
Cloudsweeper: Enabling Data-Centric Document
Management for Secure Cloud Archives

Peter Snyder and Chris Kanich
University of Illinois at Chicago

Chicago, Illinois, USA
{psndye2,ckanich}@uic.edu

ABSTRACT
Cloud based storage accounts like web email are compro-
mised on a daily basis. At the same time, billions of Internet
users store private information in these accounts. As the
Internet matures and these accounts accrue more informa-
tion, these accounts become a single point of failure for both
users’ online identities and large amounts of their private
information. This paper presents two contributions: the first,
the heterogeneous documents abstraction, is a data-centric
strategy for protecting high value information stored in glob-
ally accessible storage. Secondly, we present Cloudsweeper,
an implementation of the heterogeneous documents strategy
as a cloud-based email protection system. Cloudsweeper
gives users the opportunity to remove or “lock up” sensitive,
unexpected, and rarely used information to mitigate the risks
of cloud storage accounts without sacrificing the benefits of
cloud storage or computation. We show that Cloudsweeper
can efficiently assist users in pinpointing and protecting pass-
words emailed to them in cleartext. We present performance
measurements showing that the system can rewrite past
emails stored at cloud providers quickly, along with initial
results regarding user preferences for redacted cloud storage.

Categories and Subject Descriptors
H.3.2 [Information Systems Applications]: Information
Storage; D.4.6 [Operating Systems]: Security and Pro-
tection; C.2.0 [Computer-Communication Networks]:
General

Keywords
Cloud Storage; Data Loss Prevention; Attack Mitigation

1. INTRODUCTION
Modern internet and computing infrastructure has ma-

tured to the point that any data recorded today is likely to
be retained and accessible for an extended period of time. In-
accessibility due to changing formats and media is less likely

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCSW’13, November 8, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2490-8/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517488.2517495.

as the number and quality of available libraries, operating
systems, and tools has grown. Global connectivity allows
users to easily store decades of documents in the cloud, at
home, or even on a mobile device. Modern, efficient search
makes referencing an individual email or document only a
query away, and cloud storage effortlessly synchronizes all of
one’s documents between different devices.

Less clear, however, is the risk that accompanies these
monolithic archives. In many cases, the only thing that
stands between a cybercriminal and years of documents is a
single password: easily phished, purchased, or recovered from
a database breach. When someone lives their entire life using
cloud-based storage that effortlessly synchronizes between
old and new devices, it is likely that extremely sensitive
documents are accessible within this archive. While today’s
cybercriminals typically exploit the capabilities of a stolen
account to send spam or defraud friends, the gargantuan
volume of data stored within these accounts makes them more
lucrative to attackers, and merits a data-centric approach to
archive management.

Instant global access to decades of information upends
most of the assumptions underlying traditional strategies
for securing our personal effects. Older methods like safe
deposit boxes or home safes provide reasonable security at
the point of attack because they can only be accessed by
someone standing next to them. While this physical locality
constraint can be seen as a disadvantage with respect to
accessibility, the current “access to everything all of the
time from anywhere” policy exposed by most online services
exposes users to the risk of having their entire archive stolen
in the event of an account compromise.

Rather than continuing to focus efforts on security at the
perimeter with different password schemes or multi-factor
authentication, a complementary approach would be to in-
vestigate changes to availability that can minimize risk while
maintaining the utility of a globally connected archive. Devel-
oping a deeper understanding of the risks of data compromise
alongside a set of mechanisms and policies that provide data-
centric security will allow users to assess and manage the
risks involved in maintaining a full life archive.

Cloudsweeper implements the heterogeneous documents
abstraction, by allowing users to automatically protect high-
value but low-utility information within their cloud based
email account. Heterogeneous documents allow users to
place an extra level of protection on a limited portion of a
document stored in the cloud. The limited, sensitive portions
of the documents are protected by a key, stored separately
from the cloud archive, so that compromise of the cloud

archive does not give access to protected information. By
allowing cloud based computation like search to continue
functioning even though part of the message is encrypted,
Cloudsweeper maintains the utility of the archive both to
the service provider and the user.

As an initial exploration of using the heterogeneous docu-
ments abstraction, we built a service to automatically find
and redact passwords which have been emailed to users in
plaintext. Very often, these passwords are the epitome of
high-risk, low utility information: users most likely don’t
want these passwords saved in their archive, but might still
have use for the email message as a whole. By redacting
or encrypting only the password, the utility of the archive
is unchanged but the risk is greatly decreased. We have
deployed a public version of this tool that works on Gmail
accounts which has been used nearly 700 times by Internet
users to protect over 25,000 messages.

The remainder of this paper is structured as follows: Sec-
tion 2 presents related work and contextualizes the het-
erogeneous documents abstraction with respect to alterna-
tive approaches to data protection. Section 3 outlines our
threat model and design goals, and Section 4 covers our
implementation of the search, redact, and encrypt functions
of Cloudsweeper. Section 5 evaluates the performance of
Cloudsweeper as a web-based service, with respect to indi-
vidual user experience and scaling to serve several clients
simultaneously. Section 6 discusses our findings and avenues
for future work, and Section 7 concludes.

2. BACKGROUND
The strategies underlying heterogeneous documents and

Cloudsweeper stem from three domains: personal information
management, attacker goal based security, and data exfiltra-
tion protection mechanisms. By combining techniques from
these three areas, we hope to create effective protection for
high risk archives.

2.1 Approaches for protecting long-lived data
Personal information management (PIM), a subfield of

information retrieval, studies task and role based retrieval
of personal information; Jones aggregated the scholarship in
this area in [9]. Email has become a prime target for PIM
research, as for many users email has taken over many of
the tasks traditionally associated with PIM including task
management, archiving, and contact management [23].

While the intended practitioners of personal information
management are legitimate users, the insights surrounding
strategies for retrieving important information may also apply
to malicious users with the same goals in mind. Investigating
how successful an attacker might be at extracting useful
information from a user’s account will allow us to evaluate
the risks inherent in long term accessible storage.

Czerwinski et al. raise questions regarding the technolog-
ical, legal, and social implications of ubiquitous, abundant
storage [4]. The authors present an introduction to the vast
array of measurable and recordable data that ubiquitous
sensors and storage has enabled, and build a taxonomy of
the goals and challenges engendered by the situation. While
communication, behavioral, and sensor data can all be col-
lected and stored locally, deciding what subset or aggregate
data should be kept or shared is an open question.

Usability is a fundamental, primary concern when creating
user-facing security mechanisms. Usable security and privacy

research typically focuses on understanding users’ security
behaviors when interacting with systems, and developing
secure, usable systems for legitimate users. Recent research
has highlighted user anxiety related to the irreversibility of
data exfiltration [22] and privacy concerns when storing data
with cloud providers [8]. Cloudsweeper targets both of these
concerns by providing additional security for sensitive data
stored in the cloud.

Our system takes a different tack with respect to usability
research: what are the usability concerns of attackers, and
how can we make the system less usable in the presence
of economically motivated attackers? Here usable security
research investigating passwords and other authentication
mechanisms can provide insights into the concerns of the
attackers. One attacker goal might be to elevate their priv-
ilege by learning the answers to users’ password reset and
personal information questions for high value online accounts.
Usability and security concerns regarding these types of au-
thentication mechanisms have been investigated with respect
to user cognitive limits when using such mechanisms [17, 18],
users’ choices when given the option to create their own chal-
lenge questions [10], and the security of personal information
questions used as backup authentication when such personal
information is commonly publicly available [1, 15].

2.2 Understanding attacker goals
In line with understanding the usability concerns of an

attacker, one can also examine their desired outcomes to
inform effective defenses. In most cases, cybercriminals do
not compromise security systems without a reason, and do
so instead with a specific goal in mind: to make money.
Research exploring the monetization of botnets and spam
have allowed the community to propose new strategies for
preventing monetization, and thus decreasing the motivation
to compromise security [11, 12]. The Judo system is one
such example: by specifically targeting botnet-sourced spam
based off of expressive templates, the Judo system creates a
spam filter with a very low overall recall, but is extremely
effective at denying spam sent by botnet operators [14]. By
specifically targeting our protection to data that is useful to
cybercriminals, we hope to both make compromising user
accounts less financially lucrative, as well as lower the harm
experienced by victims.

2.3 Mechanisms for data-centric security
Recent systems have been developed with a focus on pro-

tecting data outsourced to the cloud, even in the event of
a system compromise. For instance, CLAMP implements
a mechanism to prevent data leaks due to web server or
database compromises by limiting the information accessible
to an individual user via a trusted module [13].

Attack surface minimization, an example of which is intro-
duced in Gondi et al. [7], acknowledges the liability inherent
in keeping data after it is no longer useful: this system per-
forms static analysis to determine the time of last use for
stored information, and securely erases it immediately. As
with many systems of this type, the authors treat all input
data as sensitive to provide strong security guarantees. In
this project, we wish to discern between potentially lucrative
and inane. For these purposes, the RIFLE system provides a
data protection mechanism that can be configured at runtime
by users to suit their security needs [21]. Yumerefendi et al.
describe a system that builds upon the concepts from RIFLE,

and introduces a mechanism that helps users determine which
data is sensitive through “doppleganger” processes executed
alongside processes that handle sensitive information [24].

Other recently developed systems leverage the ability to
expire data for improved security. Geambasu et al.’s Vanish
system embeds cryptographic keys to stored data within a
worldwide DHT, and controls the extent of the keys’ replica-
tion to prevent the key from being recovered from the DHT
after a configurable amount of time [5]. Geambasu et al.’s
Keypad and Tang et al.’s CleanOS leverage data expiration
to mitigate data compromise in the event of a stolen or
compromised smartphone: through auditing filesystems and
cloud-enabled cryptography, user data is kept safe while the
usability of the device is not materially impacted [6, 20].

3. Cloudsweeper DESIGN
Cloudsweeper was designed to withstand full compromise

of a user’s cloud service credentials while presenting a straight-
forward interface. Here we describe both the threat model
employed as well as the design goals for the system.

3.1 Threat model
The primary adversaries considered by the Cloudsweeper

threat model are economically motivated cybercriminals and
opportunistic eavesdroppers. We assume that the attacker
has complete control over the cloud storage account in ques-
tion, either through stealing the password or an already
authenticated device. This assumption also includes the at-
tacker having bypassed additional authentication methods,
such as two factor authentication systems like RSA’s SecurID
or smartphone-based systems, as these systems have been
previously successfully attacked. [2, 3].

Furthermore, our threat model is focused on data at rest
rather than data in motion: Cloudsweeper cannot protect
sensitive messages delivered to a user while their account is
compromised. The main goal of Cloudsweeper is to presup-
pose an adversary with complete control of an individual’s
online archive, and develop solutions that mitigate the harm
caused by such a compromise.

3.2 Design goals
Tolerate complete account compromise. The primary goal

of Cloudsweeper is to protect the user in the event of a
complete account compromise. We wish to maintain a user’s
data security even if their entire account is compromised.
Prioritize high-risk information. This goal encapsulates

the insight that attackers do not break into accounts simply
to compromise the security of a user; they most often have
specific goals in mind. Only a very small proportion of the
data in a given storage account is useful to attackers, so
successfully defending only that data can preserve the user’s
security if their account is compromised.
Retain cloud storage advantages. Storing documents to

the cloud has several advantages for the user, including
increased reliability, accessibility, and computational power.
Additionally, service providers use access to the plain text
of a message to deduplicate storage, provide search services
over the stored data, and serve contextual advertisements.
A cloud security system should preserve these capabilities.

3.3 Heterogeneous documents
We propose heterogeneous documents as a solution for

realizing the benefits of two competing strategies for securing

online data archives without incurring the substantial costs
associated with either strategy.

One approach to securing outsourced data is end–to–end
encryption. This solution provides security benefits to the
user by preventing attackers and eavesdroppers with access
to the account from viewing any contained secrets. This
“maximal storage security” strategy comes with downsides
like losing the ability to outsource search or spam filtering
to cloud systems.

Another approach to securing data stored in online archives
is to make accessing the account more difficult. Two factor
authentication is a common example of this strategy. The se-
curity these systems provide come with their own downsides,
such as user inconvenience and difficulties with automated
or legacy login systems. These “maximal perimeter security”
strategies also provide no harm mitigation once an attacker
has gained access to the online account.

Heterogeneous documents combines these approaches to
protect data within an archive by storing encrypted sensitive
information in-line with the rest of the document. Either the
system or the user designates some portion of a document
as sensitive; the system then encrypts the sensitive portion,
saves the new version of the document within the cloud stor-
age account, and deletes the original copy. The encryption
key is not chosen by the user, but instead automatically
generated for the user per Cloudsweeper session. This key is
then necessary for decrypting the protected information.

By concentrating only on sensitive information, the goal is
to encrypt information that has low “everyday” utility for the
user, such that performing a decryption is rarely necessary.
Additionally, by only encrypting the sensitive information,
users will still be able to extract meaningful information from
the context of the message, and will still be able to search
for it by other keywords. The intuition here is that the vast
majority of information stored within this account is of little
or no use to an attacker; only a very small proportion of the
information is of any use to him. Conversely, on a day to
day basis the utility of lucrative information to its owner
is likely very low. By making user effort with regards to
security commensurate with the risk involved, we hope to
make sensitive information much more secure, while imposing
minimal additional effort on the user.

By emphasizing that the key be kept as a hard copy rather
than saved on the device, we aim to drastically limit the
number of attackers eligible to compromise the system: a suc-
cessful attacker must gain access to the physical key storage
location, or convince a user to scan his key. By limiting the
utility of this key to accessing only sensitive, uncommonly
used information, our conjecture is that Cloudsweeper can
deter phishing; we leave exploration of this possibility to
future work.

4. IMPLEMENTATION
The Cloudsweeper prototype is comprised of three com-

ponents: a user interaction and authentication front end,
a message translation and encryption engine, and a cloud
storage communication back end.

Figure 1 presents an overview of our architecture. The
functionality of each component is explained in detail below.

4.1 Front end
The user facing component of Cloudsweeper is imple-

mented as an HTML5 web application using the Tornado web

Body text search finds sensitive information2

Server side search returns prospective messages1

Encrypts information4a

User chooses information to protect3
Pass1234

Monkey123

birthday84

mysecret

Pass1234

Monkey123

birthday84

mysecret

Redacts information4

System permanently expunges original messages6

System saves edited messages back on server5

Returns Key4b

Cloudsweeper.
W312853f5dng
YGXYOeeRNnK
2D/WmuKagP7
fe9rnddDQ=.jZ
lprknIjp2q/D2c
ValFfA==

Figure 1: Workflow diagram for Cloudsweeper.
Only step 3 requires user interaction.

framework. When a user first visits Cloudsweeper to search
for plaintext passwords, they are asked to give Cloudsweeper
access to their Gmail accounts using OAuth, so that the
user’s Gmail credentials are never exposed to Cloudsweeper.
As Cloudsweeper searches the account, found passwords are
grouped together and displayed along with a count of the
number of messages that contain the password and which
email addresses sent a message containing the password. The
list of found passwords is sorted in descending order of the

number of different email addresses sending that password to
the user. In our experience this order has a good chance of
prioritizing user-selected passwords, due to password reuse
among different providers.

The password search takes between several seconds to
many minutes, depending on both the number of messages in
the searched account and the number of messages containing
plaintext passwords. Once the search is complete, users are
able to redact or encrypt any or all of the found passwords.

4.1.1 Password redaction
If a user chooses to redact passwords from their account,

they are warned that they will irreversibly modify the se-
lected messages. Once they confirm, Cloudsweeper presents a
progress bar while the cloud storage communication process
modifies their messages. Once this process is complete, each
redacted password is replaced with the token “[Cloudsweeper
Removed]”. The message is otherwise unchanged, and the
original version is permanently expunged.

4.1.2 Password encryption
If the user instead chooses to encrypt their plaintext pass-

words, they are provided with a key that can be later used to
reverse any passwords that have been encrypted. Keys are
generated per user session, and persist until the user logs out
or their session expires. All encryptions that a user performs
during the same session will use the same key. The next time
the user visits Cloudsweeper, they are assigned a new key to
perform encryptions during the new session.

Cloudsweeperpresents the user’s key in two forms, first as
a Base64 encoded string and second as QR code. These rep-
resentations are equivalent and either version of the key can
be used for decryption. As with redaction, only passwords
are replaced in each message. Cloudsweeperreplaces each
password with a Base64 encoded ciphertext.

4.1.3 Password decryption
If a user wishes to reverse the encryption process, they can

do so by visiting the decryption page in Cloudsweeper and
entering the previously provided key. The key can either be
entered manually or the user’s browser can scan the key in
as a QR code using a webcam. Cloudsweeperalso encourages
users to store their keys in a purely offline medium, to fur-
ther sever the connection between access to the user’s email
account and access to the encrypted sensitive information in
the user’s messages.

4.2 Message translation and encryption
Each email messages body is parsed to extract sensitive

information. Currently Cloudsweeper implements two pro-
tection modes: encryption, which uses symmetric encryption
to quickly and easily protect information in a reversible man-
ner, and redaction, which permanently destroys the sensitive
data.

4.2.1 Message parsing
Search, redacting and encrypting passwords in users’ email

accounts requires Cloudsweeper to correctly parse thousands
of emails in accessed accounts. Unfortunately, many email
clients, particularly older and more esoteric ones, send incor-
rectly formatted email. As a result, Cloudsweeper must deal
with messages that are malformed in various ways, including:

• Missing expected header fields, such as Message-Id (a
client generated unique identifier for each message) or
Date.

• Missing or incorrectly declaring the character encoding
scheme used for a message or message subsection (e.g.
declaring that a UTF-8 encoded body section is actually
ASCII).

• Improperly declaring the transfer encoding of the text
in a body section (ex declaring that Base64 encoded
text is really quoted-printable text).

Because of the sensitive nature of the data being operated
on, along with the high amount of trust being asked for from
users and the potentially high costs of data loss that could
amount from improperly translating a message when rewrit-
ing it in a user’s archive, Cloudsweeper is conservative when
editing any email messages. If any messages are malformed
according to RFC2822 [16], Cloudsweeper will not modify
the message, and warn the user that some messages could
not be properly parsed.

4.2.2 Safely rewriting messages with IMAP
The IMAP protocol does not provide the ability to edit

stored messages, making it difficult to operate on and secure
a user’s email in place. To achieve editing-like function-
ality while preventing data loss in the event of a failure,
Cloudsweeper uses a transactional system that creates a du-
plicate copy of the email in the user’s Gmail account, deletes
the original message, creates the new redacted or encrypted
copy, and then deletes the backup copy. This ensures that
message threading is properly preserved within the archive.
If either the IMAP server or Cloudsweeper fail at any point
during this process, no message is lost and the user is able to
recover either the original or modified version of the message.

4.2.3 Encryption
Cloudsweeper uses AES256 in cipher block chaining mode

to encrypt plain text passwords. Once a user authenticates
with Cloudsweeper, their session is associated with a ran-
domly generated 256 bit key and a randomly generated 128
bit nonce for the duration of their session. These values are
used as follows when encrypting each password:

1. The password being encrypted is padded out with null
bytes so that it cleanly divides into 16 byte blocks.

2. 16 bytes are randomly generated and saved as the
Initialization Vector.

3. The padded password is encrypted under AES256-CBC
using the generated IV and the user’s key.

4. The IV is prepended to the ciphertext.

5. Both the user’s nonce and the resulting ciphertext are
Base64 encoded.

6. The password is replaced in the body of the email
message with the following tag: [<nonce> <IV> <ci-
phertext>]. The format of this tag is designed to be
easily searched for if the user wishes to decrypt this
message, but not easily found without knowledge of
the nonce.

The user is then provided with a separate Cloudsweeper
key that they can use to decrypt all messages encrypted in
this session. This Cloudsweeper key takes the following form
<Base64 encoded key>.<Base64 encoded nonce>.

4.2.4 Decryption
Cloudsweeper also allows users to reverse the encryption

of the plaintext passwords and restore the messages in their
account to their original plaintext state. The user first sub-
mits the Cloudsweeper key provided at encryption time.
Cloudsweeper then retrieves all messages that contain the
nonce in the user’s Gmail account.

For each returned message, Cloudsweeper then extracts the
middle, encryption key from the provided Cloudsweeper key,
Base64 decodes it, and uses it to reverse the encryption of
each found ciphertext block with a matching nonce. Finally,
Cloudsweeper saves the decrypted version of the message
back into the user’s email account.

4.3 Cloud storage communication
The service also communicates with the cloud based back-

ing store. While currently implemented to communicate
with Gmail via IMAP using Google’s OAuth authentica-
tion API, Cloudsweeper can be implemented on top of any
user-facing API for creating, reading, and deleting files or
messages. Yahoo!, for example, provides similar OAuth ac-
cess to their email accounts. Even without OAuth or IMAP
access, messages could still be deleted and re-inserted via
SMTP (although these forged messages might be subject to
spam filtering).

4.4 User privacy
Cloudsweeper takes many steps to protect user’s privacy

and data. Most importantly, Cloudsweeper never stores
encryption keys, found plaintext passwords, or any other
sensitive or identifying user information beyond the lifetime
of the user’s session (user sessions either end when a user ex-
plicitly logs out, or four hours after the last user interaction).
All user information is stored in memory and never saved in
a persistant store or swapped out to disk.

Cloudsweeper further protects users’ privacy by using
Gmail’s OAuth API for authentication. This allows users
to give Cloudsweeper access to their email archive without
needing to reveal their account credentials.

5. EVALUATION
To evaluate the Cloudsweeper system, we implemented

a sample workflow focusing on finding passwords that have
been emailed to the user in plaintext. For this approach,
the server side search looks for the word “password.” For
the second pass search, we built a regular expression that
extracts the expected password from the message based on
contextual clues in the email. While straightforward, we
believe that this strategy is sufficient for two reasons: firstly,
“password” is often being used as a technical term and rarely
if ever are synonyms used, especially in computer-generated
template emails. Secondly, our goal is not to perfectly redact
the archive but to sufficiently protect the archive such that an
automated attacker with complete access would not be able
to programmatically extract lucrative information. While
we cannot prove impossibility, we believe that this redaction
technique will materially improve the information security of

a user while not impacting the utility of their cloud storage
account.

To validate our assumptions regarding finding plaintext
passwords, we used the corpus of 1,286 emails written in
English which contain plaintext passwords posted at http:

//plaintextoffenders.com [19]. Of these, 1229 (96%) are
successfully detected by our handwritten regular expression.
A technology like Judo could be used as a more comprehensive
solution [14] to efficiently create regular expressions to extract
these terms.

5.1 Usage statistics

Users Messages

Search 1,992 170,609
Encrypt 497 19,664
Redact 179 5,444

Table 1: Usage statistics of opt-in research subjects
for Cloudsweeper. The Users column indicates how
many users performed a given action, and the Mes-
sages column indicates the total number of messages
in which plaintext passwords were either found or
acted upon by the user.

By default Cloudsweeper stores no information about users
beyond temporary session data. Before a user performs
any actions with Cloudsweeper, they can opt into allowing
Cloudsweeper to record anonymous, non-sensitive informa-
tion about their email for research purposes. Of the subset of
users who have opted into this data collection, 1,992 Gmail
accounts have been searched. 497 users chose to encrypt
the results of their search, resulting in 19,658 messages en-
crypted using the heterogeneous documents approach. 179
users chose to redact their passwords in 5,444 messages.

5.2 Performance tests
Cloudsweeper’s performance was evaluated by three differ-

ent tests on a research subject’s Gmail account which has
been in use since May 2006, designated “test account” in
the description below. The account contains approximately
100,000 messages, 4,812 of which contain the word “pass-
word”, and 1,543 tokens that Cloudsweeper determined to
potentially be passwords.

Each of the three tests were instrumented versions of stan-
dard Cloudsweeper functionality: search, encrypt and de-
crypt. The Search test searched the test account for the word
“password”, retrieved and searched the first test section of the
matching messages from Gmail for tokens that were likely
passwords using a regular expression, and then displayed
information about each found password to the user.

The Encrypt test fetched 50 messages from the “test ac-
count” that contained plaintext passwords, deleted each mes-
sage from the Gmail account, encrypted the plaintext pass-
words, and then saved the edited version of each message
back into the “test account”.

The final Decrypt test reversed the changes made by the
Encrypt test. The “test account” was searched for the pre-
viously encrypted messages. The 50 messages containing
encrypted passwords were fetched from Gmail, and the en-
crypted version of each message was deleted from the account.
The passwords were decrypted in Cloudsweeper, the message
text updated with the encrypted block replaced with the

newly restored plaintext, and the updated message inserted
back into the “test account”.

Search Encrypt Decrypt

Throughput (messages/min) 1902.0 3.6 7.2
IMAP (percent) 43.2% 99.3% 100.0%
Total execution (seconds)
test account 152.0 783.0 412.0
average account 3.0 657.6 328.8

Table 2: Message search and modify throughput
and elapsed time measurements for Cloudsweeper.
IMAP (percent) indicates the proportion of time
the Cloudsweeper server spent waiting for re-
sponses to IMAP commands from the Gmail server.
The test account searched 4,812 messages and en-
crypted/decrypted 50 messages. The “average ac-
count” total execution time is synthesized based on
these throughput measurements and the average
number of messages searched/encrypted for the 497
users who chose to perform an encryption.

5.3 Performance measures
Table 2 provides an overview of Cloudsweeper’s search,

encryption, and decryption performance. Because a vast
majority of the total execution time for modification actions
is spent waiting for responses from the IMAP server, we do
not present the execution time for redaction.

0 5 10 15 20 25
concurrent clients

0

50

100

150

200

250

m
e
ss

a
g
e
s

p
ro

ce
ss

e
d
/s

e
c

Figure 2: Message search throughput with multiple
simultaneous clients.

5.4 Scalability
We tested Cloudsweeper’s performance servicing many si-

multaneous clients within an environment of simulated users
and Gmail servers. To simulate the Gmail servers, we instru-
mented the test account’s communication with the live IMAP
and OAuth servers to determine the latency distribution for
requests to both of these services. The simulated services
replicated the responses and latencies of the real servers so
that several synthetic clients could be launched simultane-
ously without need for multiple real Gmail accounts.

Client traffic was generated through the use of scripted,
headless browsers. Each client began at the Cloudsweeper
home page, authenticated through the OAuth flow, and

initiated a plaintext credential search through the Gmail
account represented by the stored IMAP traffic. Once the
search was completed, the client logged out and we recorded
the amount of time taken between each client requesting the
home page and successfully logging out.

Trials were run with 1, 5, 10, 15, 20 and 25 simultaneous
clients conducting plaintext credential searches against iden-
tical simulated Gmail accounts. Figure 2 shows the aggregate
number of messages Cloudsweeper was able to request and
search per second. Because Tornado is an event-driven, sin-
gle threaded architecture, CPU time is the main bottleneck
on execution time. In the live deployment of Cloudsweeper,
we deterministically multiplex eight independent instances
behind an nginx proxy, which has been enough to service as
many as 136 simultaneous users.

6. DISCUSSION AND FUTURE WORK
For privacy sensitive users, Cloudsweeper can also be

implemented as a local service rather than a web service.
When implemented as a web service, the user must trust
the Cloudsweeper provider nearly as much as they trust
their service provider. Deploying Cloudsweeper as a web
service allows us to maintain a single codebase that works
across all browsers, quickly fix deployed bugs, and makes
data collection from research subjects faster and easier.

The threat model for this project focuses on illegitimate
users who gain access to a user’s account through public
facing interfaces; attackers like rogue employees or state spon-
sored dragnets might be able to undelete messages redacted
by Cloudsweeper, or store a copy of incoming messages be-
fore a user has a chance to modify them. We focus on public
facing interfaces because Cloudsweeper is intended to primar-
ily protect information at rest for extended periods of time
from adversaries who have gained remote access capability
through either malware or credential theft. We believe that
this threat model is the most likely to apply here, and ex-
poses the dichotomy between unfettered remote access and
location- or artifact-limited (e.g. printed cryptography key)
access.

One anticipated concern with the Cloudsweeper imple-
mentation is that a determined attacker with access to the
account could use email-based password reset functionality
to gain access to services even if their password reminder
emails were protected. This issue is a side effect of the dual
purpose that email accounts serve and not a problem with
the heterogeneous documents strategy in general. Because
modern cloud based email serves both a communication and
archival purpose, an attacker could use a breached email
account to reset the obscured credentials and generate new
ones for the services they wish to access. This attack is
specific to plaintext passwords in email, and does not apply
to other online archives, e.g. Dropbox.

Additionally, while an attacker could use password resets
to replace credentials secured by Cloudsweeper, securing an
email account with Cloudsweeper still brings with it mul-
tiple security improvements, including securing credentials
sent from parties that do not have password resets (friends,
co-workers, etc.), preventing the attacker from harvesting cre-
dentials for reuse elsewhere, and securing plaintext passwords
sent from accounts that are no longer active.

6.1 Future work
The current Cloudsweeper implementation exists as a proof

of concept for the heterogeneous documents abstraction, and
can be extended in many ways. Cryptographically, a public
key scheme could be used, with the public portion kept
at the server and the private portion kept as the offline
token. This would allow reuse of an individual key to encrypt
additional data without needing the private key present.
With a public key scheme, automated periodic sweeps would
also be possible.

Our current focus on passwords stored as plaintext is
motivated by the intuition that such information is both
considered sensitive by the user and lucrative to the attacker.
Another key component in a comprehensive approach to
attacker- focused security would be reconnaissance of at-
tackers who seek to compromise systems and exfiltrate data.
Recording what they search for and what they are able to
successfully find would allow a future implementation of
Cloudsweeper to more fully protect a user’s account.

Extending Cloudsweeper to be compatible with different
online services, notably cloud storage providers like Drop-
box or Box.net would complement the current mail focused
implementation. While OAuth has gained popularity as a
mechanism for programmatically delegating authentication,
the API for cloud storage accounts is not standardized. Thus,
an implementation would be specific to each API, and the
versioned nature of many cloud storage accounts may not
allow the user to to fully expunge previous versions of a file.
Our hypothesis is that different types of sensitive information
might be kept in cloud storage style accounts than email ac-
counts, and a Cloudsweeper implementation for these would
be worthwhile.

Another straightforward extension is arbitrary redaction
and encryption. Using an additional user interface within the
email client, information within individual messages could
be tagged for protection, or certain pieces of information
marked as “sensitive” such that they are redacted whenever
mentioned in an archive. A mechanism for securely recording
these annotations would be required, as any system which
stockpiles a record of lucrative data would be very lucrative
to a cybercriminal.

7. CONCLUSION
Looking forward, the amount of data we record and store re-

garding our daily lives will only grow. Given the option, many
people will choose to save something rather than discard it
forever. Both because it is infeasible to manually manage
such volumes and proactive user effort is rarely expended for
security purposes, we need automated tools to assist in this
task. Heterogeneous documents and Cloudsweeper exist as a
proof of concept that it’s possible to programmatically find
and protect information that is more risky than it is useful.
By focusing on automated strategies for finding sensitive
information we can level the playing field with cybercrimi-
nals, thereby forcing determined attackers to conduct manual
inspections of stolen accounts for “diamonds in the rough,”
which is unlikely to be a profitable venture.

8. ACKNOWLEDGEMENTS
We would like to thank Brian Krebs for his feedback and

publicity of the Cloudsweeper system. This work was sup-
ported in part by the National Science Foundation under
grant DGE-1069311.

References
[1] J. Bonneau, M. Just, and G. Matthews. What’s in a

name? evaluating statistical attacks on personal
knowledge questions. In Proceedings of the 17th
International Conference on Financial Cryptography
and Data Security, 2010.

[2] A. Coviello. Open letter to rsa customers.
http://www.sec.gov/Archives/edgar/data/790070/

000119312511070159/dex991.htm, 2011.

[3] P. Crosman. New breed of banking malware hijacks
text messages. http://www.americanbanker.com/

issues/178_111/new-breed-of-banking-malware-

hijacks-text-messages-1059745-1.html, 2013.

[4] M. Czerwinski, D. Gage, J. Gemmell, C. Marshall,
M. Pérez-Quiñones, M. Skeels, and T. Catarci. Digital
memories in an era of ubiquitous computing and
abundant storage. Communications of the ACM, 49(1),
2006.

[5] R. Geambasu, T. Kohno, A. Levy, and H. Levy. Vanish:
Increasing data privacy with self-destructing data. In
Proc. of the 18th USENIX Security Symposium, 2009.

[6] R. Geambasu, J. John, S. Gribble, T. Kohno, and
H. Levy. Keypad: an auditing file system for
theft-prone devices. In Proceedings of the sixth
conference on Computer systems, 2011.

[7] K. Gondi, P. Bisht, P. Venkatachari, A. Sistla, and
V. Venkatakrishnan. Swipe: eager erasure of sensitive
data in large scale systems software. In Proceedings of
the second ACM conference on Data and Application
Security and Privacy, 2012.

[8] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Čapkun.
Home is safer than the cloud!: privacy concerns for
consumer cloud storage. In Proceedings of the Seventh
Symposium on Usable Privacy and Security, 2011.

[9] W. Jones. Keeping Found Things Found: The Study
and Practice of Personal Information Management:
The Study and Practice of Personal Information
Management. Morgan Kaufmann, 2007.

[10] M. Just and D. Aspinall. Personal choice and challenge
questions: a security and usability assessment. In
Proceedings of the 5th Symposium on Usable Privacy
and Security, page 8. ACM, 2009.

[11] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
V. Paxson, G. M. Voelker, and S. Savage. Spamalytics:
an Empirical Analysis of Spam Marketing Conversion.
In Proceedings of the ACM Conference on Computer
and Communications Security, 2008.

[12] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright,
M. Félegyházi, C. Grier, T. Halvorson, C. Kanich,
C. Kreibich, H. Liu, D. McCoy, N. Weaver, V. Paxson,
G. M. Voelker, and S. Savage. Click Trajectories:
End-to-End Analysis of the Spam Value Chain. In
Proceedings of the IEEE Symposium and Security and
Privacy, 2011.

[13] B. Parno, J. M. McCune, D. Wendlandt, D. G.
Andersen, and A. Perrig. Clamp: Practical prevention
of large-scale data leaks. In Proceedings of the 30th
IEEE Symposium on Security and Privacy, 2009.

[14] A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich,
G. M. Voelker, V. Paxson, N. Weaver, and S. Savage.
Botnet Judo: Fighting Spam with Itself. In Proceedings
of the Network and Diestributed System Security
Symposium (NDSS), 2010.

[15] A. Rabkin. Personal knowledge questions for fallback
authentication: security questions in the era of
facebook. In Proceedings of the 4th Symposium on
Usable Privacy and Security, 2008.

[16] P. Resnick. Internet Message Format, 2001. RFC 2822.

[17] S. Schechter and R. Reeder. 1 + 1 = you: Measuring
the comprehensibility of metaphors for configuring
backup authentication. In Proceedings of the 5th
Symposium on Usable Privacy and Security. ACM,
2009.

[18] S. Schechter, A. Brush, and S. Egelman. It’s no secret.
measuring the security and reliability of authentication
via “secret” questions. In Proceedings of the 2009 IEEE
Symposium on Security and Privacy, 2009.

[19] I. Tabachnik and O. van Kloeten. Plain text offenders.
http://plaintextoffenders.com/, 2013.

[20] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani,
R. Geambasu, and N. Sarda. Cleanos: Limiting mobile
data exposure with idle eviction. In Proceedings of the
10th USENIX Symposium on Operating Systems Design
and Implementation, 2012.

[21] N. Vachharajani, M. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. Blome, G. Reis, M. Vachharajani, and
D. August. Rifle: An architectural framework for
user-centric information-flow security. In Proceedings of
the IEEE/ACM International Symposium on
Microarchitecture, 2004.

[22] Y. Wang, G. Norcie, S. Komanduri, A. Acquisti,
P. Leon, and L. Cranor. I regretted the minute I
pressed share: A qualitative study of regrets on
facebook. In Proceedings of the Seventh Symposium on
Usable Privacy and Security, 2011.

[23] S. Whittaker, V. Bellotti, and J. Gwizdka. Email in
personal information management. Communications of
the ACM, 49(1), 2006.

[24] A. Yumerefendi, B. Mickle, and L. Cox. Tightlip:
Keeping applications from spilling the beans. In
Proceedings of the 4th USENIX Symposium on
Networked Systems Design and Implementation, 2007.

