DeepFP: A Deep Learning Framework For User
Fingerprinting via Mobile Motion Sensors

Sara Amini”, Vahid Noroozi®, Sara Bahaadini', Philip S. Yu®, Chris Kanich®
“Department of Computer Science, University of Illinois at Chicago, IL, USA
TDepartment of Electrical Engineering and Computer Science, Northwestern University, IL, USA
email:{samini3,vnoroo2} @uic.edu, sara.bahaadini @u.northwestern.edu, {psyu,ckanich}@uic.edu

Abstract—In this paper, we propose a deep learning framework
for user fingerprinting via mobile motion sensors, DeepFP, which
can identify and track users based on their behavioral patterns
while interacting with the smartphone. Existing machine learning
techniques for user identification are classification-oriented and
thus are not amenable easily to large-scale, real world deploy-
ment. They need to be trained on all the users whom they
want to identify. DeepFP exploits metric learning techniques
and deep neural networks to address the challenges of current
user identification techniques. We leverage feature embedding to
directly extract informative features and map input samples to a
discriminative lower-dimensional space, where recurrent neural
networks are used to model the temporal information of data.
DeepFP does not need to re-train to identify new users which
makes it feasible to be used in real world scenarios with a huge
number of users, without needing a large number of training
samples. Experiments on a publicly available mobile sensors
dataset and comparison with other embedding methods depict
the effectiveness of DeepFP.

Index Terms—deep learning, user fingerprinting, mobile mo-
tion sensors, user identification

I. INTRODUCTION

Modern targeted advertising is predicated on the ability to
perform that targeting: tracking users while they interact with
content, applications, and other users online is the primary
source of the information used for this targeting. While cookies
are very often sufficient to complete this task, targeted adver-
tising is such an immense economic engine that substantial
effort has been made to fingerprint individual devices via
unique properties which can often be used to identify indi-
vidual web browsers [1]. However, alongside the proliferation
of mobile devices, these approaches are not a silver bullet:
while a large portion of users are uniquely identifiable via
device fingerprints, an increasingly large portion are not: for
instance, per Laperdrix et al., when flash is not available, 88%
of browsers are uniquely identifiable, and 11.4% are in an
equivalence set of at most 50, and the remaining .6% of users
are in equivalence sets larger than 50. To successfully track
a non-trivial and growing subset of these users, alternative
approaches are necessary [2].

To close this final gap between a moderate sized equivalence
class and individual identification, the best known methods
for leveraging statistical inference techniques in this domain
are largely based on classification oriented methods that have
several drawbacks in this setting. Below we review such
characteristics and challenges:

o Large number of classes: the absolute number of smart-
phone users is huge, but typical classifiers are not ca-
pable of handling the classification problem with huge
number of classes/users. Due to their architecture, such
approaches require re-training when new users enter the
system. Thus, it is not feasible to use for a task such
as online tracking both because of the volume and the
velocity of user churn.

o Limited samples for each user: using machine learning
methods as classifiers to identify different users requires
sufficient data available in training phase. However, in
the real world scenario a very few or even zero samples
pertaining to individual users may be present.

o Unbalanced samples: the performance of these meth-
ods declines when it comes to dealing with unbalanced
classes where the number of samples pertaining to dif-
ferent classes/users are not balanced.

o Privacy: since the training and updating processes of
these methods are complex computationally, they cannot
be performed on the device due to their limited stor-
age and processing resources. Therefore, an additional
service such as cloud computing is required to perform
this calculation. Aggregating and storing raw, sensitive
activity data for model training purposes is unpalatable
for many companies, as it is seen as a risk and an
undue invasion of user privacy.! Moreover, these methods
require continuous network communication which may
not be feasible for the identification and authentication
tasks in real scenarios.

To address these issues, we propose a Deep learning frame-
work for user FingerPrinting (DeepFP) which models users’
behavioral motions from the sequential data captured from
the motion sensors of their mobile phone. Our model learns
to produce fingerprints for mobile users which can be used
to identify and track them. It is performed by exploiting
neural networks to learn a highly nonlinear feature embedding
function to map samples of a user’s mobile sensors data to
a discriminative low-dimensional feature space where users
are easily distinguishable. In the learned low-dimensional
feature space, samples pertaining to the same user (matching

'For instance, Apple and Google are applying differential privacy pre-
serving techniques in their collection of user data to limit the individually
identifying data that leaves personal devices [3, 4].

samples) are close to each other, whereas those of different
users (non-matching samples) are farther apart. In this manner,
the classification problem is converted to a simple nearest
neighbor problem, and a simple distance metric, such as
Euclidean, can be used to find and identify a user among a
large number of users.

The metric learning problem is commonly used in veri-
fication using linear or non-linear embedding [5, 6, 7]. In
the context of our goal, verification aims to verify whether
two samples pertain to the same user or not. The verifica-
tion problem can be converted to an identification task by
comparing the distance between a new incoming sample and
those already stored in the history. Using the similarity metric
learned by the model in the training phase, DeepFP is able
to find the user with the closest samples to the new incoming
sample. If none of samples in the history is close enough to
the new incoming sample, it is labeled as a new user. Thus,
in a system with millions or billions of users, re-training the
model is not needed when users join or leave the system, or
for the different equivalence classes, but rather only once at
the outset of system deployment.

We leverage recurrent neural networks as the modeling part
of our framework which can model highly non-linear relations
and has showed significant results on modeling sequential
data without any prior knowledge and domain expertise.
Additionally, it helps the scalability of our model as neural
networks are parametric models and their training complexity
is linear in terms of the size of the training data.

We evaluate DeepFP on a publicly available mobile sensors
dataset, H-MOG [8], and compare it to the linear and non-
linear embedding baselines. As shown in the evaluation section
later in this paper, DeepFP outperforms all the baselines in
terms of accuracy.

II. RELATED WORK

Most of the current related works to ours which use mobile
sensors are user identification and continuous user authentica-
tion. Based on the user’s distinguishable behavioral patterns
inferred from sensors data [9], continuous user authentication
aims to implicitly verify whether the current user is the actual
legitimate user or not, whereas in the user identification prob-
lem the goal is to identify the current user of the mobile device
correctly among all users. These works have used different
modeling techniques from traditional machine learning meth-
ods such as Support Vector Machine (SVM) [10] and k-Nearest
Neighbors (k-NN) [11] to deep learning techniques such as
Convolutional Neural Networks (CNNs) [12], Long Short-
Term Memory (LSTM) [13] and Recurrent Neural Networks
(RNNs) [14]. In [15], Lee et al. adapted SVM to authenticate
users implicitly and continuously based on three sensors:
accelerometer, gyroscope, and magnetometer. Bo et al. [16]
also used SVM and proposed SilentSense to authenticate users
based on their touch behavior and the smartphone reaction
(accelerometer and gyroscope sensors data). Lin et al. [17] de-
ployed K-NN to perform a non-intrusive authentication method
based on gyroscope sensor data. Amini et al. [18] uitilized

LSTM to provide an implicit re-authentication mechanism that
enables a frictionless and secure mobile user experience in the
application via accelerometer and gyroscope motion sensors.

Moreover, there have been a number of studies on the user
identification task, including IDNet [19] and GaitID [20]. In
GaitID a model is proposed which is capable of extracting
the gait template and identifying users using accelerometer
sensor data and SVM as the classifier. IDNet is also a gait-
based model that adapted CNNs to extract features and SVM
to identify different users using accelerometer and gyroscope
sensors data. Very similar to the approach used in this paper,
DeepSense [21] uses time series mobile sensor data as input
into an RNN. While the fundamental high level goal of the
system is to identify individual users, this study was also done
through a classification approach. Therefore it need model re-
training for new users which may not be feasible for large
number of users. Additionally, it needs the user’s data to be
sent to the server for model re-training which may violate
users privacy.

A key difference between DeepFP and the aforementioned
studies lies in the approach used to solve the problem. DeepFP
proposes a solution to the identification problem through an
embedding and fingerprinting approach, whereas all other
works are classification-oriented models which are not feasible
in real world scenarios and applications. Embedding learning
based on neural networks has been used in various applications
such as verification [5, 6, 7], classification for large number
of classes [22], clustering [7], and etc.

To the best of our knowledge, we are the first to propose a
deep model for modeling and tracking users from their mobile
sensors which can be scalable and adoptable in real scenarios.
Some characteristics of the user identification problem in the
real world scenario are not well supported by the requirements
of typical machine learning techniques used as classifiers.
Unlike other works, DeepFP 1) is able to handle the huge
number of users, 2) does not need to be trained for new
users, 3) performs well when it encounters the problem of
lack of sufficient information and data pertaining to users,
4) overcomes the challenge of imbalance classes, and 5)
preserves privacy by not having the need to have access to
the user’s data directly. Since, it does not need to be trained
for new users, it calculates the fingerprint of the user on the
mobile device and just sends that to the server.

III. DEEPFP FRAMEWORK
A. Model Definition

Current mobile phones have various sensors including the
accelerometer, digitizer (which captures touch events), gyro-
scope, and others. Most sensors capture the interaction and
activity of mobile users and produce a series of samples over
time, which can be used to model users individual behaviour.
In this study, we are working with the sequential data obtained
from users phones’ sensors. For each user, we derive the
individual’s fingerprint using the sensor data gathered from
her/his phone.

uy

@ @

2
s
3
o Y
£ uy
Si—> 2
-}
£
H

N,
)

%SV(SI)

Objective
b

3

s

T

P
i o
—> £
S -
-
T

£

H

Fig. 1: Main architecture of DeepFP framework.

We define a segment of data as a sequence of measurements
for T time steps. Each segment is denoted in the form of a

the measurements at t™ time step, and D is the number of
measurements.

Our aim is to learn an embedding function which gives the
fingerprint of a user from its segment where fingerprints from
the same user are close in the embedding space while finger-
prints from different users are far from each other. We define
such embedding function as f (S) : RP*T — IR€*? which
maps the segment S of a user to the user’s C dimensional
fingerprint space. ¥ (i) is a nonlinear function parametrized
by . A distance function g (:;:) is also defined as

g (§;S)=|f (S)—-T (SN, (1)

which estimates the distance of two segments S and S’ in the
embedding space learned by T . Conceptually, ¥ maps raw
data from original feature space to another space (a lower
dimensional one) in which Euclidean distance among data
points equals to the distance between fingerprints.

We define the training samples in the form of pairs of
segments. Some of the pairs have two segments from the
same user which are labeled as positive pairs while others have
segments from different users which are labeled as negative
pairs. The model is trained in such way that positive pairs
have a small distance in the new learned space and negative
pairs are far from each other forming a discriminative feature
space.

B. Model Architecture

The proposed model consists of six primary components:
preprocessing, pairing, windowing, Discrete Fourier Trans-
form (DFT), modeling, and finally an objective function. In
the preprocessing layer, data gathered from different sensors
are concatenated to form segments. In the pairing component,
matching (positive) or non-matching (negative) pairs are made
from all the available segments. The segments are divided
into smaller units in the windowing layer, and each of such
sub-segment is further mapped into the frequency domain

by using Discrete Fourier Transform (DFT) [23] at the DFT
layer. The modeling component is a neural network which
learns a non-linear mapping function to map the processed
segments to a new space where distances can be easily
estimated by a simple Euclidean distance function. The final
layer is the objective function that pushes the model to give
the desired properties. In the following subsections, we discuss
the details of these components. A schematic representation of
the main architecture of the DeepFP framework starting from
the windowing layer is shown in Figure 1.

1) Preprocessing: Most sensors are not usually synchro-
nized with each other, their sampling is not performed uni-
formly, and it is done with unnecessary or inaccessibly high
fidelity. Therefore we initially synchronize all of the sensor
outputs and reduce their sampling rate. We then obtain uni-
formly sampled measurements over the same time intervals
and thus with identical number of time steps for all sensors.
We then concatenate all of the measurements from all sensors
in each time step as the sample vector of that time step.

Assuming we have K sensors on the phone, and the k™
sensor at a time includes dy different measurements (for
example, the accelerometer sensor gives samples with three
dimensions X, ¥ and z which specifies the acceleration of the
phone movement in three dimensional space)gthe total number
of measurements in each time step is D = |I<<=1 dk. As the
samples for a user may be very long and also the length of
input data for different users vary, we initially split the data
of each user into fixed-size segments of size T time steps
(see Section III-A). We perform the segmentation exploiting a
windowing process by moving a fixed-size window of size T
over the sequential data to build the segments. Thus for each
user, we have a sequence of segments with size D x T. The
number of segments in each user’s sequence depends on the
length of the input data for that user. These segments are then
passed to the pairing layer to build the training data.

2) Pairing: As mentioned in the previous subsection, after
synchronizing, down-sampling, and segmenting the raw sensor
data, we obtain a group of segments for each user. In this
layer, we create the training pairs for each batch. As the model
is based on neural networks, the training is preformed using
batches of pairs. For the b batch, we create a set of training
pairs Py as

Po= ((S1;SH)iy") y' € {neg; pos}}Hy, 2)

where (S!;S}) is a pair of segments Sji e RP*T yl is its

corresponding label which indicates if the pair is from the
same user pPos or from different users neg. N = Np + Np is
the total number of training pairs including N, negative pairs
and N positive pairs for each batch.

The number of pairs that can be created from n segments
is O(N?) which can be a large number, therefore we can not
create all possible pairs. Moreover, if we create all possible
pairs, the number of negative pairs will greatly outnumber
positive pairs which can impair the learning process. To
address such issues, we use a controlled random sampling to
build the training sets for each batch. In the sampling process,

the ratio of negative to positive pairs is kept to a fixed number
r, which we call the negative factor.

3) Windowing: The outputs of the pairing layer are then
passed to the windowing layer. These segments, on their own,
do not reveal distinctive behavioral patterns of users while
using a mobile phone. Such patterns can be better detected
if we look into a sequence of measurements instead of just
exploring each single value, since one single measurement is
rarely sufficient to reveal one’s behavioral patterns while inter-
acting with a mobile phone. These sequential measurements
contain behavioral patterns that can be utilized to distinguish
different users. In the windowing layer of DeepFP, we prepare
segments to better reveal users’ unique behavioral patterns
while using a mobile phone. We categorize such patterns into
micro and macro patterns. Micro patterns are those existing
within a smaller portion of sequential measurements, whereas
macro patterns are those involving a bigger sequence of
measurements reflected by the inter-segment relationship of
the micro patterns.

Preparation of segments for detection of micro and macro
patterns are performed in windowing layer. We use the win-
dowing technique to split segments into smaller windows to
detect micro patterns. Let (S1;S2) be a pair of segments
from the training set. We basically move a fixed-size window
with size | over each segment with a pre-defined shift | to
make smaller windows for each segment which we denote as:
Windowing(S;) = uJi- i:wl’ where S;j is a segment in the
given pair, Ny = L%j is the number of windows in segment
Sj, and u} € RP*! is the i™" window of the segment Sj.

Windowing is not only beneficial when it comes to detecting
micro patterns, but also can reveal macro patterns and inter-
segment relationships between subsequent windows. In the
DeepFP model, the detection of macro patterns is performed
in the recurrent layer. More details on this will be explained
in Section III-BS5.

4) DFT: Sensors’ data are originally in the time domain.
However, working in the frequency domain for our input data
has the following advantages:

« Noise handling and accuracy: Measurements recorded
from such devices usually contain a considerable amount
of irrelevant and noisy signals that may result in accuracy
degradation of behavioral pattern detection. Frequency
domain data provides the ability to better handle and
remove noise comparing to time domain.

o Performance in detection of behavioral patterns: Char-
acteristics of the sensors’ signals which are useful for
distinguishing and detecting unique behavioral patterns
can be better captured in the frequency domain.

Time domain signals can be converted to Frequency domain
signals by computing the Discrete Fourier Transform (DFT).
Fast Fourier Transform (FFT) is one of the most common and
numerically efficient algorithms to estimate DFT. To transform
windows of measurements in the time domain with size D x |
to the frequency domain, we apply an FFT on each dimension
of the window, i.e., a vector of size 1 x | separately. As the

FFT vectors are symmetric, we consider only half of them. The
resulting FFT vectors are stacked on top of each other to form
a feature vector with length of % x D. This gives us a sequence
of windows U J' :\l:wl for segment Sj in the frequency domain,
where U J' is the frequency form of window uJ' Putting all of
these vectors into a two dimensional matrix gives ij with
dimension (%D) x Nw, the frequency domain of segment S;.

5) Modeling: The main goal of this study is to detect macro
and micro patterns within mobile sensors data that can distin-
guish different users from each other. As mentioned earlier
in this section, micro patterns are detected in preprocessing
layer. By utilizing a recurrent layer in our model, we detect
macro patterns which manifest as patterns occurring between
subsequent windows.

Recurrent Neural Networks (RNNs) have appeared as one of
the most popular neural networks for handling sequential data.
To detect macro patterns, we use Long Short-Term Memory
(LSTM) [13] which is a variant of RNNs with a better control
over memory. It has been shown that LSTM outperforms other
versions of RNNs when it comes to sequential data with larger
time intervals due to its capability of learning long range
dependencies through its use of memory cell units [24].

LSTM is employed to learn the non-linear embedding
function f (1) from a sequence of input vectors. here
refers to the set of all parameters of the model. This maps
the segments into a sequence of lower-dimensional feature
jth
input sequence and it has a pre-defined length of C. We
use a max-pooling layer that chooses the maximum value

signature feature vector SV of the input segment S denoted
as SV =T (S).

6) Objective Function: The outputs of the recurrent layer
(see Figure 1) are two C-dimensional signature feature vectors,
f (S1) = SV1 and f (S2) = SV,. We define the discrimi-
native difference between the two signature feature vectors of
the i™ training pair by g S};S)} = SV —SV, ,, using
Euclidean distance. Subsequently, a marginalized contrastive
loss function, Ly, shown in Equation 3 is employed that
inspires the matching segments to be close together, whereas
it reassures the non-matching segments to be far apart by
enforcing a distance constraint. In other words, we aim to
parametrize a non-linear mapping function f by minimizing
the contrastive loss function such that the distance g Si- S%
between S! and S} is smaller than a pre-specified threshold
m if S and S} segments are matching (y' = pos), and larger
than m if S{ and S% are non-matching segments (y' = neg).
The loss function is of the form:

yi g sish ?

i=1

+(1—y") max(0;m—g Si;S}) 2 3

where N is the number of training pairs, m > 0 is a
predefined margin and y' € {neg; pos} demonstrate the labels
of the i™ pair. The margin intensifies the distance constraint
and prevents non-matching pairs that are beyond this margin
from contributing to the loss.

C. Training DeepFP

The whole model is trained in an end-to-end manner using
backpropagation with respect to the marginalized contrastive
loss function illustrated in Equation 3. Given a set of N train-
ing pairs, we optimize the model’s objective function using
an adaptive version of the stochastic gradient descent method
called Adam [25]. Moreover, we apply |2-regularization and
dropout techniques to prevent overfitting.

IV. IDENTIFICATION TASK

After minimizing the loss function 3 on the training users,
we have learned the parameters of the function f which can
produce fingerprints for users. When we learn the function
f , the function g can be used to estimate the distance
between two segments from two users. If we could find a
distance threshold such that g (S1;S2) < for matching
segments and g (S1;S2) = for non-matching segments as
much as possible, these vectors would function as reliable
fingerprints. In other words, the threshold can distinguish
pairs of matching fingerprints from pairs of non-matching
fingerprints.

In our framework, users are divided into three non-
overlapping sets: training, validation and testing sets. The over-
all procedure of using our framework is as follows. Initially,
training users are used to learn the the parameters . Then,
the validation set is used to estimate the most efficient value
for the threshold . Consequently, our system is evaluated on
the test users. We maintain a history of fingerprints from the
users that we have observed or detected by the system. When
a new user is detected, all samples from the user are split into
segments and their corresponding fingerprints are generated by
function T . All of these fingerprints are added into a history
of fingerprints. One of the main contributions of DeepFP is
that it does not need to be trained on new users to be able to
detect them, which is reflected in this evaluation framework.
It can identify a user by just having at least one sample from
the user in the history, and does not need to re-train the model
when new users arrive.

In the identification phase of DeepFP a new segment Sgest iS
identified either as an Alien user or a Known user. An Alien
user is a user which is new to the system and it is the first
observation of the user, whereas a Known user is a user for
which we have some fingerprints in our history. Note that there
is no overlapping between test and train users, and none of the
users in the test are used in the training process. We apply the
function g to calculate the distances between the signature
vector of segment S and all segments pertaining to user i.
We denote the average of these distances (dj) as the distance
between the anonymous user and user i. We repeat this step for
all users to get the distance between the anonymous user and

all users in the data history. If all such distances are greater
than the threshold , that means the anonymous user is an
Alien user. On the other hand, if there are some users with
a distance less than the threshold , that refers to the Known
user scenario and the anonymous segment is pertaining to the
one whose distance is the minimum among all users to the
anonymous user.

V. EXPERIMENTS
A. Dataset

A publicly available dataset of mobile sensors called H-
MOG [8] is used in all of the following experiments. H-
MOG was collected to explore behavioral biometric features
for continuous user authentication [26]. It was collected from
100 volunteers while interacting with identical model Android
phones via three tasks: reading, writing and navigation on
a map. In total, each volunteer has completed 24 sessions
including 8 sessions per task and they either sat or walked
over the course of each session. In total, each volunteer
contributed from 2 to 6 hours of interaction with mobile in
the data collection. In H-MOG 9 different categories of data
were collected including motion sensors, touch related data
and keystroke data. We select accelerometer and gyroscope
motion sensors data for our experiments. The sampling rate
for accelerometer and gyroscope data stream is 100Hz in the
H-MOG dataset. For the synchronizing and re-sampling step
of DeepFP, we synchronize the data and down-sample the rate
of these sensors data stream to 5S0Hz.

B. Baselines

We evaluate DeepFP by comparing its effectiveness to other
representation learning algorithms. Note that DeepFP cannot
be compared with neural network based classification methods
as they can not easily handle new classes. Traditional classi-
fication methods such as k-NN can support new classes but
they are not able to extract efficient features as good as deep
neural networks. Therefore, we adopt common embedding and
representation learning methods along with two variants of
the DeepFP model as our baselines. The baselines used in
experiments are as follows: 1) Principal Component Analysis
(PCA) [27], 2) Linear Discriminant Analysis (LDA) [28], 3)
DeepFP(t) which is a variant of DeepFP which uses time
domain features instead of frequency domain features, and
4) DeepFP(t+{ft) which is another variant of DeepFP which
adopts both time and frequency domains for features.

C. Experimental Settings

For the purpose of providing segments pertaining to users
not present during model training, there is no overlap between
users in training, validation and test sets. DeepFP is trained on
70% of the users, validated on 15% of them and tested on the
remaining 15% of the users. After synchronizing and down
sampling the accelerometer and gyroscope motion sensors
data to the rate of 50Hz, segmentation step is done over the
sequential data to generate non-overlapping segments of size
T. The negative factor r = 5 is used in the training process but

the ratio of positive and negative pairs in the validation and test
process is considered as one. All segments are normalized to
have zero mean with variance of one by calculating the mean
and variance on the training data.

We use the default parameters of the Adam optimizer as
provided in the original paper [25]. The batch size is 512 for
all the training of neural networks. The size of the hidden
states for LSTM, RNN, and GRU is set to 256. Dropout and
12-regularization parameters are set to 0:2 and 1le—4 respec-
tively. Margin m = 1 is used in the loss function Ly,. We
experimented with different window sizes:{0:4;0:8; 2; 4; 10}
seconds and selected | = 4 seconds which leads to the best
performance. Window shift is set to | = % We tested with
different values of the threshold for DeepFP and its variants
from 0:2 to 0:8 and for PCA and LDA from 10 to 70. The
best value is selected based on H accuracy measurement on
the validation users. We experimented with different values of
the C parameter (from 10 to 350) which is the size of the
signature vectors and selected C = 40 which showed the best
results in most scenarios on the validation set.

TABLE I: Performance of different methods on H-MOG in
terms of accuracy for different segment sizes.

Segment Size || 10 (s) | 20 (s) | 40 (s)
Accuracy [N P H | N P H | N P H
DeepFP 7177 53.51 61.31 | 7811 60.36 68.10 | 76.27 6232 68.59
DeepFP(t+fft) || 5538 58.71 57.00 | 71.20 59.69 64.94 | 81.32 65.07 72.29
DeepFP(t) 6570 44.12 5279 | 67.79 48.63 56.63 | 80.73 5639 66.40
PCA 40.90 19.60 26.50 | 42.20 1832 2555 | 41.53 1899 26.07
LDA 55.52 1290 2093 | 59.97 12.08 20.11 | 56.93 1192 19.71

D. Evaluation Metrics

In our experiments, each segment in the test dataset is
evaluated in both Alien and 2) Known user scenarios. In order
to evaluate a segment in the Alien user scenario, all other
segments pertaining to the same user are removed and the
distance between its fingerprint and all those of other segments
in the test set are calculated which yields the closeness of the
segment to other users. The segment is correctly identified in
this scenario if all distances are greater than the pre-specified
threshold . In other words, the algorithm does not assign
that segment to any user. On the other hand, in the Known
user scenario, the distance between the segment fingerprint
and those of the same user must be less than the threshold and
minimum among its distances from all other users. Otherwise,
it is counted as a miss when it comes to calculating the
identification accuracy.

We report the performance in terms of the accuracy of
the identification of Known users (Positive accuracy) and
Alien users (Negative accuracy). Positive accuracy (P) is the
number of segments in the test set which pertain to a user
correctly verified to be in the test set divided by the total
number of such segments in the test set. Negative accuracy
(N) is the ratio of correctly verified segments corresponding to
a new user. To create a single final measurement for evaluating
different techniques, we also report H accuracy which is the
harmonic mean of P and N to interpret the test’s accuracy.

H is calculated as H = 2 - %.

E. Performance Evaluation

The performance of DeepFP and all baselines are presented
in Table I. The results are reported for three different number
of segment sizes:{10; 20;40} seconds and the best accuracy
for each case is depicted in bold. As it is shown in the table,
DeepFP and its variants outperform PCA and LDA. One of
the advantages of DeepFP over linear techniques like PCA and
LDA is that it leverages a recurrent layer which is capable of
detecting both micro and macro patterns.

Among the variants of DeepFP, DeepFP(t+fft) gives the
best performance while DeepFP(t) and DeepFP(fft) also show
promising accuracy. DeepFP(fft) is better than DeepFP(t)
which shows the superiority of the frequency domain com-
pared to the time domain in detecting patterns. The combined
time and frequency domain features also provide better per-
formance compared to the time or frequency domain features
on their own. While the time domain is inferior to the fre-
quency domain, it still contains some useful information which
may have been lost in the frequency domain representation.
Moreover, as the size of segments increases, the accuracy gets
better, which shows that patterns are more detectable within
longer-sized segments.

Over the course of our experiments, we noticed that
training DeepFP(t+{ft) is approximately three times slower
than DeepFP(fft). Consequently, although DeepFP(t+fft) out-
performs DeepFP(fft); we use DeepFP(fft) (referred to just
as DeepFP) for the following experiments considering that
difference in their accuracy is not significant.

F. Model Analysis

We explore the effectiveness of different variants of neural
networks. These variants differ by the type of neural network
used in the modeling part of our proposed system. We exper-
imented with LSTM, MLP, RNN and GRU. The number of
hidden states for LSTM, RNN, and GRU are all set to 256.
The MLP consists of two fully-connected hidden layers of 256
hidden nodes with a ReL.U activation function. The experiment
is done on two segment sizes of 20 and 40 seconds while all
the other parameters are set to the ones given in Section V-C.

We noticed that recurrent-based models with at least 64.01%
accuracy give better performance than MLP with an accuracy
of at most 41.70%. This likely reflects the capability of re-
current models to detect patterns within sequential data which
MLP lacks. Among recurrent-based models LSTM gives the
best performance; however, it is slower than others due to
its larger number of parameters. We also experimented with
both sources of sensors (accelerometer and gyroscope) and
came to the result that it helps the performance rather than
using only one source. Moreover, accelerometer data source
seems to have more informative data to detect behavioral
patterns that that of gyroscope due to the model’s slightly
better corresponding accuracy.

G. Parameter Sensitivity

We analyze the effect of different parameters of DeepFP on
its performance which are the segment size and the window

size. The performance of DeepFP for different values of these
parameters is illustrated in Figure 2. As the length of segments
and windows grows, the accuracy of the model increases until
they reach their optimum values and then the performance
gradually decreases. One possible reason for this fluctuation
is that as the size of segments and windows increases as
more information is available within each window and thus
more micro patterns can be detected, while the model neglects
more macro patterns. It is also possible that as the segments
and windows get smaller than a threshold, we miss many
micro patterns and thus the accuracy of DeepFP decreases.
There exists a trade-off between the amount of detected micro
and macro patterns which is achieved by the optimum values
of segment and window sizes which are 40 and 2 seconds
respectively.

75 P 80 .
3 700 sl AT~ v
s g
Z 65 .) 2 0 e
© . _— 54 . Sl
5 60 / g O
9 T e-all
g 55 < 60 /\. -
50 - '\ 55 —
0 20 40 60 80 0 2 4 6 8 10
T (seconds) 1 (seconds)
(@) (b)

Fig. 2: The sensitivity of DeepFP for different parameters in
terms of accuracy: (a) segment size T, and (b) window size I.

H. Feature Analysis

In Figure 3, we show the effectiveness of DeepFP features
compared to time and frequency features in distinguishing
different users from each other. We randomly select five users
and plot their segments in time, frequency and the DeepFP
feature space. They are visualized in a 2-dimentional space
using the t-distributed stochastic neighbor embedding feature
reduction algorithm (t-SNE) [29]. As shown in Figure 3,
fingerprints produced by DeepFP can easily separate most of
the segments from different users and thus the feature space
learned by our model is more discriminative than that of time
and frequency. Additionally, the frequency feature space is
slightly better than the time domain but not discriminative
enough to be effective at this task.

VI. CONCLUSION

DeepFP provides a deep model to identify different users
via their behavioral patterns while interacting with a mobile
phone. DeepFP is employable in real world scenarios where
the number of users is too large and re-training the model for
new users is challenging. By generating fingerprint vectors
from motion sensors which can reliably discriminate between
different users, the addition of new users to the system does
not necessitate re-training the model. As the fingerprint of a
user can get generated on the user’s mobile phone, there is no
need to send user’s data to the central server and it can help
to preserve user’s privacy. This approach is also suitable for

tasks beyond fingerprinting for user tracking, as it can be used
for the authentication task, where a DeepFP can be used to
increase confidence that a user is (or is not) the intended user
of a given device without the need for a substantial amount
of training data.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
extensive and helpful feedback. We would also like to show
our gratitude to Dr. Jason Polakis who provided comments that
greatly improved the manuscript. This material is based upon
work supported in part by the National Science Foundation
under Grant Nos. CNS-1351058 and CNS-1409868. Any
opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. The first
two authors contributed equally to this work.

REFERENCES

[1] P. Eckersley, “How unique is your web browser?” in
Privacy Enhancing Technologies, vol. 6205. Springer,
2010, pp. 1-18.

[2] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty
and the beast: Diverting modern web browsers to build
unique browser fingerprints,” in Security and Privacy
(SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 878-
894.

[3] Apple Computer, “Engineering privacy for your users,’
https://developer.apple.com/videos/play/wwdc2016/709/,
2016.

[4] U. Erlingsson, V. Pihur, and A. Korolova, “Rappor:
Randomized aggregatable privacy-preserving ordinal re-
sponse,” in Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security.
ACM, 2014, pp. 1054-1067.

[5] J. Hu, J. Lu, and Y.-P. Tan, “Discriminative deep metric
learning for face verification in the wild,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 1875-1882.

[6] V. Noroozi, L. Zheng, S. Bahaadini, S. Xie, and P. S. Yu,
“Seven: deep semi-supervised verification networks,” in
Proceedings of the 26th International Joint Conference
on Artificial Intelligence. AAAI Press, 2017, pp. 2571—
25717.

[7] S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin,
M. Zevin, and A. K. Katsaggelos, “Direct: Deep dis-
criminative embedding for clustering of ligo data,” in
Proceedings of the 25th IEEE International Conference
on Image Processing (ICIP). 1IEEE, 2018.

[8] H-MOG, “H-mog data set - a multimodal data set
for evaluating continuous authentication performance in
smartphones,” http://www.cs.wm.edu/ qyang/hmog.html.

[9] N. Zheng, K. Bai, H. Huang, and H. Wang, “You are
how you touch: User verification on smartphones via
tapping behaviors,” in Network Protocols (ICNP), 2014

