
Querying Geo-social Data by Bridging
Spatial Networks and Social Networks

Yerach
Doytsher

Ben
Galon

Yaron
Kanza

1

Motivation

• Social networks provide valuable information
on social relationships among people (users)

• Associating users to a spatial network can
provide geographical information on locations
that users visit

• Combining social networks and spatial
networks is required for answering queries
whose constraints comprise spatial and social
conditions

2

Life Patterns

• Life patterns connect people and places
• A life pattern is essentially a triple

(user, geographic entity, time unit)
• For example,

(Alice, Tower of London, Sundays)
specifies that Alice visits the Tower of London,
every Sunday

• Life patterns can be extracted from GPS logs.
As shown in the work of Ye et al.

3

Example

Alice jogs every morning, and she wants
to find a partner for jogging
• A potential partner will be someone who:

1. Is a friend of Alice or a friend of a friend
2. Frequently jogs in the same area where Alice

jogs and at similar times as she does

4

The life patterns will indicate presence in the same
parks at similar times

Proposed Model

5

• A social network holds
information about
people and their
relationships

Who are Alice’s
friends?

Proposed Model

6

• A spatial network holds
information about spatial
entities and their
relationships

Where are the parks in
Alice’s neighborhood?

Proposed Model

7

Integrating the Networks

8

• Life patterns are generated
from GPS log files and they
connect people to places
they frequently visit

When do these people
visit the parks?

Integrating the Networks

9

• A spatio-social network
(SSN) comprises both
networks and the life
patterns that connect
them

Who has been
Where and When

Social Network

10

The social network is a graph
where:
• The nodes represents real-

world people, namely users,
with their attributes

• The edges represent
relationships, typically
friendship relationships,
between users

Geographical Hierarchy

11

UK

Geographical Hierarchy

12

UK

England
Northern

Ireland Wales Scotland

Geographical Hierarchy

13

UK

England
Northern

Ireland Wales Scotland

London Bristol Liverpool SheffieldManchester Leeds

Geographical Hierarchy

14

UK

England
Northern

Ireland Wales Scotland

London Bristol Liverpool SheffieldManchester Leeds

Geographical Hierarchy

15

Northern
Ireland

UK

England Wales Scotland

London Bristol Liverpool SheffieldManchester Leeds

Adjacency edges
represent a direct
real-world
connection between
two geographical
entities from the
same hierarchy level

Spatial Network

16

The spatial network is a graph
where:

- Each node represents a
geographic entity

- Two types of edges:
1. Hierarchical edges
2. Adjacency edges

Time Patterns

17

• Time patterns represent repeated events:
“every week”, “every day”, "every workday”, etc.

• There is a hierarchy of time patterns:
– If an event happens at some level in the hierarchy, it

also occurs in the higher levels
– If Alice visits 10 Downing St. every workday, then

Alice visits 10 Downing St. every week, every
month, etc.

Life Patterns

18

• Associate between users and
geographic entities

• Hold time patterns
• Have a confidence rank

Life Patterns – Example

19

• Alice visits 10
Downing St.
every workday
from 10 A.M to
12 P.M

Confidence value was
omitted, for simplicity

The Query Language

20

• We developed a query language that has the
form of an algebra with seven operators:

1. Select
2. Extend
3. Union
4. Intersect

5. Difference
6. Bridge
7. Multi-Bridge

Each operator returns a collection of nodes of a
single network (either users or geographic entities)

The Algebra

• The proposed algebra was designed to be
– Expressive
– Yet, efficient – e.g., no Cartesian product

21

The Select Operator

22

• Receives a set of nodes
from a network (social or
spatial) and a condition

• Returns the nodes that
satisfy the condition

select(nodes_set, condition)

Select – Example

23

select(Nsocial, color = blue)

The Extend Operator

24

• Receives a set of nodes from a
network (social or spatial) and a
parameter n

• Returns the set of nodes that are
reachable by paths with maximum
length of n from the given nodes

extend(nodes_set, n)

Extend – Example

25

extend(select(Nsocial, color = green),2)

Union, Intersect and Difference

26

• Receive two sets of nodes
– all the nodes from the
same network

• Have the same semantics
as in set theory

union(nodes_set_A, nodes_set_B)
intersect(nodes_set_A, nodes_set_B)
difference(nodes_set_A, nodes_set_B)

The Bridge Operator

27

• Receives nodes of one network, a time pattern
and a confidence threshold

• Returns the nodes of the other
network that are connected to the
nodes of the given node set
by those life patterns
that satisfy the given
time pattern and
confidence threshold

bridge(nodes_set, time-pattern, confidence)

Bridge – Example I

28

A = select(Nspatial, address like ‘% 10 Downing St%’)
bridge(A, ‘every day’, 0.8)

Bridge – Example II

29

A = select(Nsocial, color = yellow)
B = extend(A, 2)
bridge(B, ‘every morning’, 0.8)

The Multi-Bridge Operator

30

• Similar to Bridge, except that the
returned nodes are only those that are
connected to a certain percentage of
the nodes of the
given set

Mbridge(nodes_set, time-pattern, confidante, percentage)

Multi Bridge – Example I

31

A = select(Nsocial, color = yellow)
B = extend(A, 2)
Mbridge(B, ‘every morning’, ,0.8, 50%)

The operator can be
used to discover
groups with socio-
spatial similarity

Multi Bridge – Example II

32

John is searching for new friends to go out with
FriendsOfJohn = extend(select(Nsocial, name=‘John’), 1)
Returns John’s friends
Entertainment = select(Mbridge(FriendsOfJohn, ‘every week’,
0.8, 60%), category=‘entertainment’)
Returns entertainment place where John’s friends frequently
visit
PotentialNewFriends = Mbridge(Entertainment , ‘every
week’, 0.8, 80%)
Returns people that frequently visit these places

Queries – Example I

33

Find partners for a carpool
John lives in Downing St. and works in Heathrow airport
He wants to find co-workers for a carpool

Neighborhood = extend(select(Nspatial, address like
‘%Donwning%), 100)
Returns the geographic entities near John’s home
Neighbors = bridge(Neighborhood , ‘every morning’, 0.8)
Returns people who stay every morning in John’s neighborhood
Co-workers = bridge(select(Nspatial, address like ‘% Heathrow
airport %) , ‘every workday’, 0.8)
Returns people that are in Heathrow airport every workday

Queries – Example I

34

Potential = intersect(Neighbors , Co-workers)
Returns potential users for John’s carpool

Find partners for a carpool
John lives in Downing St. and works in Heathrow airport
He wants to find co-workers for a carpool

Neighbors = bridge(Neighborhood , ‘every morning’, 0.8)
Returns people who stay every morning in John’s neighborhood
Co-workers = bridge(select(Nspatial, address like ‘% Heathrow
airport %) , ‘every workday’, 0.8)
Returns people that are in Heathrow airport every workday

Queries – Example II

35

Find a jogging partner for Alice

UsersInParks = brigde(ParksInAliceHood, ‘mornings in the
week’ , 0.6)
Returns people that spend time during the mornings in parks at
Alice’s neighborhood

ParksInAliceHood= select(extend(select(Nspatial, address =
Alice_address), 1000), type = park)
Returns the parks in Alice’s neighborhood

Queries – Example II

36

FriendsOfAlice = extend(select(Nsocial, name=‘Alice’), 2)
Returns Alice’s friends
PotentialPartner = intersect(FriendsOfAlice , UsersInParks)
Returns potential jogging partners

Find a jogging partner for Alice
UsersInParks = brigde(ParksInAliceHood, ‘mornings in the
week’ , 0.6)
Returns people that spend time during the mornings in parks at
Alice’s neighborhood

Implementation

37

Goals:
• Demonstrate the feasibility of the model
• Show that a socio-spatial network can be built

effectively upon common data-storage tools
Two implementations
1. Relational based
2. Graph based
• Experimentally compare the two

implementations

Graph-Based Implementation

38

• Graph database management system provides a
natural storage for the SSN

• The implementation uses Neo4j – an open source
graph database management system, in Java

• The SSN network is stored as a graph with
attributes on the spatial and social nodes

• Life patterns are edges with the time pattern and
confidence as attributes

Relational Implementation

39

The Relations
• Users
• Friendship
• Geographic entities
• Hierarchy
• Adjacency
• Life pattern

Geographic
entities

Hierarchy

Friendship

Life pattern

Adjacency

users

Relational Implementation

40

• The query operations are translated
to SQL queries

• Complex queries are translated to
nested SQL queries

• We used optimization techniques to
improve the efficiency of query
evaluation

Geographic
entities

Hierarchy

Friendship

Life pattern

Adjacency

users
SELECT user_id
FROM users
WHERE name = ‘John Smith’

Experiments

41

extend(N, name = ‘john’, 3)

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000 14000 16000

Run time
(milisec)

Number of users

Extend 3
Neo4j W/O
Cache

Neo4j With
Cache

MySQL W/O
Cache

MySQL With
Cache

Large effect of a
cache on the
running time, in the
relational-based
implementation

Almost no effect of
the cache on the
running time, in the
graph-based
implementation

Experiments

42

bridge(bridge(bridge(select(N, name=‘John’),*,0.8),*,0.8),*,0.8)

0

10000

20000

30000

40000

50000

60000

70000

0 200000 400000 600000 800000

Run time
(milisec)

Number of life patterns

Bridge 3
Neo4j W/O
Cache

Neo4j With
Cache

MySQL W/O
Cache

MySQL With
Cache

The graph model
shows better result
for large datasets

In both models the
cache significantly
improves the
efficiency

Experiments

43

Paramedics = Select(Nsocial, occupation=`Paramedics')
Query_1 = Bridge(Paramedics, `some_night_of_the_week',0.85)
Find where paramedics
might live

Queries with bridge
are evaluated more
efficiently over the
graph DBMS than
over the relational
DBMS

0

200

400

600

800

1000

1200

1400

1600

0 200000 400000 600000 800000 1000000

Run time
(milisec)

Network size

Query 1
Neo4j
W/O
Cache

Neo4j
With
Cache

MySQL
W/O
Cache

MySQL
With
Cache

Experiments

44

John = Select(Nsocial, name=`John')
Places = Bridge(John, all, 0.5)
Query_2 = MBridge(Places, all, 0.5, 20%)

0

500

1000

1500

2000

2500

3000

0 200000 400000 600000 800000 1000000

Run time
(milisec)

Network size

Query 2
Neo4j W/O
Cache

Neo4j With
Cache

MySQL
W/O Cache

MySQL
With Cache

Find people that visit in
20% or more at the same
places as John
The evaluation of
Mbridge is more
efficient over
RDBMS than over
graph DBMS

Conclusions

45

• We presented a model for representing the
integration of social networks with spatial
networks

• We provided an algebra that allows querying the
combined networks, effectively and efficiently

• We compared an implementation of the
proposed model over graph DBMS and RDBMS,
and we illustrated the superiority of the graph
DBMS over the RDBMS, for all the operators
except the multi-bridge

Thank You
Questions?

46

	Querying Geo-social Data by Bridging Spatial Networks and Social Networks
	Motivation
	Life Patterns
	Example
	Proposed Model
	Proposed Model
	Proposed Model
	Integrating the Networks
	Integrating the Networks
	Social Network
	Geographical Hierarchy
	Geographical Hierarchy
	Geographical Hierarchy
	Geographical Hierarchy
	Geographical Hierarchy
	Spatial Network
	Time Patterns
	Life Patterns
	Life Patterns – Example
	The Query Language
	The Algebra
	The Select Operator
	Select – Example
	The Extend Operator
	Extend – Example
	Union, Intersect and Difference
	The Bridge Operator
	Bridge – Example I
	Bridge – Example II
	The Multi-Bridge Operator
	Multi Bridge – Example I
	Multi Bridge – Example II
	Queries – Example I
	Queries – Example I
	Queries – Example II
	Queries – Example II
	Implementation
	Graph-Based Implementation
	Relational Implementation
	Relational Implementation
	Experiments
	Experiments
	Experiments
	Experiments
	Conclusions
	Thank You

