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Motivation

• Social networks provide valuable information 
on social relationships among people (users)

• Associating users to a spatial network can 
provide geographical information on locations 
that users visit

• Combining social networks and spatial 
networks is required for answering queries 
whose constraints comprise spatial and social  
conditions
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Life Patterns

• Life patterns connect people and places
• A life pattern is essentially a triple

(user, geographic entity, time unit)
• For example, 

(Alice, Tower of London, Sundays)
specifies that Alice visits the Tower of London, 
every Sunday

• Life patterns can be extracted from GPS logs.
As shown in the work of Ye et al. 
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Example 

Alice jogs every morning, and she wants
to find a partner for jogging
• A potential partner will be someone who:

1. Is a friend of Alice or a friend of a friend 
2. Frequently jogs in the same area where Alice 

jogs and at similar times as she does
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The life patterns will indicate presence in the same 
parks at similar times



Proposed Model
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• A social network holds 
information about
people and their 
relationships

Who are Alice’s 
friends?



Proposed Model
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• A spatial network holds 
information about spatial 
entities and their 
relationships

Where are the parks in 
Alice’s neighborhood?



Proposed Model
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Integrating the Networks
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• Life patterns are generated 
from GPS log files and they 
connect people to places 
they frequently visit

When do these people
visit the parks?



Integrating the Networks
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• A spatio-social network 
(SSN) comprises both 
networks and the life 
patterns that connect 
them

Who has been 
Where and When



Social Network
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The social network is a graph
where:
• The nodes represents real-

world people, namely users, 
with their attributes

• The edges represent 
relationships, typically 
friendship relationships, 
between users



Geographical Hierarchy 
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Geographical Hierarchy 
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Geographical Hierarchy 
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Geographical Hierarchy 
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Geographical Hierarchy 
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Adjacency edges 
represent a direct 
real-world 
connection between 
two geographical 
entities from the 
same hierarchy level  



Spatial Network
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The spatial network is a graph
where:

- Each node represents a 
geographic entity

- Two types of edges:
1. Hierarchical edges
2. Adjacency edges



Time Patterns
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• Time patterns represent repeated events:
“every week”, “every day”, "every workday”, etc.

• There is a hierarchy of time patterns:
– If an event happens at some level in the hierarchy, it 

also occurs in the higher levels
– If Alice visits 10 Downing St. every workday, then 

Alice visits 10 Downing St. every week, every 
month, etc. 



Life Patterns
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• Associate between users and 
geographic entities

• Hold time patterns
• Have a confidence rank



Life Patterns – Example 
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• Alice visits 10 
Downing St. 
every workday 
from 10 A.M to 
12 P.M

Confidence value was 
omitted, for simplicity



The Query Language
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• We developed a query language that has the 
form of an algebra with seven operators:

1. Select
2. Extend
3. Union 
4. Intersect

5. Difference 
6. Bridge 
7. Multi-Bridge

Each operator returns a collection of nodes of a 
single network (either users or geographic entities)



The Algebra

• The proposed algebra was designed to be
– Expressive
– Yet, efficient – e.g., no Cartesian product
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The Select Operator
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• Receives a set of nodes 
from a network (social or 
spatial) and a condition

• Returns the nodes that 
satisfy the condition

select(nodes_set, condition)



Select – Example 
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select(Nsocial,  color = blue )



The Extend Operator
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• Receives a set of nodes from a 
network (social or spatial) and a 
parameter n

• Returns the set of nodes that are 
reachable by paths with maximum 
length of n from the given nodes

extend(nodes_set, n)



Extend – Example 
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extend(select(Nsocial,  color = green),2)



Union, Intersect and Difference
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• Receive two sets of nodes 
– all the nodes from the 
same network 

• Have the same semantics 
as in set theory

union(nodes_set_A, nodes_set_B)
intersect(nodes_set_A, nodes_set_B)
difference(nodes_set_A, nodes_set_B)



The Bridge Operator 
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• Receives nodes of one network, a time pattern 
and a confidence threshold

• Returns the nodes of the other 
network that are connected to the 
nodes of the given node set
by those life patterns 
that satisfy the given
time pattern and 
confidence threshold 

bridge(nodes_set, time-pattern, confidence)



Bridge – Example I 
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A = select(Nspatial, address like ‘% 10 Downing St%’)
bridge(A, ‘every day’, 0.8)



Bridge – Example II
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A = select(Nsocial, color = yellow)
B = extend(A, 2)
bridge(B, ‘every morning’, 0.8)



The Multi-Bridge Operator 
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• Similar to Bridge, except that the 
returned nodes are only those that are 
connected to a certain percentage of
the nodes of the 
given set 

Mbridge(nodes_set, time-pattern, confidante, percentage)



Multi Bridge – Example I 
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A = select(Nsocial, color = yellow)
B = extend(A, 2)
Mbridge(B, ‘every morning’, ,0.8, 50%)

The operator can be 
used to discover 
groups with socio-
spatial similarity



Multi Bridge – Example II 
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John is searching for new friends to go out with
FriendsOfJohn = extend(select(Nsocial, name=‘John’), 1) 
Returns John’s friends
Entertainment = select(Mbridge(FriendsOfJohn, ‘every week’, 
0.8, 60%), category=‘entertainment’)
Returns entertainment place where John’s friends frequently 
visit
PotentialNewFriends = Mbridge(Entertainment , ‘every 
week’, 0.8, 80%)
Returns people that frequently visit these places



Queries – Example I
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Find partners for a carpool 
John lives in Downing St. and works in Heathrow airport
He wants to find co-workers for a carpool

Neighborhood = extend(select(Nspatial, address like 
‘%Donwning%), 100)
Returns the geographic entities near John’s home
Neighbors  = bridge(Neighborhood , ‘every morning’, 0.8)
Returns people who stay every morning in John’s neighborhood
Co-workers = bridge(select(Nspatial, address like ‘% Heathrow 
airport %) , ‘every workday’, 0.8)
Returns people that are in Heathrow airport every workday



Queries – Example I
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Potential = intersect(Neighbors , Co-workers) 
Returns potential users for John’s carpool

Find partners for a carpool 
John lives in Downing St. and works in Heathrow airport
He wants to find co-workers for a carpool

Neighbors  = bridge(Neighborhood , ‘every morning’, 0.8)
Returns people who stay every morning in John’s neighborhood
Co-workers = bridge(select(Nspatial, address like ‘% Heathrow 
airport %) , ‘every workday’, 0.8)
Returns people that are in Heathrow airport every workday



Queries – Example II
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Find a jogging partner for Alice 

UsersInParks = brigde(ParksInAliceHood, ‘mornings  in the 
week’ , 0.6) 
Returns people that spend time during the mornings in parks at 
Alice’s neighborhood

ParksInAliceHood= select(extend(select(Nspatial, address = 
Alice_address), 1000), type = park)
Returns the parks in Alice’s neighborhood



Queries – Example II
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FriendsOfAlice = extend(select(Nsocial, name=‘Alice’), 2) 
Returns Alice’s friends
PotentialPartner = intersect(FriendsOfAlice , UsersInParks ) 
Returns potential jogging partners

Find a jogging partner for Alice 
UsersInParks = brigde(ParksInAliceHood, ‘mornings  in the 
week’ , 0.6) 
Returns people that spend time during the mornings in parks at 
Alice’s neighborhood



Implementation
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Goals:
• Demonstrate the feasibility of the model
• Show that a socio-spatial network can be built 

effectively upon common data-storage tools
Two implementations 
1. Relational based
2. Graph based
• Experimentally compare the two 

implementations



Graph-Based Implementation 
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• Graph database management system provides a 
natural storage for the SSN

• The implementation uses Neo4j – an open source 
graph database management system, in Java

• The SSN network is stored as a graph with 
attributes on the spatial and social nodes

• Life patterns are edges with the time pattern and 
confidence as attributes



Relational Implementation 
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The Relations 
• Users 
• Friendship
• Geographic entities
• Hierarchy
• Adjacency
• Life pattern

Geographic 
entities

Hierarchy

Friendship

Life pattern

Adjacency

users



Relational Implementation
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• The query operations are translated 
to SQL queries

• Complex queries are translated to 
nested SQL queries

• We used optimization techniques to 
improve the efficiency of query 
evaluation

Geographic 
entities

Hierarchy

Friendship

Life pattern

Adjacency

users
SELECT user_id
FROM users
WHERE name = ‘John Smith’



Experiments
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extend(N, name = ‘john’, 3)
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Experiments
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bridge(bridge(bridge(select(N, name=‘John’),*,0.8),*,0.8 ),*,0.8)
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Experiments
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Paramedics = Select(Nsocial, occupation=`Paramedics')
Query_1 = Bridge(Paramedics, `some_night_of_the_week',0.85)
Find where paramedics 
might live

Queries with bridge 
are evaluated more 
efficiently over the 
graph DBMS than 
over the relational 
DBMS
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Experiments
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John = Select(Nsocial, name=`John')
Places = Bridge(John, all, 0.5)
Query_2 = MBridge(Places, all, 0.5, 20%)
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Conclusions
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• We presented a model for representing the 
integration of social networks with spatial 
networks

• We provided an algebra that allows querying the 
combined networks, effectively and efficiently

• We compared an implementation of the 
proposed model over graph DBMS and RDBMS, 
and we illustrated the superiority of the graph 
DBMS over the RDBMS, for all the operators 
except the multi-bridge



Thank You
Questions?
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