Encapsulation of Parallelism

in the Volcano Query Processing System

Goetz Graefe

University of Colorado
Boulder, CO 80309-0430
graefe@boulder colorado edu

Abstract

Volcano 1s a new dataflow query processing system we have developed for database systems research and educauon
The umiform interface between operators makes Volcano extensible by new operators All operators are designed and coded as
if they were meant for a single-process system only When attempung to parallehize Volcano, we had to choose between two
models of parallchzation, called here the bracker and operator models We descnbe the reasons for not choosing the bracket
model, mntroduce the novel operator model, and provide details of Volcano's exchange operator that parallehzes all other opera-
tors It allows intra-operator parallelism on parutioned datasets and both vertucal and horizontal inter-operator parallehsm The
exchange operator encapsulates all parallelism 1ssues and therefore makes implementation of parailel database algorthms sigmfi-
cantly easier and more robust. Included m this encapsulation 1s the translaton between demand-driven dataflow withun
pracesses and data-driven dataflow between processes Since the interface between Volcano operators 1s simlar to the one
used ; “"real,” commercial systems, the techniques described here can be used to parallehze other query processing engines

1. Introduction

In order to provide a testbed for database systems
education and research, we decided to implement an extensi-
ble and modular query processing system One important
goal was to achueve flexibility and extensibility without sac-
nficing efficitency The result 1s a small system, consisting
of less than two dozen core modules with a total of about
15,000 lines of C code These modules include a file sys-
tem, buffer management, sorung, top-down B*-trees, and
two algonthms each for natural jomn, semu-jowin, outer jomn,
ant-join, aggregauon, duplicate elimination, division, union,
mtersection, difference, anti-difference, and Cartesian pro-
duct Moreover, a single module allows parallel processing
of all algonthms listed above

The last module, called the exchange module, 15 the
focus of this paper It was designed and umplemented after
most of the other query processing modules The design
goal was to parallehze all exisung query processing algo-
nthms without modifying theirr implementations
Equivalently, the goal was to allow parallehizing new algo-
nthms not yet mvented without requining that these algo-
nthms be implemented with concern for parallehsm This
goal was met almost enurely, the only change to the exist-
g modules concerned device names and numbers to allow
horizontal partiioning over muluple disks, also called disk
stnping [25]

Parallelizing a query evaluation engmne using an
operator 15 a novel idea earhier research projects used

Permussion to copy without fee all or part of this matenal 1s granted provided
that the copies are not made or distnbuted for direct commercial advantage the
ACM copynght notice and the uitle of the publication and its date appear and
notice 18 given that copying 1s by permission of the Association for Computing
Machinety To copy otherwise or to repubhsh, requires a fee and/or specific
permission

© 1990 ACM 089791 365 5/90/0005/0102. $150

tempiate processes that encompass specific operators We
call the new method of parallelizing the operator model In
this paper, we descnibe thus new method and contrast 1t
with the method used m GAMMA and Bubba, which we
call the bracket model Since we developed, implemented,
and tested the operator model within the framework of the
Volcano system, we will describe 1t as realized in Volcano

Volcano was designed to be extensible, its design and
implementation follows many of the ideas outhned by
Batory et al for the GENESIS design {5] In this paper,
we do not focus on or substantiate the claun to extensibihity
and instead refer the reader to [17], suffice 1t to pownt out
that if new operators use and provide Volcano's standard
mterface between operators, they can easily be included 1n a
Volcano query evaluation plan and parallehzed by the
exchange operator

Volcano's mechamism to synchromize muluple opera-
tors in complex query trees within a single process and to
exchange data items between operators are very similar to
many commercial database systems, e¢g, Ingres and the
System R faruly of database systems Thercfore, it seems
farly strmightforward to apply the techmques developed for
Volcano’s exchange operator and outlined in this paper to
paraliehize the query processing engines of such systems

This paper 1s orgamized as follows In the following
section, we brniefly review previous work that influenced our
design, and mntroduce the bracket model of parallehzauon
In Section 3, we provide a more detaled descripion of
Volcano The operator model of paralichzauon and
Volcano's exchange operator are described 1n Sccuon 4
We present expenimental performance measurements in Sce-
non S that show the exchange operator's low overhead
Section 6 contamns a summary and our conclusions from this

effort.

102

2. Previous Work

Since so many different system have been developed
to process large dataset efficientdy, we only survey the sys-
tems that have stwongly influenced the design of Volcano

At the start 1n 1987, we felt that some decisions in
W1SS (11] and GAMMA [12] were not opumal for perfor-
mance or gencrality For instance, the decisions to protect
Wi18S’s butfer space by copywng a data record m or out for
each request and w0 re-request a buffer page for cvery
record during a scan seemed to mnflict too much overhead'
However, many of the design decisions in Volcano were
swongly influenced by expenences with WiSS and
GAMMA The design of the data exchange mechamsm
between operators, the focus of thus paper, i1s one of the
few radical departures from GAMMA's design

Dunng the design of the EXODUS storage manager
(10]), many of these issues were revisited Lessons learned
and tradeoffs explored in these discussions certamnly helped
form the 1deas betund Voicano The development of E [24]
mnfluenced the strong emphasis on iterators for query pro-
cessing The design of GENESIS (5] emphasized the
umportance of a uruform iterator mterface

Finally, a number of convenuonal (relauonal) and
extensible systems have influenced our design Without
further discussion, we mention Ingres {27], System R (3],
Bubba [2], Starburst [26], Postgres [28), and XPRS [29}
Furthermore, there has been a large amount of research and
development 1n the database machune area, such that there
15 an international workshop on the topic Almost all data-
base machine proposals and implementatuons utiize parallel-
1sm i some form We certanly have leamed from ths
work and tned to include uts lessons in the design and
mumplementatuon of Volcano In parncular, we have stnved
for simplicity 1n the design, mechanisms that can support a
multitude of policies, and efficiency 1in all details We
believe that the query execution engine should provide
mecharusms, and that the query opurmizer should incorporate
and decide on policies

Independently of our work, Tandem Computers has
designed an operator called the parallel operaior which 1s
very sumilar to Volcano's exchange operator It has proven
useful in Tandem's query execution engme [14], but 1s not
yet documented in the open literature We leamed about
this operator through one of the referees Furthermore, the
distnbuted database system R* used a techruque sumilar to
ours to tansfer data between nodes {31] However, this
operation was used only to effect data transfer and did not
support data or intra-operator parallelism

2.1. The Bracket Model of Parallelization

When auempting to parallelize exisung single-process
Volcano software, we considered two paradigms or models
of paralichzation The first one, which we call the bracket
model, has been used 1n a number of systems, for example
GAMMA [12] and Bubba {2] The second one, which we
call the operator model, 1s novel and 1s descnbed 1 detail
mn Section 4

! This statement only pertamns to the onginal version of
WSS as deseribed 1n [11] Both decisions were reconsidered for
the version of WiSS used in GAMMA

103

OUTPUT

v INPUT(S) ™

JOIN

TN\ N

AGGREGATION

~

Figure 1 Bracket Model of Parallelization.

In the bracket model, there 1s a genenc process tem-
plate that can receive and send data and can execute
exactly one operator at any pomnt of ume A schemauc
diagram of such a template process 1s shown mn Figure 1
with two possible operators, jomn and aggregation The
code that makes up the generic template nvokes the opera-
tor which then conwols execution, network /O on the
recetving and sending sides are performed as service to the
operator on request, implemented as procedures io be called
by the operator, The number of wnputs that can be acuve
at any pomnt of ime 1s limited to two since there are only
unary and binary operators in most database systems The
operator 1s surrounded by generic template code which
shields 1t from its environment, for example the operator(s)
that produce its mput and consume its output.

One problem with the bracket model 1s that each
locus of control needs to be created This s typically done
by a separate scheduler process, requiring software develop-
ment beyond the actual operators, both mitially and for each
extension to the set of query processing algonthms Thus,
the bracket model seems unsuitable for an extensible sys-
tem

In a query processing system using the bracket
model, operators are coded in such a way that network /O
1s therr only means of obtaiung nput and delivenng output
(with the exception of scan and store operators) The rea-
son 1s that each operator i1s s own locus of control and
network flow control must be used to coordinate muiuple

operators, eg, to match two operators’ speed in a
producer-consumer relationship Unfortunately, thus also
means that passing a data item from one operator to
another always involves expensive nter-process communica-
uon (IPC) system calls, even in the cases when an cnure
query 1s cvaluated on a single machine (and could therefore
be evaluated without IPC mn a single process) or when data
do not need to be repartitioned among nodes in a network
An cxample for the latter 1s the three-way join query
"joinCselAselB” 1n the Wisconsin Benchmark {6,9] which
uses the same join atmbute for both two-way jomns Thus,
iIn quenies with muitiple operators (meaming almost all
quenes), IPC and 1its overhead are mandatory rather than
optional

In most (single-process) query processing engines,
operators schedule each other much more efficiently by
means of procedure calls rather the system calls The con-
cepts and methods needed for operators to schedule each

other using procedure calls are the subject of the next sec-
uon

3. Volcano System Design

In this secuon, we provide an overview of the
modules 1n Volcano Volcano’s file system 1s rather con-
ventional It includes a modules to manage devices, buffer
pools, files, records, and B*-trees For a detailed discus-
sion, we refer to [17]

The file system routines are used by the query pro-
cessing routines to evaluate complex query plans Quernes
are expressed as complex algebra expressions, the operators
of thus algebra are query processing algonthms All algebra
operators are implemented as uerators, 1¢, they support a
simple open-next-close protocol similar to convenuonal file
scans

Associated with each algonthm 1s a state record
The arguments for the algorithms are kept mn the state
record All operauons on records, eg, compansons and
hashing, are performed by support functions which are given
m the state records as arguments to the iterators Thus, the
query processing modules could be mmplemented without
knowledge or constraint on the internal structure of data
objects

In quenes involving more than one operator (ie,
almost all quernes), state records are hnked together by
means of wnpur pointers The input pomnters are also kept
in the state records They are pomters to a QEP structure
that consists of four pomnters to the entry pomts of the
three procedures implemenung the operator (open, next, and
close) and a state record All state information for an
tterator 1s kept n its state record, thus, an aigorithm may
be used muiuple times ;n a query by including more than
one state rccord in the query An operator does not need
to know what kind of operator produces its mput, and
whether 1ts input comes from a complex query tree or from
a sumple file scan We call this concept anonymous inputs
or streams Streams are a sunple but powerful abstraction
that allows combining any number of operators to cvaluate
a complex query Together with the iterator conwol para-
digm, streams represent the most efficient execution model
in terms of ume (overhead for synchromzing operators) and
space (number of records that must residde in memory at
any point of ume) for single process query evaluation

104

Calling open for the top-most operator results in
instantiations for the associated siaic record, e¢g, allocation
of a hash table, and in open calls for all wputs In this
way, all ierators in a query are imnated recursively In
order to process the query, next for the top-most operator 1s
called repeatedly until 1t fails with an end of stream indica-
tor Finally, the close call recursively “shuts down” all
tterators 1 the query This model of query execution
matches very closely the one being wncluded mn the E pro-
grammung language design {24] and the algebraic query
evaluation system of the Starburst extensible relatonal data-

base system [22}

The tree-structured query evaluaton plan 1s used to
execute queries by demand-driven dataflow The return
value of next 1s, besides a staws value, a structure called
NEXT RECORD that consists of a rccord identfier and a
record address m the buffer pool This record 1s pinned
(fixed) m the buffer The protocol about fixing and unfix-
ing records 1s as follows Each record pinned n the buffer
1s owned by exactly one operator at any pomt mn ume
After receiving a record, the operator can hold on to it for
a whie, eg, mn a hash table, unfix 1t, eg, when a predi-
cate fails, or pass it on to the next operator Complex
operations hke join that create new records have to fix
them 1n the buffer before passing them on, and have 1o
unfix their nput records

For intermediate results, Volcano uses virtual devices
Pages of such a device exist only m the buffer, and are
discarded when unfixed. Using this mechamsm allows
assigning umique RID’s o mntermediate result records, and
allows managmg such records in all operators as if they
resided on a real (disk) device The operators are not
affected by the use of wirtual devices, and can be pro-
grammed as if all mput comes from a disk-resident file and
output 1s written to a disk file

4, The Operator Model of Parallelization

When porting Volcano to a multi-processor machine,
we felt 1t destrable to use the single-process query process-
ing code described above without any change The result 1s
very clean, self-scheduling parallel processing We call this
novel approach the operator model of parallehzing a query
evaluation engine In this model, all i1ssues of control are
localized 1n one operator that uses and provides the standard
iterator interface to the operators above and below 1n a
query tree

The module responsible for parallel execuuon and
synchromization 1s called the exchange iterator m Volcano
Notice that 1t 1s an iterator with open, next, and close pro-
cedures, therefore, it can be inserted at any one place or at
multiple places in a complex query tree Figure 2 shows a
complex query execuuon plan that includes data processing
operators, e g file scan and join, and exchange operators

This secuon descnibes how the exchange iterator
implements verucal and honzontal parallelism followed by a
detalled example and a discussion of alternauve modes of
operation of Volcano’s exchange operator

4.1. Vertical Parallelism

The first funcuon of exchange is to provide vertical
parallelism or pipelining between processes The open pro-
cedure crcates a mew process after crcaung a data structure
n shared memory called a port for synchronizauon and data

PRINT

JOIN

JOIN

XCHG XCHG

FS ES

Figure 2 Operator Model of Parallelization

exchange The child process, created using the UNIX fork
system call, 1s an exact duphcate of the parent process
The exchange operator then takes different paths mn the
parent and child processes

The parent process serves as the comsumer and the
chuild process as the producer mn Volcano. The exchange
operator mn the consumer process acts as a normal iterator,
the only difference from other 1terators 1s that 1t recewes its
mput via inter-process commurucauon rather than iterator
(procedure) calls After creaung the child process,
open_exchange in the consumer 1s done Next_exchange
waits for data to ammive via the port and retumns them a
record at a ume Close_exchange informs the producer that
it can close, waits for an acknowledgement, and returns

The exchange operator 1n the producer process
becomes the driver for the query tree below the exchange
operator using open, next, and close on 1its mput The out-
put of next 1s collected in packets, which are arrays of
NEXT RECORD structures The packet size 1s an argument
i the exchange 1terator’s state record, and can be set
between 1 and 32,000 records When a packet 1s filled, 1t

105

1s inserted mto a lmked list ongmnatng in the port and a
semaphore is used to inform the consumer about the new
packet. Records in packets are fixed in the shared buffer
and must be unfixed by a consuming operator

When 1ts input 1s exhausted, the exchange operator 1n
the producer process marks the last packet with an end-of-
Stream tag, passes 1t to the consumer, and waits unul the
consumer allows closing all open files This delay s
necessary 1n Yolcano because files on virtual devices must
not be closed before all thew records are unpinned mn the
buffer In other words, it 1s a pecubanty due to other
design decisions in Volcano rather than inherent in the
exchange 1terator or the operator model of parallelizanon

The alert reader has noticed that the exchange module
uses a different dataflow paradigm than all other operators
While all other modules are based on demand-driven
dataflow (iterators, lazy evaluauon), the producer-consumer
relationship of exchange uses data-driven dataflow (eager
evaluation) There are two reasons for this change in para-
digms Furst, we intend to use the exchange operator also
for horizontal parallelism, w be descnbed below, which 1s
easier to 1mplement with data-dnven dataflow. Second, this
scheme removes the need for request messages Even
though a scheme with request messages, e g, using a sema-
phore, would probably perform acceptably on a shared-
memory machine, we felt that 1t creates unnecessary control
overhead and delays Since we believe that very high
degrees of parallehsm and very Mhgh-performance query
evaluation requure a closely tied network, e g, a hypercube,
of shared-memory machmes, we decided to use a paradigm
for data exchange that has has been proven to perform well
1 a shared-nothung database machine {12,13]

A run-ume switch of exchange enables flow control
or back pressure using an additional semaphore If the pro-
ducer 1s sigmficandy faster than the consumer, the producer
may pm a significant portion of the buffer, thus impeding
overall system performance If flow control 1s enabled,
after a producer has inserted a new packet mto the port, 1t
must request the flow control semaphore After a consumer
has removed a packet from the port, it releases the flow
control semaphore The iutial value of the flow control
semaphore, ¢ g, 4, determines how many packets the pro-
ducers may get ahead of the consumers

Notice that flow control and demand-driven dataflow
are not the same One sigmficant difference 1s that flow
control allows some "slack™ in the synchromzation of pro-
ducer and consumer and therefore truly overlapped execu-
tion, while demand-driven dataflow is a rather ngid struc-
ture of request and delivery in which the consumer wails
while the producer works on its next output The second
significant difference 1s that data-dnven dataflow 1s casier to
combine efficiently with horizontal parallchsm and partton-
mg

4,2, Horizontal Parallelism

There are two forms of honzontal parallchsm which
we call bushy parallelism and intra-operator parallchsm In
bushy parallelism, different CPU’s executc diffcrent subtrees
of a complex query tree Bushy parallchsm and vertical
parallelism are forms of wer-operator parallelism Intra-
operator parallehsm means that several CPU’s perform the
same operator on different subsets of a stored dataset or an

mntermediate result®

Bushy parallelsm can easily be implemented by
msertng onc or two exchange operators into a query ltree
For example, in order to sort two mputs nto a merge-join
mn parallel the first or both inputs are separated from the
merge-join by an exchange operaton’ The parent process
turns to the second sort immediately after forking the child
process that will produce the first input in sorted order
Thus, the two sort operatons are working in parallel

Intra-operator parallelism requres data paruuoning
Parutionming of stored datasets 1s achueved by using muluple
files, preferably on different devices Parutioning of mnter-
mediate results 1s implemented by mcluding multuple queues
m a port If there are multple consumer processes, each
uses its own mput queue The producers use a support
function to decide nto which of the queues (or actually,
mto which of the packets being filled by the producer) an
output record must go Usmg a support function allows
implemenung round-robin-, key-range-, or hash-partitioning

If an operator or an operator subtree 1s executed m
parallel by a group of processes, one of them s designated
the master When a query tree i1s opened, only one process
1s runmng, which 1s naturally the master When a master
forks a child process in a producer-consumer relauonship,
the child process becomes the master withm us group The
first action of the master producer 1s to determune how
many slaves are needed by calling an appropnate support
function If the producer operation 1s to run in parallel, the
master producer forks the other producer processes

Gerber pomnted out that such a centralized scheme 1s
suboptimal for high degrees of parallehsm [15] When we
changed our imitial implementation from forking all producer
processes by the master to using a propagation tree scheme,
we observed signuficant performance improvements In such
a scheme, the master forks one slave, then both fork a new
slave each, then all four fork a new slave each, eic This
scheme has been used very effectively for broadcast com-
muncation and synchromization mn binary hypercubes

Even after opumizing the forking scheme, its over-
head 1s not neghgible We have considered using primed
processes, 1e, processes that are always present and wait
for work packets Primed processes are used :n many com-
mercial database systems Since portable distribution of
compiled code (for support functions) is not trivial, we
delayed this change and plan on using primed processes

2 A fourth form of parallelism 1s inter-query parallelism,
re, the ability of a database management system to work on
several querics concurrently In the current version, Volcano
does not support nter-query parallelism A fifth and sixth form
of parallelism that can be used for database operations nvolve
hardware vector processing {30} and prpelining 1n the instruction
execution Since Volcano 1s a software architecture and follow-
ing the analysis in [8], we do not consider hardware parallelism
further

3 In general, sorted streams can be piped directly into the
jon, both m the single-process and the mulu-process case
Volcano's sort operator includes a parameter “final merge fan-in”
that allows sharing the merge space by two sort operators per-
forming the final merge in an interleaved fashion as requested by
the merge join operator

106

only when we move 10 an cnvwonment with muluple

shared-memory machines® Others have also observed the
hugh cost of process creation and have provided alternatives,
in parucular "light-weight” processes in various forms, eg,
in Mach (1]

After all producer processes are forked, they run
without further synchromzauon among themselves, with two
excepuons Fust, when accessing a shared data structure,
eg, the port to the consumers or a buffer table, short-term
locks must be acquired for the durauon of one linked-list
inseryton Second, when a producer group is also a consu-
mer group, 1e, there are at least two exchange operators
and three process groups mvolved 1n a vertical pipeline, the
processes that are both consumers and producers synchronize
twice Dunng the (very short) imnterval between synchroni-
zauons, the master of this group creates a port which serves
all processes 1n 1ts group

When a close request 1s propagated down the tree
and reaches the first exchange operator, the master
consumer’s close_exchange procedure informs all producer
processes that they are allowed to close down using the
semaphore mentioned above m the discussion on vertical
parallelism If the producer processes are also consumers,
the master of the process group informs its producers, etc,
In thus way, all operators are shut down m an orderly
fashion, and the entre query evaluauon 1s seif-scheduling

4.3. An Example

Let us consider an example Assume a query with
four operators, A, B, C, and D such that A calls B's, B
calls C’s, and C calls D’s open, close, and next pro-
cedures Now assume that this query plan 1s to be run in
three process groups, called A, BC, and D This requires
an exchange operator between operators A and B, say X,
and one between C and D, say Y B and C continue to
pass records via a sumple procedure call to the C’s next
procedure without crossing process boundaries Assume
further that A runs as a smngle process, Aq, while BC and
D run in parallel in processes BCy to BC; and Do to Dj,
for a total of eight processes

A calls X's open, close, and next procedures instead
of B's (Figure 2a), without knowledge that a process boun-
dary will be crossed, a consequence of anonymous wnputs 1
Voicano When X 1s opened, 1t creates a port with one
input queue for Ao and forks BCo (Figure 2b), which n
turn forks BC; and BC: (Figure 2¢) When the BC group
opens Y, BCoy to BC, synchromize, and wait unul the Y
operator in process BCpo has mmtiahzed a port with three
mput queues BCy creates the port and stores ils location
at an address known only to the BC processes Then BC,
to BC; synchromize agam, and BC, and BC, get the port
information from 1its locauon Next, BCo forks Do (Figure
2d) which 1in turn forks D; to Dj (Figure 2¢)

When the D operators have cxhausted their inputs in
Do o D3, they retum an end-of-stream wndicator to the
dnver parts of ¥ In each D process, ¥ flags s last
packets to each of the BC processes (1, a total of 3x4=12
flagged packets) with an end-of-stream iag and then waits
on a semaphore for permussion to close The copies of the

4 In fact, this work 1s currently under way

A
P
Ay
A
X
BC, BC, BC,
X X 3
B B B
c c c
Y Y e
Dl
Y
D
Ay
A
X
BC,
X
B
c
Y.
D, p, D,
Y Y Y 7
D o D D

Y operator in the BC processes count the number of tagged

Ao
A
X
BC,

X

B

c

Y

Figure 3a-c. Creating the BC processes.

Ao

BC, BC,

KOUX'S

K O
KOWX

| ©
o
b_U

<P
<
[

Figure 3d-e. Creating the D processes.

A
A
X
BC,
X
B
c
hd

Figure 3f-h, Closing all processes down.

Ao
A

BC, BC, BC,
X 3 X
B B B
c c c

¥ Y X

Ay
A
X

C 1o Y’s next procedure will return an end-of-stream ndi-

packets, after four tags (the number of producers or D cator In effect, the end-or-stream mdicator has been pro-

processes), they have exhausted ther mnputs, and a call by

107

pagated from the D operators to the C operators

In due

turn, C, B, and then the dniver part of X will receive an
end-of-stream 1ndicator After receiving three tagged pack-
ets, X's next procedure 1n Ao will indicate end-of-stream 10
A

When end-of-stream reaches the root operator of the
query, A, the query tree 1s closed Closing the exchange
operator X 1ncludes releasing the semaphore that allows the
BC processes to shut down (Figure 3f) The X dnver mn
each BC process closes its input, operator B B closes C,
and C closes Y Closng Y in BC; and BC, 1s an empty
operauon When the process BC, closes the exchange
operator Y, Y permuts the D processes to shut down by
releasing a semaphore After the processes of the D group
have closed all files and deallocaied all temporary data
structures, ¢ g, hash tables, they indicate the fact to ¥ 1n
BC, using another semaphore, and Y's close procedure
returns to 1its caller, C’'s close procedure, while the D
processes terminate (Figure 3g) When all BC processes
have closed down, X’s close procedure indicates the fact to
Ao and query evaluation termunates (Figure 3h)

4.4. Variants of the Exchange Operator

There are a number of siuwanons for which the
exchange operator described so far required some modifica-
uons or extensions In this section, we outline additional
capabiliies implemented n Volcano’s exchange operator

For some operauons, it 1s desirable to replicate or
broadcast a stream to all consumers For example, one of
the two partitioning methods for hash-division [19] requires
that the divisor be rephcated and used with each paruton
of the dividend Another example i1s Baru's parallel jomn
algonthm 1n which one of the two mput relations 1s not
moved at all while the other relation 1s sent through all
processors [4] To support these algornithms, the exchange
operator can be directed (by settng a switch in the state
record) to send all records to all consumers, after pinung
them appropriately muluple tmes m the buffer pool
Notice that 1t 1s not necessary to copy the records since
they reside in a shared buffer pool, 1t 1s sufficient to pm
them such that cach consumer can unpin them as if 1t were
the only process using them After we implemented this
feature, parallelizing our hash-division programs using both
divisor partiionmg and quotient parutioning [19] took only
about three hours and ywelded not nsignificant speedups

When we unplemented and benchmarked parallel sort-
ing [21], we found 1t useful to add two more features to
exchange First, we wanted to implement a merge network
in which some processors produce sorted streams merge
concurrently by other processors Volcano's sort 1terator
can be used to gencrate a sorted stream A merge iterator
was easily derived from the sort module It uses a single
level merge, instcad of the cascaded merge of runs used in
sort. The nput of a merge ierator 15 an exchange Dif-
ferently from other operators, the merge iterator requires o
disunguish the mput records by thewr producer As an
example, for a jon operation 1t does not matter where the
mput records were created, and all inputs can be accumu-
lated 1n a single mput stream For a merge operation, 1t 1S
crucial to disunguish the mput records by their producer n
order to merge muluple sorted streams correctly

We modified the exchange module such that it can
keep the input records separated according to thewr produc-
ers, swiiched by sctung an argument field n the state

108

record A third argument to next_exchange 1s used to com-
municate the requred producer from the merge to the
exchange ierator Further modifications included increasing
the number of input buffers used by exchange, the number
of semaphores (including for flow control) used between
producer and consumer part of exchange, and the logic for
end-of-stream All these modifications were implemented 1n
such a way that they support multi-level merge trecs, eg, a
parallel binary merge tree as used in {7] The mergmng
paths are selected automatcally such that the load 15 distri-
buted as evenly as possible in each level

Second, we implemented a sort algonthm that sorts
data randomly partinoned over multiple disks nto a range-
parntioned file with sorted parutions, 1e, a sorted file dis-
tnbuted over muluple disks When using the same number
of processors and disks, we used two processes per CPU,
one to perform the file scan and paruuon the records and
another one 1o sort them We realized that creaung and
running more processes than processors mflicted a sigmfi-
cant cost, since these processes competed for the CPU’s and
therefore required operaung system scheduling While the
scheduling overhead may not be too sigmficant, mn our
environment with a central run queue allowing processes to
mugrate freely and a large cache associated with each CPU,
the frequent cache migraton adds a sigmificant cost.

In order to make better use of the avalable process-
ing power, we decided to reduce the number of processes
by half, effecuvely moving to one process per disk This
required modificauons to the exchange operator Unul then,
the exchange operator could "hve' only at the top or the
bottom of the operator tree in a process Since the modifi-
cation, the exchange operator can also be i the middle of
a process’ operator wree When the exchange operator s
opened, 1t does not fork any processes but estabhshes 2
commumcation port for data exchange The next operation
requests records from its input tree, possibly sending them
off to other processes in the group, unul a record for is
own paruton is found

This mode of operaton® also makes flow control
obsolete A process runs a producer (and produces nput
for the other processes) only if it does not have mput for
the consumer Therefore, if the producers are in danger of
overrunmung the consumers, none of the producer operators
gets scheduled, and the consumers consume the avalable
records

In summary, the operator model of parallel query
evaluanon provides for self-scheduling parallel query evalua-
tion 1n an exicnsible database system The most important
properies of this novel approach are that the new module
implements three forms of parallel processing within a smn-
gle module, that it makes parallcl query processing entircly
self-scheduling, and that 1t did not requre any changes in
the exisung query processing modulcs, thus leveraging signi-
ficantly the ume and effort spent on them and allowing
easy parallel unplementation of new algonthms

5 Whether exchange forks new producer processes (the ori-
gmal exchange design descnibe 1n Section 4 1) or uses the exist-
ing process group to execute the producer operations 1s a run-
time switch

5. Overhead and Performance

From the beginning of the Volcano project, we were
very concemed about performance and overhead In this
section, we report on expenmental measurements of the
overhcad mduced by the exchange operator This 1s not
meant to be an extensive or complete analysis of the
operator’s performance and overhead, the purpose of this
section 1s t0 demonstrate that the overhead can be kept m
acceptable lhimuts

We measured elapsed times of a program that creates
records, fills them with four random integers, passes the
records over three process boundaries, and then unfixes the
records in the buffer The measurements are elapsed umes
on a Sequent Symmetry with twelve Intel 16 MHz 80386
CPU’s This 1s a shared-memory machime with a 64 KB
cache for each CPU Each CPU delivers about 4 MIPS m
this machine The umes were measured using the hardware
mucrosecond clock available on such machines Sequent’s
DYNIX operaung system provides exactly the same inter-
face as Berkeley 42 BSD or System V UNIX and runs
(1e, executes system calls) on all processors

First, we measured the program without any exchange
operator Creaung 100,000 records and releasing them m
the buffer took 2028 seconds Next, we measured the pro-
gram with the exchange operator switched to the mode m
which 1t does not create new processes In other words,
compared to the last experiment, we added the overhead of
three procedure calls for each record For this run, we
measured 28 00 seconds Thus, the three exchange opera-
tors 1n this mode added (28 O0sec - 20 28sec) / 3 / 100,000
= 25 73usec overhead per record and exchange operator

When we switched the exchange operator to create
new processes, thus creang a pipeline of four processes,
we observed an elapsed time of 1621 seconds with flow
control enabled, or 1616 seconds with flow control dis-
abled The fact that these umes ars less than the ume for
single-process program execution indicates that data transfer
using the exchange operator 1s very fast, and that pipelined
multi-process execution 1s warranted

We were parucularly concemed about the granulanty
of data exchange between processes and 1s impact on
Volcano’s performance In a separate experiment, we reran
the program muluple umes varying the number of records
per exchange packet. Table 1 shows the performance for
transferring 100,000 records from a producer process group

through two intcrmediate process groups 10 a single
Packet Size Elapsed Tine
[Records] {Seconds]
1 176 4
2 976
5 4527
10 2767
2 2015
50 157
100 1376
200 12 87
250 1273

Table 1 Exchange Performance

109

consumer process Each of thesc three groups included
three processes, thus, cach of the producer processes created
33,333 records All these experiments were conducted with
flow conwol ecnabled with three ‘slack” packets per
exchange We used different partitioning (hash) funcuons
for each exchange iterator to cnsure that records were pass-
ing along all possible data paths, not only along three
independent pipelines

As can be seen m Table 3, the performance penalty
for very small packets was sigmificant The elapsed ume
was almost cut i half when the packet size was increased
from 1 to 2 records, from 176 seconds to 98 seconds As
the packet size was increased further, the elapsed ume
shrank accordingly, to 1571 seconds for 50 records per
packet and 12 73 seconds for 250 records per packet

It seemed reasonable to speculate that for small pack-
ets, most of the elapsed ume was spent on data exchange
To venfy this hypothesis, we calculated regression and
comrelation coefficients of the number of data packets
(100,000 divided over the packet size) and the elapsed
umes We found an intercept (base ume) of 12 18 seconds,
a slope of 0001654 seconds per packet, and a correlation
of more than 099 Considenng that we exchanged data
over three process boundaries and that on two of those
boundaries there were three producers and three consumers,
we estimate that the overhead was 165dusec / 1667 =
992uusec per packet and process boundary

Two conclusions can be drawn from these expen-
ments First, verucal parallelism can pay off even for very
sumple query plans if the overhead of data transfer 1s small
Second, since the packet size can be set to any value, the
overhead of Volcano’s exchange ierator is neglgible

6. Summary and Conclusions

We have described Volcano, a new query evaluation
system, and how parallel query evaluation 1s encapsulated in
a single module or operator The system 1s operational on
both single- and mulu-processor systems, and has been used
for a number m database query processing studies [19-
21,23)

Volcano utilizes dataflow techniques within processes
as well as between processes Within a process, demand-
dnven dataflow 1s implemented by means of iterators
Between processes, data-dnven dataflow 1s used to exchange
data between producers and consumers effictently If neces-
sary, Volcano's data-driven dataflow can be augmented with
flow control or back pressure Honzontal parutioning 1s
used both on stored and wmtermediate datascts to allow
intra-operator paralleism The design of the exchange
operator embodies the parallel executon mechanism for
vertical, bushy, and ntra-operator parallchsm, and it per-
forms the transiions from demand-dnven 1o data-dniven
dataflow and back

Using an operator to encapsulatc parallehsm as
explored 1n the Volcano project has a number of advantages
over the bracket model First, it hides the fact that paral-
lelism 1s used from all other operators Thus, other opera-
tors can be implemented without consideration for parallel-
ism Second, since the exchange operator uses the same
mnterface 0 i1ts mput and output, 1t can be placed anywhere
in a tree and combined with any other operators Hence, 1t
can be used 1o parallehze new operators, and elfccuvely

combimnes extensibility and paralleism Thud, it does not
requre 2 separale scheduler process smce scheduling
(including mutiahization, flow control, and final clean-up) 1s
part of the operator and therefore performed within the stan-
dard open-next-close iterator paradigm This tums mto an
advantage in two situations When a new operator 1s
mtegrated into the system, the scheduler and the template
process would have to be modified, while the exchange
operator does not requure any modificanons When the sys-
tem 1s ported to a new envuonment, only one module
requres modifications, the exchange 1iterator, not two
modules, the template process and the scheduler Fourth, it
does not require that operators in a parallel query evaluauon
system use IPC to exchange data. Thus, each process can
execute an arbirary subtree of a complex query evaluaton
plan Fifth, a single process can have any number of
mputs, not just one or two Fnally, the operator can be
(and has been) umplemented in such a way that 1t can mul-
uplex a single process between a producer and a consumer
In some respects, 1t efficiently implements application-
specific co-routines or threads

We plan on several extensions of the exchange opera-
tor First, we plan on extending our design and mmplemen-
tanon to support both shared and distnbuted memory
(“shared-nothuing architecture”) and to allow combwung these
concepts 1n a closely tied network of shared-memory mulu-
computers while mamntamung the encapsulauon properues.
This might require using a pool of "primed" processes and
mterpreting support functions We believe that mn the long
run, high-performance database machines, both for transac-
ton and query processing, will employ this archutecture
Second, we plan on devising a error and exception manage-
ment scheme that makes excepuon notification and handling
transparent across process and machine boundanes. Thrd,
we plan on using the exchange operator to parailelize query
processing in object-onented database systems [16]. In our
model, a complex object 1s represented mn memory by a
pounter to the root component (pmnned in the buffer) with
pomters to the sub-components (also pinned) and passed
between operators by passing the root component [18]
While the current design already allows passing complex
objects ;n a shared-memory environment, more functionahty
s needed m a dismbuted-memory system where objects
need to be packaged for network transfer

Volcano 1s the first implemented query evaluanon
system that combmes extensibility and parallehsm. Encap-
sulatmg all parallehsm issues mio one module was essential
10 makmng this combinauon possible The encapsulaton of
parallebsm 1n Volcano allows for new query processing
algorithms to be coded for single-process execution but nm
n a highly parallel environment without modificauons We
expect that thus will speed parallel algonthm development
and evaluauon sigmificantly Since the operator model of
parailel query processing and Volcano’s exchange operator
encapsulates parallelsm and both uses and provides an itera-
tor interface sumilar to many existing database systems, the
concepts explored and outhined in tus paper may very well
be useful in parallelizing other database query processung
software

Acknowledgements

A number of fnends and colleagues were great
sounding boards during the design and implementanon of
parallellsm 1n Volcano, most notably Frank Symonds and

110

Leonard Shapwo Jerry Borgvedt mmplemented a prototype
distributed-memory exchange operator — NSF supported
this work with contracts IRI-8805200 and IRI-8912618
Sequent Computer Systems provided machine tme for
expenments on a large machine,

References

1 M Accetta, R Baron, W. Bolosky, D Golub, R.
Rashud, A Tevaman and M Young, ‘‘Mach. A New
Kernel Foundauon for UNIX Development'’, Summer
Conference Proceedings 1986,

2 W Alexander and G. Copeland, ‘‘Process
Dataflow Control m Distnbuted Data-Intensive
Systems’’, Proceedings of the ACM SIGMOD
Conference, Chicago, IL, June 1988, 90-98

3 M M. Astrahan, M W, Blasgen, D. D Chamberln,
K. P. Eswaran, J. N, Gray, P. P. Gnffiths, W. F.
King, R. A Lone, P R. McJones, J W Mehl, G.
R Puwzoly, I L Traiger, B W Wade and V,
Watson, ‘‘System R* A Relational Approach to
Database Management”’, ACM Transactions on
Database Systems 1, 2 (June 1976), 97-137.

4, C. K. Bay, O, Fneder, D. Kandlur and M Segal,
“Jom on a Cube Analysis, Simulaton, and
Implementation’’, Proceedings of the Sth International
Workshop on Database Machines, 1987.

5 D S. Batory, ‘‘GENESIS' A Project 1o Develop an
Extensible Database Management System'’,
Proceedings of the Int'l Workshop on Object-Oriensed
Database Systems, Pacific Grove, CA, September

and

1986, 207-208.
6. D. Buton, D. J. DeWwrt and C. Turbyfill,
*‘Benchmarking Database Systems: A Systemauc

Approach’’, Proceeding of the Conference on Very
Large Data Bases, Florence, Italy, October-November
1983, 8-19

7 D. Bitton, H. Boral, D. J DeWiut and W. K.
Wilkinson, ‘‘Parailel Algonthms for the Execution of
Relational Database Operations’, ACM Transactions
on Database Systems 8, 3 (September 1983), 324-353

8. H. Boral and D. J DeWitt, **Database Machines. An
Idea Whose Time Has Passed? A Cnuque of the
Future of Database Machines”, Proceeding of the
International Workshop on Database Machines,
Murnuch, 1983

9. H. Boral and D J DeWut, ‘A Methodology for
Database System Performance Evaluauon’’,
Proceedings of the ACM SIGMOD Conference,
Boston, MA, June 1984, 176-185

M J Carey, D J DeWitt, J] E Richardson and E
J. Shekita, *‘Object and File Management in the
EXODUS Extensible Database System'*, Proceedings
of the Conference on Very Large Data Bases, Kyoto,
Japan, August 1986, 91-100

H T. Chou, D J DeWit, R H Kaz and A. C.
Klug, '‘Design and Implementanon of the Wisconsin
Storage System'’’, Software - Practice and Experience
15, 10 (October 1985), 943-962

D J DeWwwt, R H Gerber, G Graefe, M L.
Heytens, K B Kumar and M Murahknshna,

10

11

12,

13

14

15

16

17

18

19

20

21

26

“GAMMA - A High Performance Dataflow Database
Machune'', Proceedings of the Conference on Very
Large Data Bases, Kyoto, Japan, August 1986, 228-
237

D J DeWit, S Ghandeharadizeh, D Schneider, A
Bricker, H I Hsiao and R Rasmussen, ““The
Gamma Database = Machme Project”, IEEE
Transacuions on Knowledge and Data Engineering 2,
1 (March 1990)

S Englert, J Gray, R Kocher and P Shah, “A
Benchmark of NonStop SQL Release 2 Demonstraung
Near-Linear Speedup and Scaleup on Large
Databases’’, Tandem Computer Systems Techmcal
Report 894 (May 1989)

R Gerber, ‘Dataflow Query Processing using
Muluprocessor Hash-Parutioned Algonthms', Ph.D
Thesis, Madison, October 1986

G Graefe and D Maier, *‘Query Optrmuzauon m
Object-Onented Database Systems A Prospectus', m
Advances in Object-Oriented Database Systems, vol
334 , K. R Dumch (editor), Springer-Verlag,
September 1988, 358-363

G. Graefe, ‘‘Volcano An Extensible and Parallel
Dataflow Query Processing System'', Oregon
Graduate Center, Computer Science Techmical Report,
Beaverton, OR, June 1989

G Graefe, ‘‘Set Processing and Complex Object
Assembly 1 Volcano and the REVELATION
Project’’, Oregon Graduate Center, Computer Science
Technical Repor:, Beaverton, OR, June 1989

G. Graefe, ‘‘Relauonal Division. Four Algonthms
and Thewr Performance’’, Proceedings of the IEEE
Conference on Data Engineering, Los Angelos, CA,
February 1989, 94-101

G. Graefe and K Ward, *‘Dynamuc Query Evaluanon
Plans'’, Proceedings of the ACM SIGMOD
Conference, Portland, OR, May-June 1989, 358

G Graefe, ‘‘Parallel Extenal Sornng in Volcano™,
submutted for publication, February 1990

L. M Haas, W F Cody, J] C Freytag, G Laps, B
G. Lindsay, G. M Lohman, K Ono and H Pirahesh,
**An Extensible Processor for an Extended Relanonal
Query Language'', Computer Science Research
Report, San Jose, CA, Apnl 1988

T Keller and G Graefe, '‘The One-to-One Maich
Operator of the Volcano Query Processing System',
Oregon Graduate Center, Computer Science Techmcal
Report, Beaverton, OR, June 1989

J E Richardson and M J Carey, ‘‘Programming
Constructs for Database System Implementation m
EXODUS'™, Proceedings of the ACM SIGMOD
Conference, San Francisco, CA., May 1987, 208-219

K Salem and H Garcia-Molna, *‘Disk Stmpmg’,
Proceedings of the IEEE Conference on Daia
Engineering, Los Angeles, CA, February 1986, 336

P Schwarz, W Chang,] C Freytag, G Lohman, J
McPherson, C Mohan and H Pirahesh, ‘'Extensibility
m the Starburst Database System'', Proceedings of
the Int'l Workshop on Object-Oriented Database

111

27

28,

29

30.

31

Systems, Pacific Grove, CA, September 1986, 85-92.

M Sionebraker, E. Wong, P, Kreps and G. D. Held,
“The Design and Implementauon of INGRES'', ACM
Transactions on Database Systems 1, 3 (September
1976), 189-222

M. Stonebraker and L A Rowe, “The Design of
POSTGRES", Proceedings of the ACM SIGMOD
Conference, Washington, DC., May 1986, 340-355,

M Stonebraker, R. Kawz, D. Patterson and J
Ousterhout, **The Design of XPRS", Proceedings of
the Conference on Very Large Databases, Los
Angeles, CA, August 1988, 318-330.

S. Toru, K. Kopma, Y. Kanada, A. Sakata, S.
Yoshuizumu and M. Takahashi, ‘‘Acceleraung
Nonnumencal Processng by an Extended Vector
Processor’’, Proceedings of the IEEE Conference on
Data Engineering, Los Angeles, CA, February 1988,
194-201

P. Wilhams, D. Damels, L. Haas, G Lapis, B.
Lindsay, P. Ng, R. Obermarck, P Selinger, A.
Walker, P Wilms and R. Yost, ‘“R*. An Overview
of the Architecture’’, m Readings in Database
Systems, M. Stonebraker (editor), Morgan-Kaufman,
San Mateo, CA, 1988.

