not choosmg the bracket
model. maoduce the novel operator model. and provtde detatls of Volcano’s uchunge operator that parallehzes all other opcra-
tors It allows mtra-operator paralleltsm on parttttoned datasets and both verhcal and horuontal mtersperator parallehsm The
exchange operator encapsulates all parallehsm tssues and therefore makes tmplementatton of parallel database algonthms slgmfi-
candy easier and more robust. Included m tlus encapsulatton 1s the translation between demand-driven dataflow w&m
processes and data-driven datailow between processes Smce the m&ace between Volcano operators IS stmtlar to the one
used m “real.” commercial systems. the techniques dcscrtbed here can be used to parallehze other query processmg engmes

1. Introduction
In order to provtde a testbed for database systems

educatton and research, we decoded to unplement an extenst-
ble and modular query processmg system One important
goal was to a&eve flextbtltty and extenstbthty without sac-
nficmg efftciency The result is a small system, conststmg
of less than two dozen core modules with a total of about
15,000 lmes of C code These modules mclude a file sys-
tem, buffer managemenk sortmg. topdown B*-trees. and
two algonthms each for natural JOUI. semt-Jotn. outer Jam,
anti-Jam. aggregatton. duplicate ehmmatlon, dtvtston, union.
mtersection, difference, antt-dtfference. and Cartesum pro-
duct Moreover, a smgle module allows parallel processmg
of all algonthms listed above

The last module, called the exchange module, 1s the
focus of thts paper It was designed and unplemented after
most of the other query processing modules The design
goal was to parallclize all exlstmg query processtng algo-
nthms w1h0ut modtfytng thetr unplementauons
Equtvalcntly. the goal was to allow parallcltzmg new algo-
nthms not yet mvented wnhout requtnng that these algo-
nthms be implemented with concern for parallehsm ThlS

goal was met almost enurely, the only change to the extst-
mg modules concemcd device names and numbers to allow
honzontal partltlonmg over multtple disks. also called disk
stnpmg (251

Parallchzmg a query evaluation engme usmg an
operator IS a novel rdea earlier research proJecls used

Permw.aon to copy wthout fee all or part of this mate4 IO granted prowded
that the copa are not made or dlstnbuted for direct commeraal advantage the
ACM cqynght not,ce and the title of the pubbcatlon and ,ts date appear and
nome IS given that cqymg II by pemwsm of the Assoaatwn for Computmg
Machmay To copy othenvlse ot- to repubbsh, req”w% a fee and/or specific
permlsslon
0 1990 ACM 089791365 %90/OCH0102 $150

template processes that encompass spectfic operators We
call the new method of parallehzmg the operator model In
th.~s paper. we desmbe tlus new method and contrast II
wtth the method used m GAMMA and Bubba, which we
call the brucket model Stnce we developed, unplemented,
and tested the operator model wrthm the framework of the
Volcano system, we will describe it as reahzed m Volcano

Volcano was destgned to be extensible, its design and
tmplementatton follows many of the ideas outlmed by
Batoty et al for the GENESIS design [5] In thts paper,
we do not focus on or substantiate the clatm to extenstblhty
and mstead refer the reader to [17], suffice it to pomt out
that tf new operators use and provtde Volcano’s standard
interface between operators, they can easily be included tn a
Volcano query evaluation plan and paralleltzed by the
exchange operator

Volcano’s mechantsm to synchronize mullrple opcra-
tars 111 complex query trees wtthm a smgle process and to
exchange data items between operators are very stmtlar to
many commerctal database systems. e g, Ingrcs and the
System R family of database systems Thcrcforc. It seems
fatrly stralghtfonvard to apply the tcchntques developed for
Volcano’s exchange operator and outhned m thus papr to
parallehze the query proccssmg engines of such systems

This paper 1s organized as follows In the followmg
section, WC bncfly review prcvlous work that mflucnccd our
design. and mtmducc the brucker model of parallchzauon
In Section 3. we provtde a more dctulcd descnptlon of
volcano The operator model of parallchzatlon and
Volcano’s ,CY&WI~C operator are descrlbcd in Sccuon 4
We present expcnmental performance mcasurcments m See-
tlon 5 &tat show the exchange operator’s low ovcrhcd
Section 6 conta~ a summary and our conclustons from this
effort.

102

2. Previous Work
Smcc so many different system have been developed

to process large dataset efficiently. we only survey the sys-
tems that have strongly mflucnced the design of Volcano

At the start III 1987. we felt that some dcclslons III
WISS [111 and GAMMA [121 were not optunal for perfor-
mance or gencrallty For mstance, the dcclslons to protect
W&S’s butfcr space by copyang a data record m or out for
each request and to re-request a buffer page for every
record dunng a scan seemed to mfhct too much overhead’
However. many of the design decisions III Volcano were
saongly mfluenced by expenences WIIJI WISS and
GAMMA The design of the data exchange mechamsm
between operators, the focus of tfus paper, 1s one of the
few radical departures from GAMMA’s design

Dunng the design of the EXODUS storage manager
[lo], many of these tssues were revIsited lAssons learned
and tradeoffs explored m these discussions certamly helped
form the ideas behmd Volcano ‘Ihe development of E [24]
utfiuenced the strong emphasu on lterators for query pro-
cesslng The design of GENESIS (51 emphasued the
tmportance of a urufonn iterator mterface

Fmally, a number of conventional (relabonal) and
extensible systems have mfluenced our dealgn Without

futther dlscusnon. we mentton Ingres [27]. System R (31,
Bubba [2). Starburst [26], Postgres 1281, and XPRS [29]
Furthermore, there has been a large amount of research and
development m the database machme area, such that there
IS an mtematlonal workshop on the topic Almost ail data-
base machme proposals and tmplementauons uttlue parailel-
srn m some form We certamly have learned from tJus
work and tried to mclude us leasons m the design and
unplementatlon of Volcano In parttcular. we have strived
for sunphclty in the design, mech411LFms that can support a
mulutude of polures, and efficiency m ail detzuls We
beheve that the query execution engme should prov&
mechamsms. and that the query optmuzer should mcorporate
and decide on pohcles

Indepcndcntly of our work, Tandem Computers has
des~grted an operator called the prwuilel operator which IS
very smular to Volcano’s exchange operator It haa proven
useful III Tandem’s query execuuon engmc [14], but IS not
yet documented m the open hterature We learned about
ttus operator through one of the referees Furthermore, the
dtstnbuted database system R* used a techmque sumlar to
ours to transfer data between nodes [31] However, this
operatton was used only to effect data transfer and did not
support data or mtra-operator paralleltsm

2.1. The Bracket Model of Parallelization
When attcmptmg to parallchze exlstmg smglc-process

Volcano software, we considered two paradigms or models
of parallchzatlon The first on+ which we call the bracket
nwdel, has been used m a number of systems, for example
GAMMA [12] and Bubba [2] The second one, which we
call the operafor model. IS novel and IS described m dctal
tn Sectton 4

’ This statement only pertams to the ongmal version of
WISS as dcscnbcd m [1 I] Both decls~ons were rcconsldcred for
the version of WISS used m GAMMA

Figure 1 Bracket Model of Paralleliion.

In the bracket model, there 1s a genenc process tern-
plate that can receive and send data and can execute
exactly one operator at any pomt of tune A schematic
chagnun of such a template process IS shown m Figure 1
wth two possible operators, ~otn and aggregatton The
code that makes up the genenc template mvokes the opera-
tor whch then controls execution, network I/O on the
recewng and sendmg sides are performed as service to the
operator on requaf tmplemented as procedures to be called
by the opaator. The number of mpuu that can be acuve
at any point of Ume 1s llrmted to two smce there are only
unary and bmary operators UI most database systems The
operator 1s surrounded by generic tanplate code which
stue1d.s It from tts envuonmmt for example Ihe operator(s)
that poduce its mput and consume ns output.

One problem w& the bracket model IS that each
locus of control needs to be created Thlz IS typically done
by a separate scheduler process. requulng s&ware dcvelop-
ment beyond the actual operators, both uuually and for each
extension to the set of query processing algonthms Thus.
the bracket model seems unsmtable for an extensible sys-
tem

In a query proceasmg system usmg the bracket
model, operators are coded in such a way that network Vo
IS theu only means of obtammg mput and dehvcnng output
(with the cxceplion of scan and store operators) The rea-
son IS that each operator ui its own locus of control and
network flow control must be used to coordmate muluplc

103

operators, e g , to match two operators’ speed m a
producer-consumer relauonsiup Unfortunately. tlus also
means that passmg a data ttem from one operator to
another always mvolves expenstve utter-process cormmm~ca-
uon (IPC) system calls, even m the cases when an cntue
query 1s evaluated on a smgle machme (and could therefore
be evaluated wuhout IPC 1~1 a smgle process) or when data
do not need to be repartmoned among nodes m a network
An example for the latter 1s the three-way ~oln query
“~oL”Cse!AsclB” m the W~sconsm Benchmark [6.9] whtch
uses the same loin attnbute for both two-way JOUIS ThUS,

m queries wrth multtple operators (meanmg almost all
quenes). IPC and us overhead are mandatory rather than
optional

In most (smgle-process) query processmg engmes.
operators schedule each other much more efficiently by
means of procedure calls rather the system calls The con-
cepts and methods needed for operators to schedule each
other usmg procedure calls are the sublect of the next sec-
uon

3. Volcano System Design
In this sectton, we provrde an overvtew of the

modules m Volcano Volcano’s file system IS rather con-
venuonal It mcludes a modules to manage devtces, buffer
pools, files. records, and B+-treea For a detaried ducus-
sron, we refer to [17]

The file system routmes are used by the query pro-
cessing routmes to evaluate complex query plans Quenes
are expressed as complex algebra expresstons, the operators
of tlus algebra are query proceasutg aigonthms All algebra
operators are tmplemented as lrerators, I e, they support a
sunpie open-next-close protocol sun&r to conventtonal ftie
scam

Associated w~tit each aigonthm 1s a state record
The arguments for the aigonthms are kept m the state
record All operattons on records, e g, compansons and
hashmg, are performed by support funcfm~~ whtch are given
m the state records as arguments to the rterators Thus, the
query processing modules could be unplemented wuhout
knowledge or constratnt on the mtemai SUUCNre of data
obJec&

In qucnes mvolvmg more than one operator (I e,
almost all quenes), state records are lmked together by
means of tnpw pomters The mput potmers are also kept
m the state records They are pomters to a QEP StNcNre
that conststs of four pomters to the entry potnts of the
three procedures unplementmg the operator (open, next, and
close) and a state record AU state mformatton for an
tterator 1s kept m IU state record, thus. an aigornhm may
be used multtple ttmes m a query by mcludmg more than
one state record m the query An operator does not need
to know what ktnd of operator produces ns mput, and
whether tts mput comes from a complex query tree or from
a stmple file scan We call thts concept anonymous inputs
or streums Streams are a sunpie but powerful abstractton
that allows combmmg any number of operators to evaluate
a complex query Together wn.h the tterator control para-
digm. streams represent the most efficient executton model
m terms of umc (overhead for synchroruvng operators) and
space (number of records that must resrde tn memory at
any pomt of time) for smgle process query evaluatton

Callmg open for the top-most operator results in
instanhations for the associated sutc record, e g, allocatton
of a hash table, and m open calls for all mputs In thlS

way, all itcrators m a query are inmated rccursivcly In
order to process the query. tte.xt for the top-most operator IS
called repeatedly unttl it falls wnh an end of stream mdtca-
tor Fmally, the cfose call recurstvely “shuts down” all
iterators m the query Ths model of query execution
matches very closely the one bemg mcluded m the E pro-
grammtng language design [24] and the aigebratc query
evaiuatron system of the Starburst extenstble relauonai data-
base system [22]

The tree-structured query evaluauon plan ts used to
execute quertes by demand-driven dataflow The return
value of nexf is. besides a staNs value, a struct~e called
NEXT-RECORD that consists of a record tdenufter and a
record address m the buffer pool Thts record 1s punted
(fixed) m the buffer The protocol about flxmg and unflx-
mg records 1s as follows Each record pmned m the buffer
IS owned by exactly one operator at any pomt m tune
After recetvmg a record, the operator can hold on to tt for
a wtule. e g , m a hash table, unfix tt, e g , when a predt-
cate fails, or pass it on to the next operator Complex
operattons like pm that create new records have to fix
them m the buffer before passmg them on, and have to
unfix their mput records

For mtermedtate results, Volcano uses vlrtuai devcces
Pages of such a device extst only m the buffer, and are
drscarded when unfixed. Usmg thts mecharusm allows
aasrgnmg umque RID’s to mterrnedtate result records, and
aliows managmg such records m all operators as if they
resided on a real (dtsk) devtce The operaton are not
affected by the ua of vntuai devtces, and can be pro-
grammed as rf all mput comes from a dtsk-restdent file and
output 1s wntten to a dtak file

4. The Operator Model of Parallelization
When portmg Volcano to a multi-processor machme,

we felt tt destrabie to use the smgle-process query process-
mg code described above mt!touf any chMge The result IS
very clean, self-schedulmg parallel processmg We call this
novel approach the operator model of paralleitzmg a query
evaiuatron engme In thts model, ail tssues of control are
locahxed m one operator that uses and provtdcs the standard
tterator mterface to the operators above and below m a
query tree

The module responsible for parallel cxecutton and
synchroruzatton is called the exchange iterator m Volcano
Nouce that rt IS an uerator wtth open, next. and close pro-
cedures, therefore, it can be mscrtcd at any one place or at
muittple places m a complex query tree Figure 2 shows a
complex query executton plan that mcludcs data proccssmg
operators, e g file scan and lam. and exchange operators

Thts secuon describes how the exchange tterator
tmpiements verucal and honzontal parallcltsm followed by a
detatied example and a dtscusston of altemattve modes of
operation of Volcano’s exchange operator
4.1. Vertical Parallelism

The first funcuon of exchange 1s to provtdc verfccaf
pwaNehm or prpelmmg between processes The open pro-
cedure creates a new process after crcatmg a data structure
m shared memory called a port for synchroruzauon and data

104

PRINT

XCHG

JOIN

JOIN

XCHG XCHG

XCHG

Fs

FS FS

Ftgure 2 Operator Model of Paraiieltzmon

exchange The chtid process, created ustng the UNIX fork
system cali. 1s an exact dupircate of the parent process
The exchange operator then takes dtfferent paths m the
parent and child processes

The parent process serves as the cotwmer and the
child process as the producer m Volcano. The exchange
operator m the consumer process acts as a normal iterator.
the only difference from other tterators IS that tt recetves tts
mput via mter-process commumcatmn rather than tterator
(procedure) calls After creatmg the chtld process,
open-exchange m the consumer 1s done Nexs-exchange
wmts for data to arrive vta the port and reNms them a
record at a tune Close_exchangc mforms the Producer that
It can close. watta for an acknowiedgement, and reNma

The exchange operator m the producer process
becomes the drnter for the query tree below the exchange
operator ustng open, next. and close on us mput The out-
put of m IS collected m packets. wiuch are arrays of
NEXT-RECORD SttucNres The packet stze 1s art argument
m the exchange tterator’s state record. and can be set
between 1 and 32,000 records When a packet IS filled, tt

IS trtsertcd mto a lmked list ongmatmg tn the port and a
semaphore ts used to mform the consumer bout the new
packet. Records m packets are fixed m the shared buffer
and must be unfixed by a consummg operator

When tts mput 1s exhausted, the exchange operator m
the producer process marks the last packet wuh an end-of-
stream tag. passes tt to the consumer, and watts unul the
consumer allows closmg all open flies Thu delay is
necessary m Volcano because files on vutual dcvtces must
not be closed before ali then records are unpmned m the
buffer In other words. tt 1s a peculranty due to other
design dectstons m Volcano rather than inherent ut the
exchange tterator or the operator model of paraileltzauon

The aiert reader has noticed that the exchange module
uses a different dataflow paradigm than ail other operators
Whtle all other modules are based on demand-drnen
datatiow (uerators, lazy evaluauon). the producer-consumer
relationship of exchange uses data-driven dataflow (eager
evaluauon) There are two reasona for thts change m para-
digms FUSS we mtend to use the exchange operator also
for hortzontal pwailelrrm. to be described below, wluch 1s
easier to implement with datadnven dataflow, Second, thts
scheme removes the need for request messages Even
though a scheme wtth request messages, eg, usmg a sema-
phore, would probably perform acceptably on a shared-
memory machme, we felt that tt creates unnecessary control
overhead and delays Smce we belteve that very htgh
degrees of parailel~sm and very htgh-performance query
evaiuatton requtre a closely tted network, e g, a hypercube.
of shared-memory machmes, we decrded to use a paradigm
for data exchange that has has been proven to perform well
ut a shared-nothmg database maclune [G&13]

A run-tune switch of exchange enables flow control
or bock pressure using an addttmrtai semaphore If the pro-
ducer 1s stgruficantiy faster than the consumer. the producer
may pm a slgtulicant portion of the buffer, thus tmpedmg
overali system performance If flow control IS enabled,
after a producer has mserted a new packet mto the port, tt
must request the flow control semaphore After a consumer
has removed a packet from the pea tt releases the flow
control semaphore The mtttal value of the flow control
semaphore, eg, 4. determutes how many packets the pro-
ducers may get ahead of the consumers

Notice that flow control and demand-driven datafiow
are not the same One stgmiicant difference IS that flow
control allows some “slack” m the synchronizauon of pro-
ducer and consumer and therefore truly overlapped execu-
tton, while demanddnven dataflow IS a rather ngtd stntc-
ture of request and delivery m which the consumer watts
whtle the producer works on tts next output The second
stgmficant difference IS that data-dnven dataflow IS caSter to
combme effictcntiy wuh honzontal parallehsm and parutton-
l*g
4.2. Horizontal Parallelism

There are two forms of honzontal parallchsm which
we call bushy pwallehsm and mtra-operator parallcltsm In
bushy paralleitsm. different CPU’s execute dtffcrcnt subtrees
of a complex query tree Bushy parallchsm and vcrtxa!
paraiieitsm are forms of Wer-operator parallelism Intra-
operator paralieltsm means that several CPU’s perform the
same operator on different subsets of a stored datasct or an

105

mterrnediatc result’

Bushy parallelism can easily be tmplemented by
msertmg one or two exchange operators mto a query tree
For example. UI order to sort two mputs mto a mage-Jam

m parallel the first or both inputs are separated from the
merge-Join by an exchange operation’ The parent process
turns to the second sort unmedrately after forkmg the child
process that will produce the first input m sorted order
Thus, the t%o sort operauons are workmg m parallel

Intra-operator parallelism requues data parttuonmg
Partttlonlng of stored datasets IS achieved by using muluple
files, preferably on dfferent devices Partltlorung of mter-
mediate results 1s unplemented by mcludmg mulbple queues
III a port If there are multiple consumer processes, each
uses ~rs own mput queue The producers use a support
function to decide mto wtuch of the queues (or actually.
mto which of the packets bemg filled by the producer) an
output record must go Usmg a support hmctlon allows
unplernentmg round-robm-, key-range-, or hash-partltlonmg

If an operator or an operator subtree 1s executed m
parallel by a group of processes, one of them LS designated
the master When a query tree 1s opened, only one process
1s runrung, wtuch 1s naturally the master When a master
forks a child process tn a producer-consumer relatlonshlp.
the ciuld process becomes the master w&m its group The
fmt action of the master producer 1s to determute how
many slaves are needed by callmg an appropnate support
function If the producer operatton 1s to run m parallel, the
master producer forks the other producer processes

Gerber pointed out that such a cenaahzed scheme 1s
suboptunal for high degrees of parallehsm [IS] When we
changed our uutlal unplementatlon from forlung all producer
processes by the master to usmg a propagatwn tree scheme,
we observed slgmftcant performance unpmvements In such
a scheme, the master forks one slave, then both fork a new
slave each, then all four fork a new slave each, etc ThlS
scheme has been used very effectively for broadcast com-
mumcation and synchroruzauon III bmary hypercubes

Even after optmuzmg the forkmg scheme, its over-
head IS not neghgtble We have considered usmg primed
processes, i e, processes that are always present and wut
for work packcls Primed processes arc used m many com-
mercial database systems Smce portable dlstnbutlon of
complied code (for support functions) IS not trnlal. we
delayed this change and plan on usmg pruned processes

2 A fourth form of parallehsm IS mtcrquery parallehsm,
t e, the ability of a database management system to work on
several quencs concurrently In the current version. Volcano
does not support inter-query parallehsm A fifth and SIX&I form
of parallcllsm that can be used for database operations mvolve
hardware vector processmg [30] and p~pelmmg m the tnstructton
execution Smcc Volcano 1s a software architecture and follow-
mg the analysis m [8]. we do not consider hardware parallelism
further

’ Irt general. sorted streams can be plped dlrcctly mto the
JOT. both in the single-process and the multi-process case
Volcano’s sort operator mcludes a parameter “final merge fan-m”
that allows sharmg the merge space by two sort operators per-
formmg the final merge m an mterleaved fashion as requested by
the merge Join operator

only when we move to an envuonrnent with muluple
shared-memory machmes’ Others have also observed the
htgh cost of process creation and have provided alternatives.
m parucular “light-weight” processes m various forms. c g .
m Mach [I]

After all producer processes are forked. they run
without further synchroruzauon among themselves. with two
excepuons First. when accessmg a shared data structure,
e g , the port to the consumers or a buffer table, short-term
locks must be acquned for the durauon of one liked-list
msemon Second, when a producer group 1s also a consu-
mer group, I e, there are at least two exchange operators
and three process groups mvolved m a vertical plpelme, the
processes that are both consumers and producers synchromze
twice Dunng the (very short) mterval between synchrom-
zauons. the master of dus group creates a port which serves
aU processes m its group

When a close request IS propagated down the tree
and reaches the fint exchange operator, the master
consumer’s &se-erchunge procedure informs all producer
processu that they are allowed to close down using the
semaphore mentIoned above m the dlscusslon on verucal
paralleltsm If the producer processes are also consumers,
the master of the process group mforms its producers, etc.
In Uus way, all operators are shut down m an orderly
fas’astuon. and the enure query evaluatmn 1s self-schedulmg
4.3. An Example

Let us consider an example Assume a query with
four operators, A, B , C. and D such that A calls B ‘s. B
calls C ‘s. and C calls D ‘s open, close. and nat pro-
cedures Now assume that this query plan 1s to be run m
three process groups, called A, EC. and D Tlus requires
an exchange operator between operators A and B, say X.
and one between C and D. say Y B and C contmue to
pass records via a sunple procedure caU to the C’s m
procedure without crossmg process boundaries Assume
further that A runs as a smgle process, Aa while BC and
D run m parallel m processes 1)Ca to BC 2 and DO to D 3.
for a total of eight processes

A calls X’s open. close, and next procedures instead
of E’s (Figure 2a). without knowledge that a process boun-
dary WIU be crossed, a consequence of anonymous inputs in
Volcano When X 1s opened it creates a port with one
mput queue for A0 and forks KO (Figure 2b), which in
tum forks BC1 and DC2 (Rgure 2c) When the BC group
opens Y. BCo to DC2 synchroruze. and wait until the Y
opaator UI process SC0 has uutdl=d a port with three
mput queues DC0 creates the port and stores its location
at an address known only to the BC processes Then BCO
to BC2 synchronize agam, and BCI and BC2 get the port
mformauon from its lccauon Next, BCo forks Do (Figure
2d) which m turn forks DI to D3 (Figure 2e)

When the D operators have exhausted their inputs in
Do to Ds they return an end-o/-stream mdlcator to the
driver parts of Y In each D process. Y flags its last
packets to each of the BC processes (le. a total of 3x4=12
flag@ packets) with an end-o/-stream tag and then waits
on a semaphore for permlsslon to close The copies of the

’ In fact. dus work IS currently under way

106

A

Ll
A

BCo BCt Bci

A

0
A

BCo

Figure 3a-c. Creating the BC processes.

BCo

Figure 3d-e. Creating the D processes.

A

CII
A

Figure 31-b. Closing all processes down.

A
b A

Y operator In the BC processes count the number of tagged C w Y’s nut procedure wdl retum an end-of-stream mdl-
packets, after four tags (the number of producers or D cator In effect, the end-or-stream mdzator has been pro-
processes). they have exhausted their mputs, and a call by pagated from the D operators to the C operators In due

107

turn.. C. fl, and then the driver part of X will receive an
end-of-stream mdlcator After recetvmg three tagged pack-
ets, X’s next procedure III Ao ~111 mdlcate end-of-stream to
A

When end-of-stream reaches the root operator of the
query, A, the query tree IS closed Closmg the exchange
operator X mcludes releasmg the semaphore that allows the
BC processes to shut down (Figure 3f) The X dnver m
each BC process closes its mput, operator B B closes C.
and C cfoAes Y Closmg Y m BC1 and BC2 IS an empty
operatlon When the process BCo closes Lhe exchange
operator Y, Y permits the D processes to shut down by
releasmg a semaphore After the processes of the D group
have closed all files and deallocated all temporary data
structures, e g , hash tables, they m&cate the fact to Y III
BCo usmg another semaphore, and Y’s close procedure
returns to IU caller, C’s close procedure, while the D
processes terminate (Figure 3g) When ail BC processes
have closed down, X’s close procedure mdlcates the fact to
A0 and query evaluation termmates (Figure 3h)
4.4. Varrants of the Exchange Operator

There are a number of sltuatlons for whch the
archunge operator described so far requued some modlfica-
nons or extensions In dus section, we outlme ad&bonal
capablhtles unplemented m Volcano’s exchange operator

For some operauons. it 1s desuable to repkate or
broadcast a stream to all consumers For example, one of
the two partltlomng methods for hashdlvlslon [19] requrres
that the dlvlsor be replicated and used with each parufion
of the dividend Another example is Baru’s parallel JO"
algorithm m which one of the two mput relations 1s not
moved at all wlule the other relauon Is sent through ail
processors [4] To support these algonthms, the exchange
operator can be directed (by settmg a switch m the state
record) to send all records to aU consumers. after pmrung
them appropriately multiple tunes 111 the buffer pool
Nouce that it IS not necessary to copy the records smce
they reside m a shared buffer pool, it 1s sufficient to pm
them such that each consumer can unpm them as If it were
the only process usmg them After we implemented this
feature. parallehzmg our hash-dlvlslon programs usmg both
dtvlsor partlttomng and quotient partmorung [19] took only
about three hours and yleldcd not mslgruficant speedups

When WC unplemented and benchmarked parallel sort-
mg [21], WC found It useful to add two more features to
achange First. we wanted to implement a merge network
111 wiuch some processors produce sorted streams merge
concurrently by other processors Volcano’s sort lterator
can be used to generate a sorted stTeam A merge lterator
was easily dcrlved from the sort module It uses a smgle
level merge, Instead of the cascaded merge of runs used in
sort. The Input of a merge iterator IS an e*chanqe Dlf-
ferently from other operators, the merge iterator rcqulres to
dlstmguuh the input records by theu producer As an
example, for a Jom operation It does not matter where the
mput records were created, and all inputs can bc accumu-
lated m a smglc Input stream For a merge operauon, tt 1s
crucial to drstmgulsh the mput records by theu producer m
order to merge muluple sorted streams correctly

We modtficd the erchange module such that It C~II
keep the input records separated accordmg to theu produc-
as, swnched by setting an argument field m the state

record A thud argument to text-exchange IS used to com-
mumcate the requued producer from the merge to the
exchange lterator Further modlficatlons mcluded rncrcasmg
the number of input buffers used by exchange. Ihc number
of semaphores (mcludmg for flow control) used between
producer and consumer part of exchunge. and tie logic for
end-ofistream All these modificauons were implemented in
such a way that they support multi-level merge trees. e g , a
parallel bmary merge tree as used m [7] The mergmg
paths are selected automatrcally such that the load IS dlstrl-
buted as evenly as possible III each level

Second. we unplemented a sort algorithm that sorts
data randomly partltloned over multiple disks mto a range-
partlhoned file with sorted partmons. I e, a sorted file dls-
tnbuted over multiple disks When using the same number
of processors and disks. we used two processes per CPU,
one to perform the file scan and partmon the records and
another one to sort them We realized that creating and
runmng more processes than processors mfllcted a slgmfi-
cant cost, smce these processes competed for the CPU’s and
therefore requued operatmg system scheduling While the
schedulmg overhead may not be too agmficant. m our
envuonment with a central run queue allowmg processes to
nugrate freely and a large cache associated with each CPU.
the frequent cache mlgratlon adds a sigruficant cost.

In order to make better use of the avalable process-
mg Power, we decided to reduce the number of processes
by half, effectively moving to one process per disk This
requued modttlcatlons to the exchange operator Untd then.
the exchange operator could “hve only at the top or the
bottom of the operator tree UI a process Since the modlti-
cation, the exchange operator can also be III the mlddle of
a process’ operator tree When the exchange operator IS
opened, it does not fork any processes but establishes a
commumcatlon port for data exchange The nexf operatron
requests records from its input tree, possibly sendmg them
off to other processes m the group, unul a record for its
own partttmn IS found

ti mode. of operation’ also makes now control
obsolete A process runs a producer (and produces input
for the other processes) only If It does not have mput for
the consumer Therefore, 11 the producers are m danger of
overrunnmg the consumers. none of the producer operators
gets scheduled, and the consumers consume the avalable
records

In summary, the operator model of parallel query
evaluauon provides for self-schcdulmg parallel query cvalua-
tlon m an extensible database system The most unportant
properues of tfus novel approach are that the new module
implements three forms of parallel processing WIthIn a Sm-
gle module, that It makes parallel query processmg entirely
self-schedubng. and that it did not requue arty changes in
the exlstmg query processmg modules. thus leveragmg sigm-
ticantly the time and effort spent on them and allowmg
easy parallel unplementatlon of new algorithms

s Whether exchange forks new producer processes (the ori-
gmal exchange design dcscr~be m SectIon 4 1) or uses the exist-
mg process group to execute the producer operations Is a run-
tune switch

108

5. Overhead and Performance
From the begmnmg of the. Volcano pro~ec4 we were

very concemcd about performance and overhead In thus
secuon. we report on expenmcntal measurements of the
overhead mduced by the exchange operator This is not
meant to be an extenstve or complete analysts of the
operator’s performance and overhead, the purpose of ttus
sechon 1s to demonstrate that the overhead can be kept m
acceptable louts

We measured elapsed ttmes of a program that creates
records, fills them with four random integers, passes the
records over three process boundanes. and then unfutes the
records m the buffer The measurements are elapsed tunes
on a Sequent Symmetry wnh twelve Intel 16 MHz 80386
CPU’s This 1s a shared-memory machme with a 64 KB
cache for each CPU Each CPU dehvers about 4 MIPS m
thts machme The times were measured usmg the hardware
nucrosecond clock avatlable on such machmes Sequent’s
DYNTX operatmg system provtdes exactly the same mter-
face as Berkeley 4 2 BSD or System V UNJX and runs
(I e, executes system calls) on all processors

Fast, we measured the program without any exchange
operator Crcatmg 100,000 records and releastng them m
the buffer took 20 28 seconds Next, we measured the pro-
gram with the exchange operator swltched to the mode tn
which tt does not create new processes In other words,
compared to the last expertmen& we added the overhead of
three procedure calls for each record For thts run, we
measured 28 00 seconds Thus, the three exchange opera-
tors m thts mode added (28 OOsec - 20 28sec) / 3 / 100,000
= 25 73psec overhead per record and exchange operator

When we swttched the exchange operator to create
new processes, thus creatmg a ptpelme of four processes,
we observed an elapsed tune of 16 21 seconds wtth flow
conaol enabled, or 16 16 seconds with flow control dts-
abled The fact that these hmes ars less than the tune for
stngle-process program execution mdtcates that data transfer
using the exchange operator IS very fass and that ptpeltned
multt-process executton 1s warranted

We were particularly concerned about the granulamy
of data exchange between processes and tts Impact on
Volcano’s performance In a separate experiment, we reran
the program multtple ttmes varytng the number of records
per exchange packet. Table 1 shows the performance for
transfernng 100,000 records from a producer process group
through two mtcrmedtate process groups to a smgle

Packet Size Elapsed Tune
(Records] [Seconds]

1 176 4
2 97 6
5 45 27

10 27 67
20 20 15
50 15 71

100 13 76
200 12 87
250 1273

Table 1 Exchange Performance

consumer process Each of these three groups mcluded
three processes, Thus, each of the producer processes created
33,333 records All these cxperuncnts were conducted with
flow control enabled with fhrcc ‘slack” packets per
exchange We used dtffercnt partltlonmg (hash) functions
for each exchange lterator to cnsurc that records were pass-
mg along all posslblc data paths, not only along three
mdepcndent ptpelmes

As can be seen m Table 3. the performance penalty
for very small packets was stgruficant The elapsed tune
was almost cut in half when the packet size was mcreased
from 1 to 2 records, from 176 seconds to 98 seconds As
the packet stze was maeased further, the elapsed ttme
shrank accordmgly, to 15 71 seconds for 50 records per
packet and 12 73 seconds for 250 records per packet

It seemed reasonable to speculate that for small pack-
ets, most of the elapsed hme was spent on data exchange
To venfy Gus hypothesis, we calculated regresston and
conelatton coefficients of the number of data packets
(100,000 dlvlded over the packet size) and the elapsed
ttmes We found an mtercept (base ume) of 12 18 seconds,
a slope of 0001654 seconds per packet and a correltion
of more than 099 Constdenng that we exchanged data
over three process boundartes and that on two of those
botmdanes there were three producers and three consumers,
we esttmate that the overhead was 1654~s~~ / 1 667 =
992+tsec pa packet and process boundary

Two conclustons can be drawn from these expen-
ments Fit verncal parallchsm can pay off even for very
sunple query plans 9 the overhead of data transfer IS small
Second, smce the packet stze can be set to any value. the
ovahead of Volcano’s exchange lterator IS neghgtble

6. Summary and Conclusions
We have described Volcano, a new query evaluauon

system. and how parallel query evaluation 1s encapsulated tn
a stngle module or operator The system is operational on
both angle- and multt-processor systems, and has been used
for a number m database query proccssmg studies [19-
21.231

Volcano utthzes dataflow tcchmques withm processes
as well as between processes Wtthm a process. demand-
dnven dataflow 1s implemented by means of tterators
Between pmcesses. datadnven dataflow 1s used to exchange
data between producers and consumers efficlcntly If neces-
sary, Volcano’s data-driven datatlow can be augmcntcd w?th
flow control or back pressure Honzontal pamtlontng IS
used both on stored and tntermedlatc datascts to allow
mua-operator paralleltsm The design of the exchange
operator embodtes the parallel cxccuuon mechanism for
verttcal. bushy, and mtra-operator parallchsm, and It per-
forms the transltlons from demanddnven to data-driven
dataflow and back

Usmg an operator to encapsulate parallelism as
explored m the Volcano project has a number of advantages
over the bracket model Fust. It hdcs the fact that paral-
leltsm IS used from all other operators Thus, other Opera-
tors can be unplcmented without consldcratlon for parallel-
1sm Second. smce the exchange operator uses the same
Interface to its tnput and output, tt can be placed anywhere
m a tree and combmed with any other operators Hence. It
can be used to parallchze new operators. and effccttvely

109

combmes extcnstbtltty and parallehsm Thud, tt &es not
require a separate scheduler process smce scheduling
(tncludmg uuttahzatton, flow control, and final clean-up) ts
part of the operator and therefore performed wtthm the stan-
dard open-next-close tterator paradigm ti rums mto an
advantage 111 two situauons When a new operator is
mtegrated mto the system, the scheduler and the template
process would have to be modified. whtle the exchange
operator does not requtre any modtficatlons When the sys-
tem ts ported to a new envuonment. only one module
rqures mo&ficattons, the exchange tterator, not two
modules, the template process and the scheduler Fourth, tt
does not requtre that operators 111 a parallel query evaluauon
system use IF’C to exchange data Thus. each process can
execute an arbitrary subfzee of a complex query evaluanon
plan F&h, a smgle process can have any number of
mputs, not Just one or two Fmaily, the operator can be
(and has been) unplemented 111 such a way that tt can mul-
uplex a smgle process between a producer and a consumer
In some respects. it effictently tmplements application-
spedic co-routmes or threads

We plan on several extensions of the exchange opera-
tor First, we plan on extendmg our design and unplemen-
tatlon to support both shared and dtstnbuted memory
(“shared-nothmg archtecture”) and to allow combuung these
concepts III a closely tted network of shared-memory mulu-
computers while mamtauung the encapsulatmn propemes.
‘hs rmght reqture usmg a pool of “pruned” processes and
mterpretmg support functtons We beheve that m the long
run, lugh-performance database machmes. both for transac-
port and query processmg, wtll employ thts archttecture
Seoond, we plan on devtsmg a error and exceptton manage-
ment scheme that makes exception notlficatlon and hsndlmg
transparent across process and machme boundanea. Thud,
we plan on usmg the exchange operator to parallellze query
processmg tn ObJect-onented database systems [la]. Jn our
model, a complex object IS represented m memory by a
pomter to the root component @mned m the buffer) WI&I
pomters to the sub-components (also pmned) and passed
between operators by passmg the root component [18]
Whrle the current destgn already allows passmg complex
obJeCts m a shared-memory envtronment, more funcuonahty
ts needed m a dtstrtbuted-memory system where objects
need to be packaged for network transfer

Volcano is the fust unplemented query evaluaaon
system that combmes extenslbllq and parallelism Encap-
sulatmg all paralleksm tssues tnrn one module was essential
to makmg thts combtnauon possible The encapsulauon of
paralleltsm m Volcano allows for new query processtng
algortthms to be coded for smgle-process executton but run
m a zllghly parallel environment without modificauons We
expect that dus wtll speed parallel algonthm development
and evaluauon slgmficantly Smce the operator model of
parallel query processtng and Volcano’s exchange operator
encapsulates parallebm and both uses and provtdes an Itera-
tor tnterface suntlar to many exlsttng database systems, the
concepts explored and outlmed 111 ti paper may very well
be useful III parallellzmg other database query processmg
software

Acknowledgements
A number of fnends and colleagues were great

sotmdmg boards durmg the destgn and unplementatlon of
parallehsm m Volcano, most notably Frank Symonds and

Leonard Shapuo Jeny Borgvedt unplemented a prototype
tirnbuted-memory exchange operator - NSF supported
thts work with contracts IRI-8805200 and II&8912618
Sequent Computer Systems provided machme tune for
expemnents on a large machme.
References
1

2

3

4.

5

6.

7

8.

9.

10

11

12.

M Accena R Baron, W. Bolosky, D Golub, R.
Rash~% A Tevaruan and M Young, “Mach, A New
Kernel Foundauon for UNIX Development”, Slunmer
Conference Proceedings 1986,

W Alexander and G. Copelsnd, “PKUXSS and
Dataflow Control m Dtstnbuted Data-Intensive
Systems”, Proceedmgs of the ACM SlGhiOD
Conference, mcago, IL: June 1988, 90-98

M M. Astrahan, M W. Blarga D. D Chsmberbn,
K. P. Eswaran, J. N. Gray, P. P. Gtiths, W. F.
Kmg, R. A Lone, P R. McJones, J W Mehl, G.
R Putzolu, I L Trager, B W Wade and V.
Watson, “System R* A Relauonal Approach to
Database Management”, ACM Tramuctwns on
Database Systems I, 2 (June 1976), 97-137.
C. K. Baru, 0. Fneder, D. Kandlur and M Segal,
“Jam on a Cub Analyst, Sunulaaon, and
Implementauon”, Proceedings of the Sth Intertionai
Workhop on Database Machmes, 1987.
D S. Batory, “GENESIS* A Project to Develop an
Extennble Database Managanent System”,
Proceedmgs of the Int’l Work&p on Object-Orunted
Database Systems, Pacific Grove, CA, September
1986, 207-208.

D. Bttton, D. J. DeWltt and C. Turbyfii
“Benchmarkmg Database Systems: A Systemaac
Approach”, Proceedmg of the Conference on Very
Large Datu Bees, Florence, Italy, October-November
1983, 8-19

D. Button, H. Boral, D. J DeWltt and W. K.
Wtlhnson, “Parallel Algonthms for the Exccuaon of
Relaaonal Database Operatlona”, ACM Trumuctwm
on Database Systems 8, 3 (September 1983). 324-353
H. Boral and D. J Dewitt, “Database Machmes. An
Idea Whose Tune Has Passed7 A Cnque of the
Future of Database Machmes”, Proceeding of the
InternatroMl Workshop on Database Machanes,
Mumch, 1983

H. Boral and D J DeWitS “A Methodology for
Database System Performance Evaluatum”,
Proceeduags of the ACM SlG,kiOD Conference,
Boston, MA, June 1984, 176-185
M J Carey, D J Dewitt, J E Richardson and E
J. Sheluta, “ObJect and File Management m the
EXODUS Extensible Database System“, Proceedmgs
of the Conference on Very Loge Data Bases, Kyotn,
Japan, August 1986, 91-100
H T. Choy D J Dewitt, R H Katz and A. C.
w3, “Design and Implementataon of the Wtsconsm
Storage System”, Sojiware - Practrce and Experience
IS, 10 (October 1985), 943-962
D J Dewitt, R H Gerber, G Graefe, M L.
Heytens, K B Kumar and M Murahknshna,

110

13

14

15

16

17

18

19

20

21

22

23

24

25

26

“GAMMA - A High Performance Dataflow Database
Machme”. Proceedings of the Confiuence on Very
L.arge Data Bases, Kyoto, Japan, August 1986. 228-
237
D J DeWltt, S Ghandeharadlzeh, D Schneider, A
Bncker, H I Hslao and R Rasmussen, ‘The
Gamma Database *Machme ProJect”, IEEE
Tranwtrons on Knowledge and Data Engtneertng 2,
1 (March 1990)
S Englert, J Gray, R Kocher and P Shah, “A
Benchmark of NonStop SQL Release 2 Demonsuatmg
Near-Lmear Speedup and Scaleup on Large
Databases”, Tandem Computer Systems Techntcal
Report 894 (May 1989)
R Gerber, “Dataflow Query Processmg usmg
Mulbprocessor Hash-Partmoned Algomhms”, Ph.D
Thests, Maduon. October 1986
G Graefe and D M;uer, “Query Optmuzauon m
ObJect-Oriented Database Systems A Prospectus”, m
Advances VI Object-Oriented Database Systems, voi
334 K. R Dltmch (ednor), Spnnger-Valag,
Septenber 1988, 358-363
G. Graefe, “Volcano An Extensible and Parallel
Dataflow Query Processmg System”, Oregon
Graduate Center, Computer Scrence Techntcal Report,
Beaverton, OR, June 1989
G Graefe, “Set Rocessmg and Complex ObJect
Assembly 111 Volcano and the REVELATION
ProJect”, Oregon Graduate Center, Computer Sctexe
Techntcai Report, Beaverton, OR, June 1989
G. Graefe, “Relational Dl~lsioh Four Algonthms
and Theu Performance”, Proceedmgs of the IEEE
Conference on Data Engtneertng, LAX Angeles, CA,
February 1989, 94-101
G. Graefe and K Ward, “Dynarmc Query Evalua~on
Plans”, Proceedrngs of the ACM SIGMOD
Co&vence, Portland, OR, May-June 1989, 358
G Graefe, “Parallel External Sornng m Volcano”,
submrtted for pubhcatton, February 1990

L. M Haas, W F Cody, J C Freytag, G Laps, B
G. Lmdsay, G. M L&man, K Ono and H Puahesh,
“An Extensible Processor for an Extended Relatmnal
Quay Language”, Computer Science Research
Report, San Jose, CA, April 1988

T Keller and G Graefe, “The One-to-One Match
Operator of the Volcano Query Processmg System”,
Oregon Graduate Center, Computer Saence Techrucal
Report, Beaverton, OR, June 1989

J E Richardson and .M J Carey, “Programrmng
Constructs for Database System Implementanon m
EXODUS”, Proceedings of the ACM SIGMOD
Conference, San Francisco, CA., May 1987, 208-219

K Salem and H Garaa-Molma, “Duk Stnpmg”,
Proceedrngs of the IEEE Conference on Data
Engtneerrng, Los Angeles, CA, February 1986. 336

P Schwarz, W Chang, J C Freytag, G L&man, J
McPherson, C Mohan and H Pvahesh “Extenslblllty
m the Starburst Database System”, Proceedmgs of
the Int’l Workshop on Object-Onented Database

27

28.

29

30.

31.

Systems. Pa&c Grove, CA, September 1986, 85-92.
M Stonebraker, E. Wang. P. Kreps and G. D. Held,
“The Design and Implementauon of INGRES”, ACM
Tranmctwm on Databae Systems I, 3 (September
1976), 189-222

M. Stonebraker and L A Rowe, “‘The Desqt of
POSTGRES”, Proceedmgs of the ACM SIGMOD
Conference, Wsshmgton, DC., May 1986, 340355.
M Stonebraker, R. Katz, D. Patterson and J
Ousterhout, “The Deqn of XPRS”, Proceedtngs of
the Conforcncc on Vq Large Databases, Los
Angeles, CA, August 1988, 318330.
S. Toru, K. KoJuna Y. Kanada, A. Sakata, S.
Yosluztmu and M. Takahti, “Acceleratmg
Nonnummcal Rocessmg by an Exfmded Veotor
Processor”, Proceedtngs of the IEEE Coqference on
Data Engtneerlng, Los Angeles, CA, February 1988,
194-201

P. Wtiams, D. DameIs, L. Haas, G Laps, B.
Lmdsay, P. Ng, R. Obermarck, P Selmger, A.
WaLker, P WilmJ and R. Yoss “R*, An Overnew
of the Archlrecture”, m Readtngs tn Dat&e
System, M. Stonebrakes (&or), Morgan-Kaufman,
San Matm. CA, 1988.

111

