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Location Prediction

• Time limited sale info
at the supermarkets
near the predicted
locations

• Weather info
of future locations

•To-Do Tasks related
to future locations
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By predicting future locations, we can provide 
useful information to a user.

To-do tasks
related to the 

place

Time limited
Sales
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Related Works

Extract and use regularities in movement

from location log
・Markov Model[Ashbrook, 2003]
・Dynamic Bayesian Network[Liao, 2007]
・Sequential Pattern Mining[Monreale, 2009]

accumulated
location logs

prediction
models
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Problems

Since previous research uses regularities,

they cannot predict irregular movements.

Regular
go to school on weekdays

go to the gym every Monday

etc...

Irregular
irregular meeting

business trips

etc...
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Our proposal

Integrate different kinds of lifelogs to predict

both regular and irregular movements

Regular
go to school on weekdays

go to the gym every Monday.

etc...

Irregular
irregular meeting

business trips

can predict with location log.

can predict with integrating different kinds of logs.
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Calendar data

• People enter info about 
irregular events into it

• Widely used.

We use calendar data as a source for 

making predictions of irregular movements
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Dynamic Bayesian Networks model
for integrating different data.

GPS Data

Calendar Data

DBN model can make reasonable predictions when 
prediction with only calendar/GPS data is difficult
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Integrated DBN Model

Office Office
Bldg

A

“Lunch” 
“Bob”

Location

Stay 
Duration

Calendar

Time of 
Day Evening Evening Evening

10 min 0 min 15 min
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Preprocesses
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Stayed places

(Office)

(Station A)

ClusteringGPS Data Stayed Places

Calendar Data Extracting Keywords Keywords

(37.53,-122.08)
(37.50,-122.00)

(Office)
(Station A)

“Meeting with Bob”
“See the Dentist”

“Meeting” , “Bob”
“Dentist”

“Meeting” 
“Bob”

“Dentist”
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Concepts of DBN Model

Place-place relationship

Home Office
Building 

A

Markov Model

Simple model for predicting locations.
Can predict regular movements.
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Location
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Concepts of DBN Model

Place-Keyword relationship

Building 
A

“Meeting” 
“Bob”

・ Can predict irregular movements

Infer a user’s own relationship
between place and keyword
from co-occurrences.
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Location

Calendar
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DBN model (basic)

Home Office
Building 

A

“Lunch” 
“Bob”

Integrate place-place relationship

and place-keyword relationship 
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Location

Calendar

Both regular and irregular movements
can be predicted.
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DBN model (actual model)

Office Office
Bldg

A

“Lunch” 
“Bob”

Make some extensions to basic model.

- add node that represents time of day, stay duration

Location

Stay 
Duration

Calendar

Time of 
Day Evening Evening Evening

10 min 0 min 15 min
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Learning

• Estimating the parameters of the 
probability distributions of DBN from data.

• Using maximum a posteriori (MAP) 
estimation.
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Inference
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Use the Viterbi algorithm to infer a state sequence
that maximizes probability.

Initial
State

Calendar

Time of Day

10:00 10:10 10:20 10:30 10:40 10:50

Location

Stay 
Duration

Copyright(c) 2010 NTT, All rights reserved.



Experimental Settings

Whether prediction accuracy is improved or not by

using calendar data.

Baseline: 

DBN model without Calendar data

Dataset

GPS and calendar data of two subject

(about 50 days)
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Evaluation metrics

• Evaluate the accuracy of prediction by changing 
the time difference between the subject of 
prediction and the time to start prediction
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Time
(ago)

Building A

Station A

Station B

12:00
(0)

11:00
(60)

10:00
(120)

Subject of
the prediction

Time to Start
Prediction

Home
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Prediction Results
Regular Movements

There are no much differences.
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Prediction Results
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Irregular Movements

Subject A Subject B

The accuracy was improved
for irregular movements
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Example of Predictions

The prediction failed since the wrong place is 
estimated from the calendar entry
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Example of Predictions

The result was modified because the time 
needed for movement was considered
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Conclusion

• We show a DBN model for making prediction 
for both regular and irregular movements by 
using GPS and calendar data.

– The accuracy of predictions for irregular movement
was improved.

– Wrong prediction due to wrong schedule can be 
modified by using GPS data.

• Future works

– Use other kinds of logs.
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Thank you.
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