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ABSTRACT
With the increasing volume of transactions taking place online,
mobile fraud has also increased. Mobile applications often authenti-
cate the user only at install time. The user may then remain logged
in for hours or weeks. Any unauthorized access may lead to finan-
cial, criminal or privacy losses. In this work, we leverage currently
available built-in motion sensors in smartphones to learn users’
behavioral characteristics while interacting with the mobile device
to provide an implicit re-authentication mechanism that enables
a frictionless and secure user experience in the application. This
approach improves the generality as well as power efficiency of
the authentication mechanism compared to using the camera feed
which involves (a) specific hardware, (b) higher battery usage and
(c) privacy concerns. We present DeepAuth as a generic framework
for re-authenticating users in a mobile app. In our approach, we
use time and frequency domain features extracted from motion sen-
sors and a long short-term memory (LSTM) model with negative
sampling to build a re-authentication framework. The framework
is able to re-authenticate a user with 96.70% accuracy in 20 seconds
from a set of data collected from 47 volunteers.

CCS CONCEPTS
• Security and privacy → Authentication; • Computing
methodologies→ Neural networks;
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1 INTRODUCTION
With the widespread use of mobile devices, a large number of mo-
bile users use their devices for commercial transactions, to access
sensitive information, and to store and share personal information.
Typical explicit authentication mechanisms ask the user to setup a
pass code or use biometrics such as fingerprint or face recognition to
sign-in the user. A critical assumption made by such schemes is that
only the legitimate user will use the device once having unlocked
it and the device will be locked again immediately after the ses-
sion. Many shopping apps may require the user to re-authenticate
before making an online transaction, even if this adds friction to
the interaction. Outside of these explicit re-authentications, any
intermediate change in user identity will go undetected. Without
re-requesting user identification information, an unauthorized user
may access sensitive information on the user’s mobile device if
the user’s device is left unlocked and unattended or even hacked.
Such unauthorized access may lead to unauthorized use of the ap-
plication, including purchases, settings changes, and identity theft.
In another scenario, one may log into an app and allow a friend
to temporarily use it, but may not be comfortable with them ac-
cessing one’s credentials or history of purchases. Market research
indicates that shopping apps are a prime target of mobile fraud [1].
Implicit Authentication (IA) schemes can be used to enhance user
experience alongside security by verifying user identity. User iden-
tification/authentication is indeed the topmost priority for 53% of
digital companies [1].

Traditional authentication methods utilize identifying infor-
mation such as passwords, touch fingerprints and face recogni-
tion [19, 24] to verify the user when accessing sensitive and security-
critical parts of an application, for example when checking pur-
chase history or financial and application credential information.
However, such methods suffer from the following drawbacks: 1)
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They heavily rely on the user’s direct input and cooperation which
inhibits user experience. These inhibitions are so unpalatable to
users that 64% users do not use passwords or PINs on their smart-
phones [10]. 2) Explicit authentication incurs an overhead and
increases the latency of device interactions and as a result, degrade
the usability of the applications [16, 22]. 3) Although biometric
authentication techniques are less frustrating than conventional
methods, they still suffer from latency in that they still require the
user’s direct involvement, and many mobile devices still lack bio-
metric authentication technology. 4) Continuous authentication via
technologies like FaceIDmay require the user to give an app explicit
permission to access camera ubiquitously, and would require con-
stant face visibility and camera usage, thus incurring an additional
energy usage penalty, constraint and risk to privacy. IA schemes
track implicit user activity to use inputs implicitly derived from a
user’s mobile session. They provide users with a middle-ground,
where both usability and security can be achieved. This work pro-
poses a new deep-learning framework to implicitly authenticate
users in the course of browsing a shopping app.

Apart from continuous user authentication, this approach can
also be used for novel personalization and product recommendation
opportunities for online retailers when there is a switch between
legitimate users of the same device. For example, over time, a user
may have multiple legitimate profiles based on his shopping behav-
iors. When his partner uses the app, the app may ask to re-login
first time and subsequently build a second profile for her. When
she uses the app again, she will receive recommendations personal-
ized for her. Similarly, a user may have two profiles simply based
on his browsing behavior. For example, he may like to browse for
clothes and home accessories at leisure while commuting in a bus,
but in another context he may want to pick quick groceries while
returning home from the office.

Contributions
In this work, we focus our analysis on continuous user authenti-
cation which monitors motion sensor logs and locks the user out
of the app once an unauthorized user is detected. Consequently, it
is necessary for mobile applications to robustly identify the user.
Figure 1 shows a snapshot of the Target shopping app. In our data
collection phase, the users were asked to browse a few items on
the Target shopping app (as they would routinely do) on a mobile
device which collects motion sensor information alongside site
browsing behavior. No information about which items or content
were being viewed was used to build the models.

In this paper, we present DeepAuth, a novel framework for im-
plicit and continuous mobile user authentication via mobile mo-
tion sensors. We leverage deep learning [14] as a computational
framework since it has attracted significant attention in the past
few years due to its capability to automatically extract features di-
rectly from raw data.We use recurrent-neural networks, specifically
Long Short-Term Memory (LSTM) [9], which has shown promising
performance on sequential data due to its capability of modeling
highly non-linear temporal relations. Moreover, we introduce a
novel method for sensor data pre-processing by utilizing both time
and frequency domain features.

The main contributions of this work are as follows:

	
	

Figure 1: Target Shopping App

(1) We present a LSTM-based authentication framework, called
DeepAuth, that leverages a user’s passive behavior while
shopping online to continuously re-authenticate the user,
providing security without compromising usability.

(2) We evaluate DeepAuth on a dataset collected from volun-
teers in which mobile motion sensors were recorded, while
browsing and shopping on the Target.com mobile website
to emulate actual users’ behavior in real-world browsing
and shopping scenarios. Only motion sensor information is
captured during browse behavior of 47 volunteers.

(3) We compare DeepAuth to state-of-the-art classificationmeth-
ods such as SVM, Random Forest, Logistic Regression and
Gradient Boosting Classifier. DeepAuth can re-authenticate a
user with 96.70% accuracy within only 20 seconds, while Gra-
dient Boosting Classifier provides the best accuracy among
all baselines with 89.57% accuracy.

The rest of this paper is organized as follows. In Section 2 we give
an overview of the related works. In Section 3 the system overview
is illustrated. In Section 4, we describe DeepAuth in detail followed
by Section 5 where the details on data collection are explained. The
evaluation is justified in Section 6, and we conclude and discuss the
future work in Section 7.

2 RELATEDWORK
Due to growing popularity of smartphones with more than two
billion users all around the world, their built-in sensors data has
been excessively exploited in various fields of research including
security and privacy. User identification and continuous user au-
thentication are two representatives of challenging mobile sensing
problems in security and privacy research areas. Based on the user’s
distinguishable behavioral patterns inferred from sensors data [3].
Continuous user authentication aims to verify whether the current
user is the actual legitimate user or not (see Figure 2a), whereas in
user identification problem the goal is to identify the current user
of the mobile device correctly among all users (see Figure 2b).

Traditional authentication schemes require users to provide a
secret in combination of password, session cookies, or both. This
requirement is more relaxed in re-authentication procedure to pro-
vide a responsive and more convenient experience. Even though
the prevalence of biometric authentication in smartphones such
as Touch ID has made an effort in creating a robust authentication
with less effort, any re-authentication request interrupts user activ-
ity and diminishes seamless experience. Fortunately, abundance of



(a) User authentication (b) User identification

Figure 2: Two representatives of challengingmobile sensing
problems

input sensors in smartphones and advances in machine learning
techniques have paved the way to behavior-based re-authentication
methods which requires no user interaction. In this work, our focus
is on the former to provide a seamless re-authentication experience
to the users.

Previous works have studied context-based user authentication
using various smartphone inputs. Lee et al. [15] proposed iAuth, an
implicit and continuous user authentication scheme using sensor
data of multiple devices such as smartwatches and smartphones.
A similar paradigm was suggested by Kayacik et al. [12] to detect
the deviation of behavior, e.g. unprivileged physical access, from
the learned normal behavior of owner. Their incremental training
paradigm learns user’s behavior using temporal and spatial data.
In contrast to our approach, suggested paradigm by [12] requires a
long training time to be able to detect unauthorized users. In [17],
authors utilized common classification method to learn user’s touch
pattern to achieve continuous re-authentication and prevent unau-
thorized access to Smartphone. Bo et al. [3] proposed a touch-based
biometric model using combination of coordinate, pressure and
duration of touch behavior and motion data from sensors to train a
two-class SVM classifier and eventually identify the Smartphone’s
owner. There exist some neural network based approaches which
follow Siamese architecture [5, 20] and can handle verification
tasks. While Siamese architecture is widely used for learning dis-
criminative representations [2] and can handle large number of
classes in one single model, their accuracy is not satisfactory for
authentication task which needs high accuracy.

Key differences between DeepAuth and the aforementioned stud-
ies lie in the following: 1) DeepAuth offers a novel pre-processing
method for the sequential sensors data by utilizing both time and
frequency domain data. 2) DeepAuth only uses two sensors: ac-
celerometer and gyroscope. 3) It utilizes windowing technique as
well as LSTM in order to detect both micro and macro distinguish-
able behavioral patterns of the users. 4) It is trained and evaluated
on real-world data which includes data from users, while interact-
ing and browsing on a shopping app (Target app). 5) It is trained
on a small dataset; there is only 10-13 minutes data available from
each user which make the authentication task harder.

3 SYSTEM OVERVIEW
An overview of our intended system deployment is shown in Fig-
ure 3. In the enrollment phase of the system, whenever a new user
signs in to the mobile application, the system continually monitors
and collects the sensors’ data from the user’s mobile device and
saves them in the user’s data profile in the system. For this paper,
we collected data from users while they were browsing on Target
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Figure 3: Authentication system overview

app. In order to collect sensor data, we developed a secondary app
which could run in the background while the Target app is run-
ning in the front and collect sensors data. More details on this will
be explained in Section 5. In the continuous authentication phase
the sensor data is pre-processed and will be input to the machine
learning algorithm to learn the authentication model for the user.
Once the model is learned, in the post-authentication phase, any
incoming sensor data from the user’s mobile device is continuously
monitored. If the incoming data passes the authentication model
criteria and the model verifies the current user as the legitimate
user, the user can keep working within the app and accessing the
sensitive parts of the application. However, if the incoming data
fails the authentication model tests, the system locks out the user
from the app and asks for an alternative authentication method,
such as a password, from the user.

4 METHODOLOGY
4.1 Model Definition
Current mobile devices are equipped with various embedded sen-
sors such as global positioning system (GPS), accelerometer, gyro-
scope, magnetometer, and others. These sensors are used in conjunc-
tion with mobile apps to perform diverse activities for numerous
user purposes. For example, accelerometer and gyroscope which
identify the movement of the mobile device can be used in game
apps. The data derived by such sensors can be utilized to detect
individual users’ behavioral patterns as they capture interaction
and activity of the mobile users and produce a series of samples
over time. In this study, we recognize such patterns using the data
obtained from the sensors of the users’ smartphones.

A segment of data is defined as a series of measurements for
a T period of time. Such measurements can be recorded in the
form of a matrix S = [s1, . . . , sT ], where vector st ∈ IRD×1 signi-
fies the measurements at t th time step, and D is the number of
measurements. The training set is represented as X =

{
Si
}M
i=1,

where Si is a training segment sample, M = Np + Nn is the total
number of training segments consisting of Np segments pertain-
ing to the legitimate user (positive segments) and Nn segments of
unauthorized users (negative segments). The label set denoted by
Y = {yi |yi ∈ {pos,neд}}Mi=1 specifies the class of each segment.
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Figure 4: Main architecture of DeepAuth framework.

A positive class indicates that the segment belongs to the autho-
rized user and a negative class indicates that it is pertaining to an
unauthorized user.

Our aim is to learn a non-linear function fθ (Si ) : IRD×T →

{pos,neд} parameterized by θ that predicts the class of the data
sample Si . In other words, function fθ (Si ) verifies if the segment
sample Si belongs to the authorized user or not.

4.2 Authentication Architecture
The proposed model consists of five primary components: pre-
processing and sampling, windowing, feature extraction, modeling,
and finally an output layer. Data gathered from different sensors are
concatenated to form segments. Consequently, we build positive
and negative segments via sampling. In the windowing layer, such
segments are divided into smaller unites. These sub-segments which
are originally in time domain are then mapped into frequency
domain in the feature extraction layer by utilizing the Discrete
Fourier Transform (DFT) [4]. The modeling component is a neural
network which learns the behavioral patterns for each user and
maps the segment to a fixed-size embedding space. The final output
layer consists of a fully-connected layer to classify the segment
into positive or negative class. An independent model is trained for
each user separately. We discuss the details of these components
further in the following subsections. A schematic representation of
the main architecture of the DeepAuth framework starting from
the windowing layer is shown in Figure 4.

4.2.1 Data Pre-processing and Sampling Layer. Most motion sensor
measurements, by default, are recorded with predefined sampling
rates and at different offsets that are not synchronized across differ-
ent sensors. As we need synchronized data points, we down-sample
and synchronize the samples from different sensors by dividing
the whole sequence of samples into smaller intervals and choosing
the mean of all values in a given interval as the representative
of it. Subsequently, at each time step in the whole time interval,
we concatenate these measurements from all sensors to create the
sample vector for that time step.

We assume that there are K sensors on the phone, and the kth
sensor generatesdk different samples at each time step. For example,
each sample of the accelerometer sensor includes measurements
from three dimensions x , y and z which specifies the acceleration
of the phone movement in three dimensional space. We denote the
total number of measurements in each time step as D =

∑K
k=1 dk .

Such measurements are then split into fixed-size segments of size
T time steps (see Section 4.1). Since, sensors’ samples may be very

long and have diverse length among different users. We segment the
data by moving a fixed-size window of size T over the sequential
data with a predefined shift T∆ to build overlapping fixed-sized
segments. Thus for each user, we have a set of segments with size
D×T . The number of segments in each user’s sequence depends on
the length of the input data for that user denoted as Np to represent
positive segments of the user. To train the model for a user, we also
need to provide the model with negative segments which are those
provided by other users. We use a controlled random sampling to
create the group of negative segments for each user by randomly
selecting segments of other users. In the sampling process, the ratio
of negative to positive segments is kept to a fixed number r , which
we call the negative factor. All segments, both positive and negative,
are then passed into the windowing layer to build the training data.

4.2.2 Windowing Layer. The segments resulted from the pre-
processing and sampling layer are then passed to the windowing
layer. Individual measurements of segments do not reveal sufficient
information about the user’s behavior to distinguish authorized
users from unauthorized ones. Rather, these measurements must
be explored sequentially to reveal behavioral patterns of the user,
which include some measurements related to various actions like
touch events. We posit that some such behavioral patterns involve
a small portion of measurements which we call micro patterns
(e.g. individual tap force or swipe length), whereas some include
a bigger portion of measurements reflected by the inter-segment
relationship of the micro patterns denoted as macro patterns (e.g.
long term average angle at which the phone is most often held).

In the windowing layer, segments are prepared for the detection
of micro and macro patterns. We leverage windowing technique to
divide segments into smaller windows to detect micro patterns. The
windowing process is done bymoving a fixed-size windowwith size
l over each segment with a pre-defined shift l∆ to produce windows,
i.e.Windowinд(S) =

{
ui
}Nw
i=1 , where S is a segment, Nw = ⌊ Tl∆

⌋

is the number of windows in segment S , and ui ∈ IRD×l is the ith
window of the segment S .

Macro patterns which reflect the inter-segment relationships
between subsequent windows are modelled by the LSTM layer of
DeepAuth. More details about this step will be discussed further in
Section 4.2.4.

4.2.3 Feature Extraction. The outputs of the windowing layer are
windows of sensors measurements in their original domain which is
time. However, frequency domain data has some advantages when
it comes to working with noisy mobile sensors’ sequential data [21].
These advantages include being able to handle and remove noise,
as well as better detection of distinctive behavioral patterns within
sequential data.

Discrete Fourier Transform (DFT) is employed to convert the
time domain signals to frequency domain signals. The N points
one-dimensional DFT of a signal is defined in the form:

Xk =
N−1∑
n=0

x[n] × exp
{
−2πi(

nk

N
)

}
k = 0, . . . ,N − 1 (1)

where x[0],x[1], . . . ,x[N − 1] are N discrete points of a signal in
time domain and X0,X1, . . . ,XN−1 are N points of the signal in



frequency domain. Fast Fourier Transform (FFT) is one of the most
common and numerically efficient algorithms to calculate DFT.

FFT is employed on each dimension of the window to convert
their measurements in the time domain with size D × l to the
frequency domain.We consider only half of the spectrum as they are
symmetric. Subsequently, the output FFT vectors are concatenated
to form a feature vector of size l

2 × D. This gives us a sequence of
windows

{
U i }Nw

i=1 for segment S in the frequency domain, where
U i is the frequency form of window ui . Putting all of these vectors
into a two dimensional matrix gives S f with dimension ( l2D) ×Nw ,
the frequency domain of segment S . Time and Frequency domain
windows are concatenated and passed into LSTM layer.

4.2.4 LSTM Layer. The main goal of DeepAuth is to distinguish
different users from one another via their distinct behavioral pat-
terns while interacting with the mobile device. As discussed earlier
in Section 4.2.2, we divide such patterns into two categories: micro
and macro patterns. Micro patterns are revealed in the window-
ing layer, whereas the relationships between subsequent segments
(macro patterns) are modelled by utilizing a recurrent layer.

Recurrent Neural Networks (RNNs) have attracted significant at-
tention recently because of their simplicity and power in sequence
learning, prediction and classification. They have been used in
various fields of research from natural language processing [6] to
speech recognition [7]. However, they suffer from some serious lim-
itations such as vanishing gradient [8] and incapability in capturing
long-term dependencies.

We leverage Long Short-Term Memory (LSTM) [9] to detect
macro patterns. LSTM is a variant of RNNs which was intentionally
designed to overcome RNNs’ aforementioned drawbacks by having
a longer memory. Specifically, LSTM outperforms other versions of
RNNs when it comes to sequential data with larger time intervals
due to its capability of learning long range dependencies through
its use of memory cell units and gating mechanism [11].

LSTM is used tomap the input segments into a sequence of lower-
dimensional feature vectors via learning a non-linear embedding
function fθ (.) where θ is the set of all parameters of the model.
The output feature vectors are denoted as

[
h1,h2, . . . ,hNw

]
, where

each hi corresponds to the ith input sequence and has a predefined
length of C .

4.2.5 Output Layer. The output of the recurrent layer is a sequence
of feature vectors

[
h1,h2, . . . ,hNw

]
. The output of the last layer,

hNw , will then be fed into the output layer which includes a fully
connected layer with one neuron. The output of the single neuron
of the fully connected layer will be fed into the sigmoid layer to
generate the predicted category of the data (positive or negative).
The loss function on the output of last layer is a binary cross-entropy
function denoted as L.

4.3 Training DeepAuth
We train the model as a whole using back-propagation with respect
to the binary cross-entropy loss function. Given a set ofM training
samples for a user, we optimize the model’s loss function using an
adaptive version of the stochastic gradient descent method called

Adam [13]. Moreover, we apply dropout [23] techniques to pre-
vent overfitting. The training procedure of DeepAuth is shown in
Algorithm 1.

Algorithm 1: Training Procedure of DeepAuth

Input: Training set: X =
{
Si
}M
i=1,

Label set: Y = {yi |yi ∈ {pos,neд}}Mi=1,
Number of epochs: K
Batch size:m
Output:Model’s parameter: θ
Number of batches is calculated by B = M/m
for k = 1, 2, . . . ,K do

for b = 1, 2, . . . ,B do
bth batch is generated randomly;
Feedforward propagation of the bth batch;
Calculate L(b) ;
Estimate gradients ∂L(b)

∂θk
via backpropagation;

Compute θk+1 using Adam;
end

end
return θK

5 DATA COLLECTION
To collect sensor data from the mobile device we develop an app
called Sense Service using Android Studio which contains a Java
code snippet/activity that accesses data from the device sensors
(such as accelerometer and gyroscope) and writes those data into
a file in the mobile device. In our study, we used Nexus 5X and
had the Sense Service app installed and running in the background,
while Chrome was running in the front when handed to the users.
Users were asked to login to target.com on Chrome browser using
the provided pseudo username and password. Each participant was
asked to sit on a chair and interact with Target app about 10-13
minutes, thus emulating the real-world online shopping settings.
They were asked to browse for a few items and try to add a couple
items that they really want to buy to the shopping cart in order
to capture their real interacting behavior with the mobile device
while shopping on the Target app. Optional items were provided to
participants in case they did not have anything special in mind to
browse.

In total, we had 47 volunteers. The volunteers did not login using
their personal information but using pseudonyms and used the
rooted device provided to them (An unrooted device does not allow
a secondary app to collect motion sensor or touch information
while the primary app is running on screen). Collected motion
sensors are as follows:

• Accelerometer:Measure the acceleration force that applied
to the device, including force of gravity in three axes (X, Y,
Z)

• Gyroscope: Measure the device’s rotation in three axes (X,
Y, Z).



The sampling rate for accelerometer and gyroscope data stream
is 100 Hz in the collected dataset. After synchronizing and down-
sampling, the resolution of the data as input into the training and
evaluation processes is 50 Hz. The dataset is named TargetAuth
dataset.

6 EVALUATION
6.1 Baselines
We experiment with different machine learning methods for classifi-
cation tasks to explore the effectiveness of our model. The baselines
used in these experiments are as follows: 1) Support Vector Machine
(2-SVM), 2) Random Forest (RF), 3) Logistic Regression (LR), and 4)
Gradient Boosting Classifier (GBC). The problem is modeled as a
two-class classification task. For each user, one model is trained on
positive and negative segments to predict the class of the segment.

6.2 Experimental Settings
For each user, DeepAuth is trained on 70% of the segments, validated
on 15% of them and tested on the remaining 15% of the segments.
After synchronizing and down-sampling the data, segmentation
step is done over the sequential data to generate overlapping seg-
ments of size T with segment shift of T∆. We experimented with
different values of segment shift T∆ and determined that when it
is equal to 1

5 of the segment size T , the accuracy is at its best. We
fix the negative factor r = 1 to create an even ratio of positive and
negative segments in the training, validation and test phases. All
segments are normalized to have zero mean with variance of one
by calculating the mean and variance on the training data.

We use the default parameter of Adam optimizer as provided
in the original paper [13]. Batch size is 512 for all the training of
the neural networks. We experimented with different values of the
C parameter (from 5 to 100) and selected C = 25 which showed
the best result in most scenarios on the validation set. Note that C
is the hidden size of the LSTM which is the length of the feature
vectors. Dropout of the LSTM is set to 0.2. We experimented with
different window sizes:{20, 40, 100, 200, 500} which are equivalent
to {0.4, 0.8, 2, 4, 10} seconds and selected l = 100. We experimented
with different variants of window shift and determined that when
it is equal to window size, the accuracy is at its best, i.e. l∆ = l .
For all baselines, we set identical values for segment size, window
size and window shift, while segment shift is set to T∆ = 1

5 × T .
The C parameter for 2-SVM, RF, LR, GBC is set to 0.1, 200, 100, 100
respectively.

6.3 Accuracy Metrics
We consider two evaluation scenarios in our experiments. First, we
assume that the current user is the actual legitimate user. Second,
we consider the scenario where the current user is not the actual
legitimate user. Therefore, we define two accuracy metrics to report
the performance of re-authenticating users:

• Negative accuracy (N ): This metric refers to the ratio of
correctly detected unauthorized users to the total number
of invalid requests made by imposters trying to access the
system. The N accuracy is calculated for each user and their
mean is reported as the overall N accuracy.

• Positive accuracy (P ): This is the ratio of correctly classi-
fied authorized user to the total number of valid requests
made by legitimate uses trying to access the system. The
P accuracy is calculated for each user and their mean is
reported as the overall P accuracy.

• F1 accuracy:We also report the harmonic mean of negative
and positive accuracy to show the overall performancewhich
is in the form of: F1 = 2 · P ·N

P+N
• Area under curve of ROC (AUC): AUC is also calculated
for each user and their mean is reported as the overall AUC .

6.4 Performance Evaluation
The performance of DeepAuth and all baselines are presented in
Table 1. The results are reported for three different numbers of
segments sizes:{500, 1000, 1500} which are equivalent to 10, 20 and
30 seconds respectively. The best accuracy for each case is depicted
in bold. As it is shown in the table, DeepAuth outperforms SVM,
LR, RF, and GBC. One of the advantages of DeepAuth over linear
techniques like SVM and LR is that it leverages a recurrent layer
which is capable of detecting both micro and macro patterns as
discussed earlier in Section 4 while other baselines can only detect
macro patterns. DeepAuth can model the sequential information
in the segments while other baselines are linear non-sequential
modeling techniques which ignore the sequential pattern of the
data.

Among other baselines, RF and GBC outperform LR and SVM.
This observation is consistent with many other studies’ discovery
that ensemble decision trees perform better compared to regression
and SVM models on classification problems.

6.5 Sensor Analysis
To further investigate the suitability of using motion sensor mea-
surements to distinguish different users, we perform an empirical
sensor analysis by plotting the sensor data streams collected in
the TargetAuth dataset. Figure 5 shows the accelerometer sensor
streams corresponding to its three dimensions: x , y and z. We ran-
domly select two users among all users in the data set and randomly
pick two signal screenshots from the same user and one signal
screenshot corresponding to the other user for comparison.

The screenshots of the accelerometer sensor signal for the same
user are more similar along dimensions x and y compared to those
pertaining to different users which confirms the intuition of using
such information to differentiate users. It also shows that accelerom-
eter measurements along the z dimension may not be substantially
helpful in distinguishing users because all records of these users
are visually similar.

While Figure 5 shows the preliminary results of the effectiveness
of the accelerometer sensors data streams in distinguishing users,
we explore the impact of both accelerometer and gyroscope motion
sensors more precisely on DeepAuth performance. As shown in
Table 2, using more than one source of data helps the performance
and leads to higher accuracy.

6.6 Feature Analysis
In this section, we evaluate the performance of the DeepAuth in
terms of accuracy when it comes to different feature domains: time



Table 1: Performance of different methods on TargetAuth dataset in terms of accuracy for different segment sizes.

Segment Size 500 1000 1500
Performance N P F 1 AUC N P F 1 AUC N P F 1 AUC

DeepAuth 92.73 99.20 95.85 99.05 94.37 99.16 96.70 99.19 93.52 98.22 95.81 98.61
2-SVM 91.40 73.07 81.21 79.65 93.51 71.64 81.13 78.85 92.95 68.74 79.03 76.21
RF 89.55 85.43 87.44 87.53 90.11 85.68 87.84 87.78 87.50 84.63 86.04 85.98
LR 91.39 73.22 81.30 79.75 93.57 71.43 81.01 78.66 93.33 68.35 78.91 75.91
GBC 92.72 87.58 90.08 89.98 92.32 86.97 89.57 89.40 89.52 84.78 87.09 86.89

Figure 5: Preliminary results for Accelerometer x , y and z

Table 2: Performance of DeepAuth for different input sensors.

Segment Size 500 1000
Performance N P F 1 AUC N P F 1 AUC
DeepAuth(A+G) 92.73 99.20 95.85 99.05 94.37 99.16 96.71 99.19
DeepAuth(A) 92.77 99.16 95.86 99.02 94.51 99.02 96.70 99.16
DeepAuth(G) 92.70 99.20 95.84 98.99 94.16 99.16 96.59 99.11

and frequency. In Table 3, we show the accuracy of our model using
three different feature sets: 1) time domain features (DeepAuth(t)),
2) frequency domain features (DeepAuth(f)), and 3) combined time
and frequency domains (DeepAuth(f+t)). While, DeepAuth(t) and
DeepAuth(f) show promising accuracy, DeepAuth(f+t) has the high-
est accuracy among all variants. Therefore, the combined time and
frequency domain features provide more distinguishable behavioral
patterns compared to the time or frequency domain features on
their own. DeepAuth(f+t) outperforms DeepAuth(t) which depicts
the superiority of the frequency domain compared to the time do-
main. Although DeepAuth(f) delivers slightly better performance
than DeepAuth(t), there is still some useful information in the time
domain feature set which may have been missed in the frequency
domain representation. Since, the accuracy of DeepAuth(t) is also
promising. Moreover, as the size of the segment increases, accu-
racy improves which implies that behavioral patterns are more
detectable within longer segments.

In Figure 6, we show the effectiveness of the features of Deep-
Auth compared to features in the time and frequency domains in
discriminating the samples pertaining to a random (authorized)
user and those belong to other (unauthorized) users. We obtain
the features of our model by removing the last layer of DeepAuth
network and use the output of the immediate previous layer. We
visualize the features in a 2-dimensional space by exploiting the
t-Distributed Stochastic Neighbor Embedding (t-SNE) [18] which

is a dimensionality reduction algorithm. t-SNE is an unsupervised
representation learning that maps a given high-dimensional feature
vector into a lower-dimensional new space in which the similarity
of samples is preserved as much as possible.

As shown in Figure 6, DeepAuth fingerprint features are the
most discriminative among all feature spaces, which depicts the
effectiveness of our model’s features. Moreover, frequency domain
features as shown in the figure are slightly better than those of time
domain and yet not discriminative enough to distinguish authorized
and unauthorized users from each other.

We plotted the subspaces for three randomly selected authorized
users to verify the effectiveness of the feature vectors pertaining to
the three users in time and frequency domains as well as the Deep-
Auth feature subspace. As shown in Figure 7, DeepAuth fingerprint
subspace is much more discriminative compared to time and fre-
quency subspaces. While these features are slightly discriminative,
they are insufficient for providing acceptable overall accuracy.

7 CONCLUSION
DeepAuth provides a deep model in order to re-authenticate mobile
app users implicitly and continuously via behavioral patterns while
interacting with a mobile phone that are extracted from mobile
motion sensors. DeepAuth can re-authenticate a user with 96.70%
accuracy within only 20 seconds using only the accelerometer and
gyroscope motion sensor data. Even though DeepAuth is trained



Table 3: Performance of DeepAuth for different feature domains.

Segment Size 500 1000
Performance N P F 1 AUC N P F 1 AUC
DeepAuth(f+t) 92.73 99.20 95.85 99.05 94.37 99.16 96.70 99.19
DeepAuth(f) 92.83 97.81 95.26 98.88 93.25 98.40 95.76 99.06
DeepAuth(t) 88.84 97.25 92.85 97.52 90.54 98.19 94.21 97.83

(a) time subspace (b) frequency subspace (c) DeepAuth fingerprint subspace

Figure 6: t-SNE plots for different feature spaces for a randomly selected user.

(a) time subspace (b) frequency subspace (c) DeepAuth fingerprint subspace

Figure 7: t-SNE plots of different feature spaces for 3 randomly selected users.

on only a 10-minute data streams per user, this performance shows
promising accuracy. DeepAuth is deployable in real-world scenarios
and can provide a fast, secure and frictionless online shopping
experience for users. This approach is also suitable for tasks beyond
user authentication, as it can be used for user identification in other
contexts as well.
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