

A Location Predictor based on Dependencies Between Multiple Lifelog Data

Takashi Yagi

Masaaki Nishino Yukihiro Nakamura Shinyo Muto

NTT Cyber Solutions Laboratories, NTT Corporation

Masanobu Abe

Graduate School of Natural Science and Technology, Okayama University

ACM LBSN'10, November 2, 2010, San Jose, CA, USA

Location Prediction

By predicting future locations, we can provide useful information to a user.

- Time limited sale info at the supermarkets near the predicted locations
- Weather info of future locations
- •To-Do Tasks related to future locations

Related Works

Extract and use regularities in movement

from location log

- Markov Model[Ashbrook, 2003]
- •Dynamic Bayesian Network[Liao, 2007]
- Sequential Pattern Mining[Monreale, 2009]

Problems

Since previous research uses regularities, they cannot predict irregular movements.

Regular

go to school on weekdays go to the gym every Monday etc...

Irregular

irregular meeting business trips etc...

Our proposal

Integrate different kinds of lifelogs to predict both regular and irregular movements

Regular

go to school on weekdays go to the gym every Monday. etc...

Irregular

irregular meeting business trips

can predict with location log.

can predict with integrating different kinds of logs.

We use calendar data as a source for making predictions of irregular movements

- People enter info about irregular events into it
- Widely used.

Dynamic Bayesian Networks modelNTT () for integrating different data.

DBN model can make reasonable predictions when prediction with only calendar/GPS data is difficult

Preprocesses

Simple model for predicting locations. Can predict regular movements.

Can predict irregular movements

DBN model (basic)

Integrate place-place relationship and place-keyword relationship

DBN model (actual model)

Make some extensions to basic model.

- add node that represents time of day, stay duration

Learning

- Estimating the parameters of the probability distributions of DBN from data.
- Using maximum a posteriori (MAP) estimation.

Inference

Use the Viterbi algorithm to infer a state sequence that maximizes probability.

Experimental Settings

Whether prediction accuracy is improved or not by using calendar data.

Baseline:

DBN model without Calendar data

Dataset

GPS and calendar data of two subject

(about 50 days)

Table 1: Information about data set.		
	Subject A	Subject B
# of days	48	54
# of clusters	118	79
# of calendar entries	66	149
# of stays	827	432

Evaluation metrics

 Evaluate the accuracy of prediction by changing the time difference between the subject of prediction and the time to start prediction

Prediction Results

Regular Movements

Subject A

Subject B

There are no much differences.

Prediction Results

Irregular Movements

Subject A

Cop

Subject B

The accuracy was improved for irregular movements

Example of Predictions

(a) The use of calendar data yields wrong predictions

The prediction failed since the wrong place is estimated from the calendar entry

Example of Predictions

(b) The modified predictions

The result was modified because the time needed for movement was considered

Conclusion

- We show a DBN model for making prediction for both regular and irregular movements by using GPS and calendar data.
 - The accuracy of predictions for irregular movement was improved.
 - Wrong prediction due to wrong schedule can be modified by using GPS data.

- Future works
 - Use other kinds of logs.

Thank you.

