A Location Predictor based on Dependencies Between Multiple Lifelog Data

Masaaki Nishino
Takashi Yagi

Yukihiro Nakamura
Shinyo Muto

NTT Cyber Solutions Laboratories, NTT Corporation

Masanobu Abe
Graduate School of Natural Science and Technology, Okayama University

ACM LBSN’10, November 2, 2010, San Jose, CA, USA
Location Prediction

By predicting future locations, we can provide useful information to a user.

- Time limited sale info at the supermarkets near the predicted locations
- Weather info of future locations
- To-Do Tasks related to future locations
Related Works

Extract and use regularities in movement from location log

- Markov Model [Ashbrook, 2003]
- Dynamic Bayesian Network [Liao, 2007]
- Sequential Pattern Mining [Monreale, 2009]
Problems

Since previous research uses regularities, they cannot predict irregular movements.

Regular
go to school on weekdays
go to the gym every Monday etc...

Irregular
irregular meeting
business trips etc...
Our proposal

Integrate different kinds of lifelogs to predict both regular and irregular movements

Regular
go to school on weekdays
go to the gym every Monday.
etc...

can predict with location log.

Irregular
irregular meeting
business trips

can predict with integrating different kinds of logs.
Calendar data

We use calendar data as a source for making predictions of irregular movements

- People enter info about irregular events into it
- Widely used.
Dynamic Bayesian Networks model for integrating different data.

DBN model can make reasonable predictions when prediction with only calendar/GPS data is difficult.
Preprocesses

GPS Data

Clustering

Stayed Places

Extracting Keywords

Keywords

"Meeting with Bob"
"See the Dentist"

"Meeting", "Bob"
"Dentist"

(37.53, -122.08)
(37.50, -122.00)

(Office)
(Station A)

(Office)
(Station A)
Concepts of DBN Model

Place-place relationship

Markov Model

Simple model for predicting locations. Can predict regular movements.
Concepts of DBN Model

Place-Keyword relationship

Infer a user’s own relationship between place and keyword from co-occurrences.

- Can predict irregular movements
DBN model (basic)

Integrate place-place relationship and place-keyword relationship

Both regular and irregular movements can be predicted.
DBN model (actual model)

Make some extensions to basic model.
- add node that represents time of day, stay duration

Stay Duration
- 10 min
- 0 min
- 15 min

Location
- Office
- Office
- Bldg A

Calendar
- “Lunch”
- “Bob”

Time of Day
- Evening
- Evening
- Evening
Learning

• Estimating the parameters of the probability distributions of DBN from data.
• Using maximum a posteriori (MAP) estimation.
Inference

Use the Viterbi algorithm to infer a state sequence that maximizes probability.
Experimental Settings

Whether prediction accuracy is improved or not by using calendar data.

Baseline:
DBN model without Calendar data

Dataset
GPS and calendar data of two subject (about 50 days)

<table>
<thead>
<tr>
<th>Table 1: Information about data set.</th>
<th>Subject A</th>
<th>Subject B</th>
</tr>
</thead>
<tbody>
<tr>
<td># of days</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td># of clusters</td>
<td>118</td>
<td>79</td>
</tr>
<tr>
<td># of calendar entries</td>
<td>66</td>
<td>149</td>
</tr>
<tr>
<td># of stays</td>
<td>827</td>
<td>432</td>
</tr>
</tbody>
</table>

Copyright(c) 2010 NTT, All rights reserved.
Evaluation metrics

• Evaluate the accuracy of prediction by changing the time difference between the subject of prediction and the time to start prediction.
Prediction Results

Regular Movements

There are no much differences.

Subject A

GPS

GPS+Calendar

Blue line

Red line

Subject B
Prediction Results

Irregular Movements

Subject A

Subject B

The accuracy was improved for irregular movements.
Example of Predictions

(a) The use of calendar data yields wrong predictions

The prediction failed since the wrong place is estimated from the calendar entry
Example of Predictions

The result was modified because the time needed for movement was considered.
Conclusion

• We show a DBN model for making prediction for both regular and irregular movements by using GPS and calendar data.
 – The accuracy of predictions for irregular movement was improved.
 – Wrong prediction due to wrong schedule can be modified by using GPS data.

• Future works
 – Use other kinds of logs.
Thank you.