Research
at Google

v

Lecture: (GOOgle Chubby lock service

Y ZooKeeper _ :
yaa (i am your father | http://research.google.com/archive/chubby.html

10/15/2014

Romain Jacotin

Chubby romain.jacotin@orange.fr

Introduction

Design

Mechanisms for scaling
Experience

Summary

The “Part-Time” Parliament
— Leslie Lamport

Introduction

Abstract

* Chubby lock service is intended for use within a loosely-coupled distributed system consisting

large number of machines (10.000) connected by a high-speed network
— Provides coarse-grained locking
— And reliable (low-volume) storage

* Chubby provides an interface much like a distributed file system with advisory locks
— Whole file read and writes operation (no seek)
— Aduvisory locks
— Notification of various events such as file modification
 Design emphasis
— Availability
— Reliability
— But not for high performance / high throughput

* Chubby uses asynchronous consensus: PAXOS with lease timers to ensure liveness

Introduction

Design

Mechanisms for scaling
Experience

Summary

Design

Google’s rationale (2006)

Design choice: Lock Service or Client PAXOS Library ?

Initial Death Star design

* Client PAXOS Library ?

Depend on NO other servers (besides the name service ...)
Provide a standard framework for programmers

e Lock Service ?

Make it easier to add availability to a prototype, and to maintain existing program structure and communication patterns

Reduces the number of servers on which a client depends by offering both a name service with consistent client caching and
allowing clients to store and fetch small quantities of data

Lock-based interface is more familiar to programmers

Lock service use several replicas to achieve high availability (= quorums), but even a single client can obtain lock and make
progress safely = Lock service reduces the number of servers needed for a reliable client system to make progress 5

Google’s rationale (2006)

Design

 Two key design decisions

Google chooses lock service (but also provide a PAXOS client library independently from Chubby for specific projects)
Serve small files to permit elected primaries (= client application masters) to advertise themselves and their parameters

 Decisions based on Google's expected usage and environment

Allow thousands of clients to observe Chubby files - Events notification mechanism to avoid polling by clients that wish to
know change

Consistent caching semantics prefered by developers and caching of files protects lock service from intense polling
Security mechanisms (access control)

Provide only coarse-grained locks (long duration lock = low lock-acquisition rate = less load on the lock server)

Design
System structure

* Two main components that communicate via RPC
— A replica server
— Alibrary linked against client applications
* A Chubby cell consists of small set of servers (typically 5) knows as replicas

- Replicas use a distributed consensus protocol (PAXOS) to elect a master and replicate logs
- Read and Write requests are satisfied by the master alone

— If a master fails, other replicas run the election protocol when their master lease expire (new master elected in few seconds)
* Clients find the master by sending master location requests to the replicas listed in the DNS
— Non master replicas respond by returning the identity of the master
- Once a client has located the master, client directs all requests to it either until it ceases to respond, or until it indicates that it is no longer the master

__

{ NS - chubby.deathstar.sith= |

: D h A : 1. 3. ~ ™
E ; A | 1.1.1.1,2.2.2.2,3.3.3.3, / Chubby cell .
I servers | 4.4.4.4,5.5.5.5 Master = 5.5.5.5 !

\ 8.8.4.4 8.8.8.8 | (1.1.1.1 2.2.2.2 3333 4444

1 - DNS request = chubby.deathstar.sith ?

Chubby lib

Application

PAXOS distributed consensus
* Chubby cell with N = 3 replicas

Replicas use a distributed consensus protocol to
elect a master (PAXOS). Quorum =2 for N =3

The master must obtain votes from a majority
of replicas that promise to not elect a different
master for an interval of a few seconds
(=master lease)

The master lease is periodically renewed by the
replicas provided the master continues to win a
majority of the vote

During its master lease, the master maintains
copies of a simple database with replicas
(ordered replicated logs)

Write request are propagated via the consensus
protocol to all replicas (PAXOS)

Read requests are satisfied by the master alone

If a master fails, other replicas run the election
protocol when their master lease expire (new
master elected in few seconds)

Design

Prepare = please votes for me
and promises not to vote for
someone else during 12 seconds

Promise = OK i vote for you and
promise not to vote for someone
else during 12 seconds

if i received quorum of Promise
then i am the Master an i can send
many Accept during my lease
(Proposer vote for himself)

Accept = update your replicated
logs with this Write client request

Accepted =i have write in my log
your Write client request

if a replica received quorum of

Accepted then the Write is commitedi
(replica sends an Accepted to himself)i

Re-Prepare =i love to be the
Master, please re-votes for me
before the end the lease so i can
extend my lease

¢4----———=-

|

.

Design

Files & directories
Chubby exports a file system interface simpler than Unix

Tree of files and directories with name components separated by slashes

Each directory contains a list of child files and directories (collectively called nodes)

Each file contains a sequence of un-interpreted bytes

No symbolic or hard links

No directory modified times, no last-access times (to make easier to cache file meta-data)

No path-dependent permission semantics: file is controlled by the permissions on the file itself

The 1s prefix is common
to all Chubby names:
stands for lock service

Second component dc-tatooine is
the name of the Chubby cell.

It is resolved to one or more Chubby

servers via DNS lookup

The remaining of the name is
interpreted within the named
Chubby cell

/ls/dc-tatooine/bigtable/root-tablet

Design

Files & directories : Nodes
* Nodes (= files or directories) may be either permanent or ephemeral

 Ephemeral files are used as temporary files, and act as indicators to others that a client is alive

 Any nodes may be deleted explicitly
— Ephemeral nodes files are also deleted if no client has them open
— Ephemeral nodes directories are also deleted if they are empty

* Any node can act as an advisory reader/writer lock

10

Design

Files & directories : Metadata
3 ACLs

Three names of access control lists (ACL) used to control reading, writing and changing the ACL names for the node
Node inherits the ACL names of its parent directory on creation

ACLs are themselves files located in “/1s/dc-tatooine/acl” (ACL file consist of simple lists of names of principals)
Users are authenticated by a mechanism built into the Chubby RPC system

4 monotonically increasing 64-bit numbers

1.

2
3.
4

Instance number: greater than the instance number of any previous node with the same name
Content generation number (files only): increases when the file’s contents are written

Lock generation number: increases when the node’s lock transitions from free to held

ACL generation number: increases when the node’s ACL names are written

64-bit checksum

11

Design

Files & directories : Handles
* Clients open nodes to obtain Handles (analogous to UNIX file descriptors)

e Handles include:

— Check digits: prevent clients from creating or guessing handles = full access control checks performed only when handles are
created
— Asequence number: Master can know whether a handle was generated by it or a previous master

— Mode information: (provided at open time) to allow the master to recreate its state if an old handle is presented to a newly
restarted master

12

Design

Locks, Sequencers and Lock-delay
* Each Chubby file and directory can act as a reader-writer lock (locks are advisory)

* Acquiring a lock in either mode requires write permission
— Exclusive mode (writer): One client may hold the lock
— Shared mode (reader): Any number of client handles may hold the lock

* Lock holder can request a Sequencer : opaque byte string describing the state of the lock immediately after acquisition
— Name of the lock + Lock mode (exclusive or shared) + Lock generation number

° Sequencer usage
— Application’s master can generate a sequencer and send it with any internal order sends to other servers
— Application’s servers that receive orders from a master can check with Chubby if the sequencer is still good (= not a stale master)

* Lock-delay : Lock server prevents other clients from claiming the lock during lock-delay period if lock

becomes free
— client may specify any look-delay up to 60 seconds
— This limit prevents a faulty client from making a lock unavailable for an arbitrary long time
— Lock delay protects unmodified servers and clients from everyday problems caused by message delays and restarts ...

13

Design

Events

* Session events can be received by application
— Jeopardy: when session lease timeout and Grace period begins (see Fail-over later ;-)
— Safe: when the session is known to have survived a communication problem

— Expired: if the session timeout

* Handle events: clients may subscribe to a range of events when they create a Handle (=Open phase)
— File contents modified
— Child node added/removed/modified
— Master failed over
— A Handle (and it’s lock) has become invalid
— Lock acquired
— Conflicting lock request from another client

* These events are delivered to the clients asynchronously via an up-call from the Chubby library

* Mike Burrows: “The last two events mentioned are rarely used, and with hindsight could have been omitted.”
14

Design

API

. Open/Close node name

- func Open() Handles are created by Open() and destroyed by Close()
- func Close() This call never failed
. Poison

- func Poison() Allows aclient to cancel Chubby calls made by other threads without fear of de-allocating the memory being accessed by them

. Read/Write full contents

- func GetContentsAndStat() Atomic reading of the entire content and metadata
- func GetStat() Reading of the metadata only
- func ReadDir() Reading of names and metadata of the directory
- func SetContents() Atomic writing of the entire content

. ACL
- func SetACL() Change ACL for a node

. Delete node
- func Delete() If it has no children

. Lock
- func Acquire() Acquire a lock
- func TryAcquire() Try to acquire a potentially conflicting lock by sending “conflicting lock request” to the holder
- func Release() Release a lock

. Sequencer
- func SetSequencer() Returns a sequencer that describes any lock held by this Handle
- func GetSequencer() Associate a sequencer with a Handle. Subsequent operations on the Handle failed if the sequencer is no longer valid
- func CheckSequencer() Checks whether a sequencer is valid

Design

Design n°1
* Primary election example without sequencer usage, but with lock-delay (worst design)

If the lock on “/1s/empire/deathstar/
master” becomes free because the holder
has failed or become inaccessible, the lock
server will prevent others backup servers
from claiming the lock during the lock-delay
of 1 minute

The first server to get the exclusive lock on
file “/1s/empire/deathstar/master”is
the Master, writes its name on the file and
sets lock-delay to 1 minute; the two others
servers will only receive events notifications

about this file

——

®{ Application |
‘ workers

-
4

{ Application

Rl) J/\L
i.,‘f ‘?““ wt, " Execute order 66! i
a2 - .
o | |

4

,-______________
i e e

Worker executes
the request 16

Master sends an
order to a worker

Design

Designh n°2

* Primary election example with sequencer usage (best design)

The first server to get the exclusive lock on
file “/1s/empire/deathstar/master”is
the Master, write its name on the file and get
a sequencer; the two others servers will only

receive events notifications about this file

{ Appllca‘uon
scheduler

N,
AY

1
1
1
1
1
1
1
1
1
1
1

Worker must check the sequencer
before executing the request

T
T

Master sends an order to a
worker by adding the
sequencer to the request

-

checked against worker’s Chubby cache

Design

Design n°3
* Primary election example with sequencer usage (optimized design)

The first server to get the exclusive lock on :" Chubby cell PAXOS i / Worker must check the sequencer \
file “/1s/empire/deathstar/master”is i I | before executing the request
' eader |
the Master, write its name on the file and get i i
a sequencer; the two others servers will only | "",ly ','-'}y ','",'E; ','",A'] check against the most recent
q am q 8 @ V0NN 1N~ N0 NP
receive events notifications about this file ' o ” olbe” | sequencer that the server has observed
__ ’ if the worker does not wish to maintain

session with Chubby /

e mmmmmmmmnmmmamd (| Tmmmmoatl T T eeeee— T I T e e
4

{ Application
scheduler

Alderaan'!

Army of

e e e e

|

4 ,f
|

» J
\

i\ ”’%fI

‘ : ‘ workers ;
. Master., Master sends an order to a |[==5-=2- ST S T o L d
worker by adding the
sequencer to the request 18

———3 invalidation for clients

Master acknowledges -
—_— [| want to change file content of F

Design

Caching

* Clients cache file data and node metadata in a consistent, write-through in memory cache

— Cache maintained by a lease mechanism (client that allowed its cache lease to expire then informs the lock server)
— Cache kept consistent by invalidations sent by the master, which keeps a list of what each client may be caching

* When file data or metadata is to be changed
— Master block modification while sending invalidations for the data to every client that may cached it
— Client that receives of an invalidation flushes the invalidated state and acknowledges by making its next KeepAlive call

— The modification proceeds only after the server knows that each client has invalidated its cache, either by acknowledged the
invalidation, or because the client allowed its cache lease to expire

Request for changing
content of file “X”
Master sends cache

...

that cache “X” ‘Client & PAXOS Chubby cell 3
Clients flushes caches : \ |
—3> forfile “X” and [I have in cache file leader é N » :
acknowledge the Master “ls/empire/tux” W T rv}, rv}, :
——3 Writechange tothe Chubby ~ cmmmmmmmm e (/i\ P { /i\ D (P (G~ |

replicated database

/,
I
i
1
H

Client

the writer about

lll : ”
change done s/empire/tux

2 - Master location ?

Design

Sessions and KeepAIives + Handles, locks, and cached data all remain valid while session remains valid

Client requests a new session on first contacting the master of a Chubby cell

Client ends the session explicitly either when it terminates, or if the session has been idle
— Session idle = no opens handles and no call for a minute

Each session has an associated lease interval

— Lease interval = master guarantees not to terminate the session unilaterally until the lease timeout
— Lease timeout = end of the lease interval

old master dies l no master lnew master elected

OLD MASTER NEW MASTER

CLIENT

} jeopardy safe 20

Design

Sessions and KeepAlives

* Master advances the lease timeout

— On session creation

— When a master fail-over occurs

— When it responds to a KeepAlive RPC from the client:
* Onreceiving a KeepAlive (1), Master blocks the RPC until client’s previous lease interval is close to expiring
* Master later allows the RPC to return to the client (2) and informs it about the new lease timeout (= lease M2)
* Master use default extension of 12 second, overload master may use higher values
¢ Client initiates a KeepAlive immediately after receiving the previous reply

Protocol optimization : KeepAlive reply is used to transmit events and cache invalidations back to the client

old master dies l no master lnew master elected

1 M2
case M2

NEW MASTER

OLD MASTER !

CLIENT

jeopardy safe 21

Design

Fail-overs
* When a master fails or otherwise loses mastership

Discards its in-memory state about sessions, handles, and locks

Session lease timer is stopped

If a master election occurs quickly, clients can contact the new master before their local lease timer expire

If the election takes a long time, client flush their caches (= JEOPARDY) and wait for the GRACE PERIOD (45 seconds)
while trying to find the new master

old master dies l no master lnew master elected

1 M2
case M2

OLD MASTER NEW MASTER

Y

CLIENT

jeopardy safe 22

Design

Fail-overs : Newly elected master’s tasks (initial design)

1. Picks a new client epoch number (clients are required to present on every call)

2. Respond to master-location requests, but does not at first process incoming session-related operations

3. Builds in-memory data structures for sessions and locks recorded in the database. Session leases are extended to the
maximum that the previous master may have been using

4. Lets clients perform KeepAlives, but no other session-related operations

5. Emits a fail-over event to each session: clients flush their caches and warn applications that other events may have been lost

6. Waits until each session expire or acknowledges the fail-over event

7. Now, allows all operations to proceed

8. If aclient uses a handle created prior to the fail-over, the Master recreates the in-memory representation of the handle
and then honors the call

9. After some interval (1 minute), master deletes ephemeral files that have no open file handles: clients should refresh
handles on ephemeral files during this interval after a fail-over

23

Design

Database implementation

* Simple key/value database using write ahead logging and snapshotting

 Chubby needs atomic operations only (no general transactions)

 Database log is distributed among the replicas using a distributed consensus protocol (PAXOS)

Backup

 Every few hours, Master writes a snapshot of its database to a GFS file server in a different
building = no cyclic dependencies (because local GFS uses local Chubby cell ...)

 Backup used for disaster recovery
* Backup used for initializing the database of a newly replaced replica = no load on others replicas

24

Design

Mirroring

* Chubby allows a collection of files to be mirrored from one cell to another
— Mirroring is fast: small files and the event mechanism to inform immediately if a file is added, deleted, or modified
— Unreachable mirror remains unchanged until connectivity is restored: updated files identified by comparing checksums
— Used to copy configuration files to various computing clusters distributed around the world

* A special “global” Chubby cell
— Subtree “/1s/global/master” mirrored to the subtree “/1s/cell/slave” in every other Chubby cell
— The “global” cell replicas are located in widely-separated parts of the world
— Usage:
* Chubby’s own ACLs

* Various files in which Chubby cells and other systems advertise their presence to monitoring services
* Pointers to allow clients to locate large data sets (Bigtable cells) and many configurations files

25

* Introduction

* Design

 Mechanisms for scaling
* Experience

* Summary

“Judge me by my size, do you ?” - Yoda

Mechanisms for scaling

+ 90.000 clients communicating with a Chubby master !
* Chubby’s clients are individual processes 2> Chubby handles more clients than expected

* Effective scaling techniques = reduce communication with the master

Minimize RTT: Arbitrary number of Chubby cells: clients almost always use nearby cell (found with DNS) to avoid reliance on
remotes machine (= 1 chubby cell in a datacenter for several thousand machines)

Minimize KeepAlives load: Increase lease times from the default=12s up to around 60s under heavy load (= fewer KeepAlive
RPC to process)

Optimized caching: Chubby clients cache file data, metadata, absence of files, and open handles

Protocol-conversion servers: Servers that translate the Chubby protocol into less-complex protocols (DNS, ...)

Mechanisms for scaling

Replicas
as
internal
proxies

external
proxy

Proxies

* Chubby’s protocol can be proxied

— Same protocol on both sides

— Proxy can reduce server load by handling both
KeepAlive and read requests

— Proxy cannot reduce write traffic
* Proxies allow a significant increase in the

number of clients

— If proxy handle N clients, KeepAlive traffic is reduced by a
factor of N (could be 10.000 or more ! ©)

— Proxy cache can reduce read traffic by at most the mean
amount of read-sharing

Mechanisms for scaling

Pa rtitioning (Intended to enable large Chubby cells with little communication between the partitions)

 The code can partition the namespace by directory
— Chubby cell =N partitions
— Each partition has a set of replicas and a master
— Every node D/C in directory D would be stored on the partition P(D/C) = hash(D) mod N
— Metadata for D may be stored on a different partition P(D) = hash(D’) mod N, where D’ is the parent of D
— Few operations still require cross-partition communication

* ACL: one partition may use another for permissions checks (only Open () and Delete() calls requires ACL checks)
* When a directory is deleted: a cross-partition call may be needed to ensure that the directory is empty

* Unless number of partitions N is large, each client would contact the majority of the partitions
— Partitioning reduces read and write traffic on any given partition by a factorof N ©
— Partitioning does not necessarily reduce KeepAlive traffic... ®

* Partitioning implemented in the code but not activated because Google does not need it (2006)

29

Introduction

Design

Mechanisms for scal
Experience

Summary

“Do. Or do not. There is no try.” - Yoda

Experience (2006)

Use and behavior : statistics taken as a snapshot of a Chubby cell (RPC rate over 10 minutes period)

time since last fail-over 18 days
fail-over duration 14s
active clients (direct) 22k
additional proxied clients 32k
files open 12k

naming-related 60%
client-is-caching-file entries 230k
distinct files cached 24k
names negatively cached 32k
exclusive locks 1k
shared locks 0
stored directories 8k

ephemeral 0.1%

stored files 22k
0-1k bytes 90%
1k-10k bytes 10%
> 10k bytes 0.2%
naming-related 46%
mirrored ACLs & config info 27%
GFS and Bigtable meta-data 11%
ephemeral 3%
RPC rate 1-2k/s
KeepAlive 93%
GetStat 2%
Open 1%
CreateSession 1%
GetContentsAndStat 0.4%
SetContents 680ppm
Acquire 31ppm

31

Experience (2006)

Use and behavior

Typical causes of outages

61 outages over a period of a few weeks amounting to 700 cell-days of data in total
— 52 outages < 30 seconds = most applications are not affected significantly by Chubby outages under 30 seconds
— 4 caused by network maintenance
— 2 caused by suspected network connectivity problems
— 2 caused by software errors

— 1 caused by overload
Few dozens cell-years of operation
 Data lost on 6 occasions

— 4 database errors
— 2 operator error

Overload
* Typically occurs when more than 90.000 sessions are active or simultaneous millions of reads 5,

Experience (2006)

Java clients
Chubby is in C++ like most Google’s infrastructure

Problem: a growing number of systems are being written in Java
— Java programmers dislike Java Native Interface (slow and cumbersome) for accessing non-native libraries
— Chubby’s C++ client library is 7.000 lines : maintaining a Java library version is delicate and too expensive

e Solution: Java users run copies of a protocol-conversion server that exports a simple RPC protocol that
correspond closely to Chubby’s client API

. Mike Burrown (2006): “Even with hindsight, it is not obvious how we might have avoided the cost of writing, running and
maintaining this additional server”

__

/ \ I \

1 \ | Chubby cell

| J?va. > Chubby ' ' Master :

! application 127.0.0.1:42 protocol-conversion | | !
- |

| 1

[wm daemon ; > ™

| | :

| |

| |

1 1

g / I
L &/ oo ~ \'9@/ ol "
N e e e e o o e e e e e e e o o e o - ——

N P 33

__

Experience (2006)

Use as a hame service
* Chubby was designed as a lock service, but popular use was as a name server

* DNS caching is based on time

— Inconsistent caching even with small TTL = DNS data discarded when not refreshed within TTL period
— Alow TTL overloads DNS servers

* Chubby caching use explicit invalidations
— Consistent caching
— No polling

* Chubby DNS server

— Another protocol-conversion server that makes the naming data stored within Chubby available to DNS clients: for easing the transition
from DNS names to Chubby names, and to accommaodate existing applications that cannot be converted easily such as browsers

1 1 ’ >
NEW | ; .' Chubby cell
server , A ! ' Master i
T e ! |
- ! |
Rkt >, DNS request Chubby Chubby requests ! g’:\“i' ;’::A g‘;"'\‘g :'/'\"'j} |
. / : N 1 - |
OoLD | \ ——————> protocol-conversion > B e (he” (e
|
server Al ! server %
L ! 34

Experience (2006)

Problems with fail-over

e Original design requires master to write new sessions to the database as they are created
— Overhead on Berkeley DB version of the lock server !!!

* New design avoid recording sessions in the database
— Recreate sessions in the same way the master currently recreates Handles 2> new elected master’task n°8
— A new master must now wait a full worst-case lease-timeout before allowing operations to proceed
* It cannot know whether all sessions have checked in = new elected master’task n°6
» Proxy fail-over made possible because proxy servers can now manage sessions that the master is not aware of
* Extra operation available only on trusted proxy servers to take over a client from another when a proxy fails

I \ xternal 4 \
! ' erl Chubby cell
e : Master

v J

%n
¢
¢
4

\n________

Chubby external ~ ﬁ;' N AN f,;' N
proxy server 2 N

Example: external Proxy server fail-over

Design

Problems with fail-over : Newly elected master’s tasks (New design)

1. Picks a new client epoch number (clients are required to present on every call)

2. Respond to master-location requests, but does not at first process incoming session-related operations

3. Builds in-memory data structures for sessions-and locks recorded in the database. Sessionleasesare-extended-to-the

4. Lets clients perform KeepAlives, but no other session-related operations

5. Emits a fail-over event to each session: clients flush their caches and warn applications that other events may have been lost

6. Waits until each session expire or acknrewledges-thefail-overevent

7. Now, allows all operations to proceed

8. If aclient uses a handle created prior to the fail-over, the Master recreates the in-memory representation of the session
and the handle and then honors the call

9. After some interval (1 minute), master deletes ephemeral files that have no open file handles: clients should refresh
handles on ephemeral files during this interval after a fail-over

36

Experience (2006)

Abusive clients
* Many services use shared Chubby cells: need to isolate clients from the misbehavior of others

Problems encountered:

1. Lack of aggressive caching
— Developers regularly write loops that retry indefinitely when a file is not present, or poll a file by opening it and closing it repeatedly
— Need to cache the absence of file and to reuse open file handles
— Requires to spend more time on DEVOPS education but in the end it was easier to make repeated Open () calls cheap ...

2. Lack of quotas

— Chubby was never intended to be used as a storage system for large amounts of data !
— File size limit introduced: 256 KB

3. Publish/subscribe

— Chubby design not made for using its event mechanisms as a publish/subscribe system !
— Project review about Chubby usage and growth predictions (RPC rate, disk space, number of files) > need to track the bad usages ...

37

Experience (2006)

Lessons learned

* Developers rarely consider availability
— Inclined to treat a service like Chubby like as though it were always available
Fail to appreciate the difference between a service group up and that service being available to their applications

API choices can affect the way developers chose to handle Chubby outages: many DEVs chose to crash theirs apps when a
master fail-over take place, but the first intent was for clients to check for possible changes ...

3 mechanisms to prevent DEVs from being over-optimistic about Chubby availability

1. Project review
2. Supply libraries that perform high-level tasks so that DEVs are automatically isolated from Chubby outages

3. Post-mortem of each Chubby outage: eliminates bugs in Chubby and Ops precedure+ reducing Apps sensitivity to Chubby’s

availability

38

Experience (2006)

Opportunities design changes

Fine grained locking could be ignored
— DEVs must remove unnecessary communication to optimize their Apps = finding a way to use coarse-grained locking

Poor API choice have unexpected affects
— One mistake: means for cancelling long-running calls are the Close () and Poison() RPCs, which also discard the server
state for the handle ... > may add a Cancel () RPC to allow more sharing of open handles

RPC use affects transport protocols
— KeepAlives used both for refreshing the client’s lease, and for passing events and cache invalidations from the master to the
client: TCP’s back off policies pay no attention to higher-level timeouts such as Chubby leases, so TCP-based KeepAlives led
to many lost sessions at time of high network congestion - forced to send KeepAlive RPCs via UDP rather than TCP ...

— May augment the protocol with an additional TCP-based GetEvent () RPC which would be used to communicate events
and invalidations in the normal case, used in the same way KeepAlives. KeepAlive reply would still contain a list of

unacknowledged events so that events must eventually be acknowledged
39

Agenda

Introduction

Design

Mechanisms for scaling
Experience

Summary

“May the lock service be with you.”

Summary

Chubby lock service

* Chubby is a distributed lock service for coarse-grained synchronization of distributed systems
— Distributed consensus among few replicas for fault-tolerance
— Consistent client-side caching
— Timely notification of updates
— Familiar file system interface

e Become the primary Google internal name service
— Common rendez-vous mechanism for systems such as MapReduce
— To elect a primary from redundant replicas (GFS and Bigtable)
— Standard repository for files that require high-availability (ACLs)
— Well-known and available location to store a small amount of meta-data (= root of the distributed data structures)

* Bigtable usage
— To elect a master
— To allow the master to discover the servers its controls

— To permit clients to find the master
41

Any questions ?

How to enlarge a light saber ? Say “Ok Google” &

Romain Jacotin

42

