Measuring Geographical Regularities of Crowd Behaviors for Twitter-based Geo-social Event Detection

Ryong Lee and Kazutoshi Sumiya University of Hyogo, Japan

Outline

- Motivation: When Twitter Met LBS
- Geo-social Events Detection from Twitter
 - Geographic Regularity
 - Collecting Massive Geo-Tweets from Twitter
 - Social Geographic Boundary
 - Estimating Geographic Regularities
- Experimental Results
- Conclusions

When Twitter Met LBS

- Micro-blogging sites (Twitter, Jaiku, Prownce) as an important media to share info. about geo-social events
- Socio-geographic analysis using Social Network Services for discovery of social / natural events and urban characteristics

Twitter as a Geo-social Database

Geo-Tweets are instant updates of people with whereabouts

Example of Geo-Tweets

Spatio-Temporal Crowd Behavior Database

user_id	created_at	loc_lat	loc_lng	texts
1534****	Thu, 03 Jun 2010 20:21:25	42.327873	142.4175637	Kitami is 11 degrees now. By the way, Osaka seems to be 28 degrees.
5235****	Thu, 03 Jun 2010 21:16:13	42.7424814	143.6865067	Good morning. It is heavy mist.
7143****	Thu 03 Jun 2010 15:59:41	41.939994	126.423587	The soba of this shop seems to be delicious. http://twitpic.com/1tkoua
1513****	Fri 04 Jun 2010 00:20:5	44.0206319	144.2733983	I passed Bihoro.
1537***	Fri, 04 Jun 2010 00:04:54	44.3045224	142.6389133	The rain falls today.

Who

When

Where

What/Why/How/...

Goal: Geo-social Events Detection from Twitter

 Challenging Issue: Can we exploit crowds' senses for various socio- geographic analyses?

- What crowds are sharing
 - Simple Types
 - Whereabouts
 - What s/he is doing
 - Complex Types (by analysis)
 - What they are doing together
 - What they are thinking or feeling
 - How the local/global societies work

Detecting Local Events from Crowd Behavior

- The 1st idea: counting geo-tweets for every town
 - → But, downtowns always have many tweets

- What Local Events we'd like to find out?
 - →Not every-day activities such as commutes, but unusually occurring incidents like festivals

 Regularity vs. Irregularity would be a key to discover interesting and meaningful events, at first

Geographic Regularity

- How to define/measure Geographical Regularity (usual status of crowd behaviors in a region)
 - How many tweets are posted
 - How many users are there
 - How active are the movements of the local crowd
- 'Regular/Irregular' may be a relative concept
 - We need to characterize each region's geographic regularities... (Stations, Office town, bed town, etc.)
 Generally, a complicated sociological analysis task

Process of Geo-social Event Detection

1) Collecting geographical tweets

2) Setting Out Rols (Region-of-Interests)

3) Estimating Geographic Regularities

Collecting Geo-Tweets from Twitter

- Collect Twitter messages (tweets) within a geographic region
- Twitter's GeoAPI supports only 'nearby' query by center location + searching radius
- Limitation: 1,500 tweets/query, up to the past week, 1km ≤ radius ≤ 500km or less

Collecting Massive Geographical Tweets

 Deployment of querying locations by Quad-tree

By repeating these operations recursively, we realized the <u>acquisition method which depends on quantity of the regional data</u>

Geographic Distribution of Geo-Tweets in the USA

EU

Asia (before iPhones come to China)

Australia

In Haiti?

(*displayed only the most recent 300 tweets)

Crowd Interests by Term Frequency

Jan./14-21		Jan. 17th (0:0	0-12:00)
haiti	11.5	petionville	2
рар	3.5	smoothed	1
petionville	3	glory	1
paup	3	aftershock	1
jacmel	3	god	0.6
border	3	words	0.5
aftershock	3	water	0.5
tia	2.66667	reconnect	0.5
home	2.6	pierre	0.5
help	2.6	orphanage	0.5
embassy	2.5	haiti	0.5
unicef	2	firemen	0.5
tentes	2	distribute	0.5
supplies	2	thanks	0.4
sabine	2	glad	0.4
preval	2	weapons	0.33333
people	2	weapon	0.33333
padf	2	tia	0.33333
oas	2	semi	0.33333
luckner	2	patrol	0.33333
jimani	2	рара	0.33333
haitian	2	mountains	0.33333
food	2	heavily	0.33333
delievered	2	encouragement	0.33333
bourdon	2	describe	0.33333
dr	1.75	bucket	0.33333
earthquake	1.66667	blessings	0.33333
water	1.5	automatic	0.33333
praying	1.5	auto	0.33333
need	1.4	armed	0.33333

Experimental Data

- Geo-Tweets found around Japan
 - Date: 2010/06/04-2010/07/24
 - Geographical tweets: 21,623,947 (geo-tagged)
 - Users: 366,556

Social Geographic Boundary

- Set out Rols (Region-of-interests) for estimating geographical regularities
 - Rols: Partitioned sub-areas are used for monitoring
- Space partitioning for estimating geographical regularities of each region

Voronoi-based Space Partition (after K-Means Clustering),

K=300

Estimating Geographical Regularities (1/2)

- Rol's geographical regularity (gr) based on three indicators
 - #Tweets: the number of tweets that were written in an Rol
 - #Crowd: the number of Twitter users found in an Rol
 - #MovCrowd: the number of moving users related to an Rol
- Estimating by a statistical manner using boxplot
 - a boxplot: presentation of five sample statistics (the minimum, the lower quartile, the median, the upper quartile, and the maximum)

Estimating Geographical Regularities (2/2)

Decide a normal/abnormal range using boxplots

Detection of unusually crowded region by using combinational cases of #Tweets, #Crowd, and #MovCrowd

Decision of Detection Conditions

Combination of three indicators

	#Tweets	#Crowds	#MovCrowds	Final Decision (F)
(a)		NI	N	N
(b)	N	IN	Α	N
(c)		٨	N	N
(d)		X	Α	Α
(e)	Α	N	N	N
(f)			Α	Α
(g)		٨	N	N
(h)		X	Α	Α

N: normal A: abnormal

- Combinational cases of abnormal status
 - (h): all the indicators show an abnormality
 - (f): #Tweets and #MovCrowd only show an abnormality
 - (d): #Crowd and #MovCrowd only show an abnormality

Detection of Unusual Events (1/3)

h) all the indicators \rightarrow abnormal ex. Tendency of big event or famous festival

Detection of Unusual Events (2/3)

f) **#Tweets** and **#MovCrowds** → abnormal

ex.: Local small festival

Detection of Unusual Events (3/3)

g) **#Crowd** and **#MovCrowds** → abnormal ex. Long holidays

Experiment

- Experimental purpose
 - Validate our geo-social event detection method
 - Test how many town festivals in Japan would be found by our proposed method

Town festivals held in Japan for 7/17-7/19, 2010

No.	Event name	Place	Event day(s)
1	Kyoto Gion Festival	Sakyo, Kyoto, Kyoto	7/17
2	Shishikui Gion Festival	Shisikui, Kaiyoumachi, Tokushima	7/17, 7/18
3	Towada Kosui Festival	Towada, Aomori	7/17
4	Tamamura Firework	Tamura, Gunmu	7/17
5	Ise Firework	Nakajima, Ise, Mie	7/17
6	Akiyoshi Firework	Syoho, Mine, Yanaguchi	7/17
7	Kanonji Festival	Kannonji, Kagawa	7/17, 7/18
8	Muroto Festival	Muroto, Kouchi	7/18
9	Sanoyoi Carnival	Arao, Kumamoto	7/18
10	Uminohi Festival in Nagoya	Nagoya, Aichi	7/19
11	Housui Festival	Noboribetsu, Hokkaido	7/17
12	Shinmatsudo Festival	Matudo, Chiba	7/17, 7/18
13	Nanao Festival	Nanao, Ishikawa	7/17
14	Oota Festival	Oota, Gunma	7/17
15	Toukou Festival	Arita, Wakayama	7/18

Estimating Geographical Regularities

Estimation about three indicators (#Tweets, #Crowds, #MovCrowds) for every fixed time slot

split a day into four equal time slots—morning, afternoon, evening, and night—for the period of 6/8-6/30

Geographical regularities based on #Tweets, #Crowds, and # MovCrowds of Kyoto

Evaluation

- confirmed unusually crowded regions from 3,600 (4*3*300, for 4 time slots during 3 test days (7/17–7/19) in 300 Rols)
 - the total number of RoIs that were evaluated as Unusual
 - <u>138</u>(morning: 53, afternoon: 64, evening: 9, night: 12)
 - 3.8% (=138/3,600) of all the test time slots were answered as unusually crowded regions
 - could find <u>9 festivals</u> among the prepared event list
 - recall = $9/15 = \frac{60\%}{15}$
 - precision = 9/138 = 6.5%
 - We couldn't expect all the events
 - We found many other unexpected events

Detection of Expected Events

An expected Event: Gion-Festival was found

 gr_T , gr_C and gr_M of Kyoto, and the tendency in the afternoon of 7/17

Detection of Unexpected Events

- Newly discovered geo-social and natural events
 - Aggregation with supporters of a soccer team to watch the soccer game in a stadium
 - An earthquake / a heavy thunder with lightning (Natural Incidents)
- Precision = 52/138 = 38%

Conclusions

- We just touched a tip of Uncharted
 Iceberg by LBS + Micro-blog
 - We proposed Geo-social Event Detection
 Method with Twitter
 - We presented a concept of Geographic Regularity to detect usual statuses for social-geographic boundary
- Future Work:
 - Exploring Crowd Behavior Patterns for Various Event Types
 - Considering Diverse Granularities:
 Temporal /Spatial dims

Thank you very much for attention!!