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ABSTRACT
Detecting communities (or modular structures) and struc-

tural hole spanners, the nodes bridging different communi-
ties in a network, are two essential tasks in the realm of
network analytics. Due to the topological nature of com-
munities and structural hole spanners, these two tasks are
naturally tangled with each other, while there has been lit-
tle synergy between them. In this paper, we propose a novel
harmonic modularity method to tackle both tasks simulta-
neously. Specifically, we apply a harmonic function to mea-
sure the smoothness of community structure and to obtain
the community indicator. We then investigate the sparsity
level of the interactions between communities, with particu-
lar emphasis on the nodes connecting to multiple communi-
ties, to discriminate the indicator of SH spanners and assist
the community guidance. Extensive experiments on real-
world networks demonstrate that our proposed method out-
performs several state-of-the-art methods in the community
detection task and also in the SH spanner identification task
(even the methods that require the supervised community
information). Furthermore, by removing the SH spanners
spotted by our method, we show that the quality of other
community detection methods can be further improved.
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1. INTRODUCTION
Detecting communities (or modular structures) has been

one of the flourishing issues in understanding the charac-
teristics of real-world networks (e.g., computer networks,
biological, semantic and social networks). Exemplar appli-
cations include recognizing functions of protein in bioinfor-
matics networks [36], and to forecast the information diffu-
sion process in social networks [19]. It is non-trivial mainly
because some bridging nodes, which keep the communica-
tion between different communities, blur the boundary of
communities. From another point of view, these bridging
nodes, known as “hubs” in neurology and “structural hole
(SH) spanners” in sociology, have more control over the in-
formation that is being transmitted among communities [1,
4, 20, 33]. In neurology, examining the function and role
of these hubs is of special interest as they play a central
role in establishing and maintaining efficient global brain
communication, a crucial feature for healthy brain function-
ing [1, 33]. In sociology, the theory of structural holes [4]
suggests that individuals would acquire more potential re-
sources from filling the “holes” between communities that
are otherwise disconnected.

Due to the topological nature of communities and SH
spanners, both detection tasks are naturally intermingled
with each other. To date, however, studies on these two
tasks have been performed independently. Traditional com-
munity detection approaches focus on finding clusters such
that nodes inside a cluster are tightly connected to each
other than to nodes in other clusters. Division [11], ag-
glomeration [22], label propagation [8], and optimization [7]
which continuously update the network partition to mini-
mize or maximize a given measure of the quality of the net-
work partition (e.g., spectral clustering and modularity) are
typical examples for such approaches. However, SH span-
ners are inherently connected to multiple communities, ef-
fectively linking diverse communities into a weakly-knit net-
work. It’s not surprising that well defined communities in
real world networks are hard to find without considering the
existence of SH spanners.

For mining SH spanners, many approaches [5, 13, 18, 20,
28, 32] have been proposed. For example, the authors in [20]
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Figure 1: A simple network with three communities
and six SH spanners

assume the communities are known in advance and formu-
late the SH spanners as the nodes such that after removing
these nodes, the decrease of minimal cut for communities in
network can be maximized. However, for most social net-
works, it is often difficult to determine the boundaries of
communities, as mentioned above. Furthermore, the quality
of the identified SH spanners are determined by the com-
munities, which are usually hard to be discovered without
removing the SH spanners.

Without given the community information, several impor-
tance measures, such as the PageRank [26] and degree cen-
trality [16, 34] have been applied to identify nodes that are
important in information diffusion. Some studies [5, 13, 32]
utilize the betweenness measure to identify the SH spanners
as nodes that have a large number of shortest paths that
pass through them. Most recently, [28] proposes to identify
the SH spanners by exploiting the bounded inverse closeness
centralities of vertices and making use of articulation points
of the network. However, the above methods fail to consider
one of the most important properties of SH spanners: the
information flows between communities are dominated by
SH spanners.

Figure 1 illustrates an example of a network with three
communities and six SH spanners, where the communities
are enclosed by the dashed circles, SH spanners are repre-
sented as the red nodes, and the cross edges that connect
different communities are marked in blue color. One can no-
tice that these SH spanners are either not having the high-
est degree centrality or the highest betweenness centrality,
but they are the only nodes that can spread information
from one community to the other communities. When the
community labels (e.g., C1, C2 and C3) are not available,
though, it is hard to inspect the information flows between
communities.

To unravel the tangled problems regarding community de-
tection and SH spanner detection, we propose to tackle them
simultaneously. For the sake of generality, we solely consider
the topological structure of the given network. In this paper,
we devise a HArmonic Modularity (HAM) scheme to formu-
late the interaction between communities. Specifically, we
apply a harmonic function to measure the harmony between
each node and its neighbors, and produce harmonic assign-
ment in each detected community, so that the internal nodes
and their intra-community neighbors are as harmonious as
possible. By investigating the sparsity level of the inter-
actions between communities, with particular emphasis on

the nodes connecting to multiple communities, we are able
to discriminate the indicator of SH spanners and assist the
community guidance.

Our contributions can be summarized as follows:

• To the best of our knowledge, this is the first attempt
to address the problem of joint community and struc-
tural hole spanner detection in real-world networks.

• We use the harmonic function to model the topological
nature of community and SH spanners, and establish
cooperation together. This provides an innovative per-
spective on the analysis of network structure.

• Through extensive experiments on three real-world net-
work datasets, we present that the proposed HAM
method outperforms several state-of-the-art methods
in the community detection task and also in the SH
spanner detection task (even the methods that require
the supervised community information).

• We demonstrate HAM can capture the most interme-
diate nodes between communities. Furthermore, the
SH spanners identified by HAM are more effective in
spreading information to different communities than
that identified by the alternative methods.

• By removing the SH spanners spotted by our method,
we show that the quality of other community detection
methods can be further improved.

2. PRELIMINARIES
In this section we establish key definitions and notational

conventions that simplify the exposition in later sections.
Table 1 lists the important notations used in this paper.

Throughout this paper, matrices are written as boldface
capital letters and vectors are denoted as boldface lower-
case letters. For a matrix M ∈ Rn×m, its elements are
denoted by mij , and its i-th row, j-th column are denoted
by mi, mj respectively. The Frobenius norm of M is de-
fined as ‖M‖F =

√∑n
i=1 ‖mi‖22, the `2,1 norm of M is

defined as ‖M‖2,1 =
∑n
i=1

∥∥mi
∥∥
2
. For any vector u ∈ Rn,

Diag(u) ∈ Rn×n is the diagonal matrix whose diagonal el-
ements are ui. In denotes an identity matrix with size n.
‖u‖0 is the `0 norm, which counts the number of nonzero
elements in the vector u. We assume that there is a social
network represented as an undirected graph G = (V,E),
where V = {v1, · · · , vn} is the set of nodes and E ⊂ V × V
is the set of edges whose element eij = (vi, vj) represents an
interaction between the nodes vi and vj . We denote the ad-
jacency matrix of G by A = [aij ], where 1 ≤ i, j ≤ |V | = n,
aij = 1 if node vi is connected by an edge to node vj and
0 otherwise. We assume no self loops, thus aii = 0 for all
i. In particular, assume that the nodes of the network can
be grouped into m communities C = {C1, · · · , Cm}, with
V = C1 ∪ · · · ∪ Cm and Ci ∩ Cj = ∅ for every pair i, j with
i 6= j.

Next, we establish the definitions and main properties of
nodes which will be used to formulate the problem.

Definition 1. (Internal Node) For any node vi ∈ Cp, if
all of its neighboring nodes belong to Cp, node vi is called
an internal node.



Table 1: Important Notations
Symbol Definition

V = {vi}ni=1 set of nodes
C = {Ci}mi=1 set of communities

n total number of nodes (|V |)
m number of communities (|C|)
k number of top-ranked SH spanners

A,D adjacency and degree matrices
F indicator matrix
di degree of node vi
‖.‖F Frobenius norm
‖.‖2,1 `2,1 norm
‖.‖0 `0 norm

Definition 2. (Structural Hole Spanner) For any node
vi ∈ Cp, if there exists some neighboring nodes vj ∈ Cq(p 6=
q), node vi is called a structural hole spanner.

Definition 3. (Intra-Community Neighbor) For any
node vi ∈ Cp, if node vi connects with node vj ∈ Cp(i 6= j),
node vj is called an intra-community neighbor of node vi.
All the intra-community neighbors of node vi constitute its
intra-community neighbor set.

Definition 4. (Inter-Community Neighbor) For any
node vi ∈ Cp, if node vi connects with node vj ∈ Cq(p 6= q),
node vj is called an inter-community neighbor of node vi.
All the inter-community neighbors of node vi constitute its
inter-community neighbor set.

Definition 5. (Cross Edge) For any edge eij = (vi, vj) ∈
E, if vi and vj belong to different communities, edge eij is
called a cross edge.

Definition 6. (Harmonic Function) Given a network
G = (V,E), a function h : V → R defined on nodes of
G is called harmonic if for every vi ∈ V

h(vi) ≡
1

di

∑
(vi,vj)∈E

h(vj) (1)

where di =
∑
j aij denotes the degree of node vi. Intuitively,

at every node vi ∈ V , the value of a harmonic function is
equal to the average of its values at the neighboring nodes.

3. HARMONIC MODULARITY
In this section, we first illustrate the formulation of our

harmonic modularity (HAM) scheme. Then a detailed ap-
proach is rendered to solve the objective function of HAM.
Further, we investigate its convergence and computational
complexity.

3.1 Problem Formulation
Key intuitions: In graph theory, a community is de-

scribed as a group of nodes more densely connected with
each other than with the rest of the network. Intuitively,
community structure characterizes the neighborhood rela-
tionships of the nodes, with nodes that are closer together
in the graph having a similar community indicator. As such,
the problem of community detection is much more related
to the concept of intra-community neighbor. On the other
hand, as SH spanners play a boundary-spanning role across

communities, it is clear that the problem of top-k SH span-
ner detection is much more related to the concept of inter-
community neighbor. Most of the existing studies focus on
either one or the other of these two assignments. However,
by bringing these two assignments together, we can see that
although community detection and top-k SH spanner de-
tection assign graph nodes from two different aspects, they
both measure neighborhood relationships. Such neighbor-
hood relationships would correspond to the harmony and
diversity of nodes, respectively. From Definition 6, we know
the harmonic property provides a systematic way to quan-
tify the harmony and diversity between the indicator value
at a given node and the average of its neighboring nodes.
Thus, we propose to jointly detect community and top-k
SH spanners by measuring the harmonic modularity of the
given network. To overcome limitations in prior work, we
state the following desiderata:

• Nonparametric Guidance: Utilize SH spanner in-
formation when inferring community assignment, and
vice versa, so that assignment information is able to
provide guidance to the detection process in a non-
parametric fashion.

• Harmony: Produce a harmonic assignment in each
community, so that the internal nodes and their intra-
community neighbors are as harmonious as possible,
even though they connect to the SH spanners.

• Diversity: Produce heterogeneous role assignments
for internal nodes and SH spanners, so that community
and top-k SH spanner assignments are as diverse from
each other as possible.

Building upon these desiderata, we proceed to present HAM.
We first present how to measure the harmonic modularity,
which itself can be used to learn community assignment,
of the given network. Since SH spanners involve different
communities, we then model and analyze the topology of
SH spanners to quantify the influence exerted on commu-
nities, which goes with the ability to identify SH spanners
and improve community assignment. Let F ∈ Rn×m be the
community indicator matrix, where fij = 1 if a node vi is
assigned to the j-th community, and 0 otherwise. The con-
straints on F can be written as

F ∈ {0, 1}n×m, ‖f i‖0 = 1, ∀i, 1 ≤ i ≤ n, (2)

where ‖f i‖0 = 1 is utilized to indicate the community that
the node vi most likely belongs to.

For each node vi, its community indicator f i should be
as harmonious with its neighbors as possible, i.e., the dif-
ference between the value of f i and the averaged value of
its neighbors 1

di

∑
(vi,vj)∈E f j should be minimized. Hence,

a harmonic function can be embedded to learn the com-
munity indicator matrix F. On the basis of the Harmonic
analysis, we formulate the following minimization problem

min
F

∥∥F−D−1AF
∥∥2
F

s.t.
∥∥∥f i∥∥∥

0
= 1, ∀ i, 1 ≤ i ≤ n

F ∈ {0, 1}n×m (3)

One can see if there are no cross edges or SH spanners in
the network, the value of the objective function is essen-



tially zero. However, when a node connects with the inter-
community neighbors, it will leads to a relatively large value.
SH spanner identification is expected to moderate this in-
fluence, as the more influential SH spanner is more likely to
get involved into interaction between communities. More-
over, to exploit the formulation of (3) on community detec-
tion more effectively, it is crucial for the community indica-
tor matrix F to have discriminative ability for SH spanners,
i.e., promoting row-wise sparsity to discriminate relevant SH
spanners. We introduce the `2,1-norm penalty and orthog-
onality constraint to make it and thus solve the following
optimization problem

min
F
‖F−D−1AF‖2,1

s.t. FTF = Im (4)

Note that the relaxation of orthogonality condition has two
benefits: it not only avoids solving the NP-hard problem of
`0 norm, but also allows the sparsity of the community indi-
cator matrix F to be exploited. It can be seen the sparsity-
inducing property of `2,1 norm pushes F to be sparse in rows.
More specifically, f i shrinks to zero if the neighbors of node
vi belongs to different communities. In particular, the more
inter-neighbors the node vi connects to the more different
communities, the larger ‖fi−D−1Afi‖22 is, so the value of f i

gets penalized more harshly. Therefore, we can obtain the
top-k SH spanners corresponding to the top-k smallest val-
ues of ‖f i‖2. Further, the shrinkage of the f i diminishes the
influence of the node vi on its neighbors, making them to be
more harmonious with their intra-community neighbors.

It is not difficult to see that the formulation of (4) char-
acterizes graph nodes from two different aspects: harmony
and diversity. The harmonic modularity provides a measure
of the smoothness of F over the edges in G, and thus help
produce harmonic community assignment. The `2,1 norm
provides an investigation on the sparsity level of the inter-
actions between communities, and thus help discriminate SH
spanners and assist the community guidance.

3.2 Solution
Directly minimizing Eq. (4) involving `2,1 norm is non-

trivial. Here we propose an iterative algorithm based on the
half-quadratic minimization [25] to solve this problem. We
start by introducing the following lemma [15].

Lemma 1. Let φ(.) be a function satisfying the conditions:
x → φ(x) is convex on R; x → φ(

√
x) is convex on R+;

φ(x) = φ(−x), ∀x ∈ R; φ(x) is C1 on R; φ′′(0+) ≥ 0,
lim
x→∞

φ(x)/x2 = 0. Then for a fixed ‖ui‖2, there exists a

dual potential function ϕ(.), such that

φ(‖ui‖2) = inf
p∈R
{p‖ui‖22 + ϕ(p)} (5)

where p is determined by the minimizer function ϕ(.) with
respect to φ(.).

Let P = F −D−1AF. According to the analysis for the
`2,1 norm in [15], if we define φ(x) =

√
x2 + ε, we can replace

‖P‖2,1 with
∑n
i=1 φ(‖pi‖2). Thus, based on Lemma 1, the

objective function of Eq. (4) can be reformulated as follows:

min
F

Tr(PTQP)

s.t. FTF = Im (6)

Algorithm 1 Harmonic Modularity (HAM)

Input: G = (V,E), m, k
Output: Assignments to m communities and the top-k SH

spanners
1: Initialize F0 s.t. FT

0 F0 = Im, t← 0;
2: while not converge do
3: Set Qt ← Diag( 1

2
√
‖pi

t‖
2
2+ε

);

4: Compute Rt according to Eq. (8)
5: Compute Ft+1 as the eigenvectors of Rt correspond-

ing to the first m smallest eigenvalues;
6: t← t+ 1;
7: end while
8: Sort each node according to ‖f‖2 in ascending order

and select the top-k ranked ones as SH spanners;
9: Remove the top-k SH spanners from F, and then cluster

F by K-means to obtain clustering communities.

where Q = Diag(q), and q is an auxiliary vector of the `2,1
norm. The elements of q are computed as follows.

qi =
1

2
√
‖pi‖22 + ε

(7)

where ε is a smoothing term that avoids division by zero,
which is usually set to be a small constant value (we set
ε = 10−4 in this paper).

Clearly, the optimal solution of (6) can be computed via
solving the eigenvector problem for the matrix:

R = (In −D−1A)TQ(In −D−1A) (8)

Based on the above analysis, we summarize the detailed op-
timization algorithm in Algorithm 1.

3.3 Convergence and Complexity
The Algorithm 1 to optimize Eq. (4) is presented from

line 2 to line 7. We prove that it converges to the optimal
solution F. We begin with the following Lemma [24].

Lemma 2. For any nonzero vectors vit ∈ Rc, 1 ≤ i ≤ r,
where r is an arbitrary number. The following inequality
holds:∑

i

‖vit+1‖2 −
∑
i

‖vit+1‖22
2‖vit‖2

≤
∑
i

‖vit‖2 −
∑
i

‖vit‖22
2‖vit‖2

(9)

Proof. The detailed proof can be found in the work [24].

Next, we show that the iterative algorithm shown in Al-
gorithm 1 converges by the following theorem.

Theorem 3. The iterative approach in Algorithm 1 (line
2 to line 7) monotonically decreases the objective function
value of min

FTF=Im

‖F−D−1AF‖2,1 in each iteration.

Proof. Let ∆ = In − D−1A, then P = ∆F. In line 5 of
Algorithm 1, we can see that

Ft+1 = arg min
FTF=Im

Tr(FT∆TQt∆F) (10)

Therefore, we have

Tr(FT
t+1∆

TQt∆Ft+1) ≤ Tr(FT
t ∆TQt∆Ft)

⇒
∑
i

‖pit+1‖22
2‖pit‖2

≤
∑
i

‖pit‖22
2‖pit‖2



Then according to Lemma 2,
∑
i ‖p

i
t+1‖2 −

∑
i

‖pi
t+1‖

2
2

2‖pi
t‖2

≤∑
i ‖p

i
t‖2 −

∑
i

‖pi
t‖

2
2

2‖pi
t‖2

, we have the following inequality∑
i

‖pit+1‖2 ≤
∑
i

‖pit‖2 (11)

Based on the definition of `2,1 norm and P = F−D−1AF,
we can obtain

‖Ft+1 −D−1AFt+1‖2,1 ≤ ‖Ft −D−1AFt‖2,1 (12)

which indicates that the value of min
FTF=Im

‖F −D−1AF‖2,1
monotonically decreases using the updating rule in Algo-
rithm 1.

According to Theorem 3, we can see that the iterative
approach in Algorithm 1 converges to local optimal F corre-
sponding to Eq. (4). The proposed optimization algorithm is
efficient. In the experiment, we observe that our algorithm
usually converges around only 20 iterations.

The complexity is briefly discussed as follows. The com-
plexity of computing Q is O(n2). To obtain F, we need to
conduct eigendecomposition of R, which is O(n3) in com-
plexity. It can be reduced toO(n2.376) using the Coppersmith-
Winograd algorithm. The complexity of identifying commu-
nities by K-means is O(m2nt), where t is the iterative index
required for K-means to converge. The complexity of top-k
SH spanner selection is O(n log(n) + nm).

4. INTERPRETATION AND CONNECTION
Here we present the special case of our HAM method and

relate it to the existing works. These different viewpoints
provide a rich and complementary set of techniques for rea-
soning about this approach to the joint community and SH
spanner detection problem.

Perhaps the most interesting and significant aspect of HAM
is that it can be viewed as a direct response to the harmonic
property. As we use the `2,1 norm to push the community
indicators of SH spanners shrink to zero, this equals to re-
move SH spanners from the graph. Thus, in our method,
the value of the objective function is close to zero, which is
consistent with the notion of harmony. Moreover, one can
see if there are no cross edges or SH spanners in the network,
then the auxiliary matrix Q is always constant, regardless of
any changes of community indicator F. In this case, we will
solve the minimum Frobenius norm residual problem (i.e.,
min ‖F −D−1AF‖F , s.t. FTF = Im), and HAM degener-
ates into the random walk approach (also called harmonic
function learning) [31].

Our HAM uses the eigenvectors of a matrix (R in Eq. (8))
to reveal the community structure in the graph, therefore it
can be regarded as belonging to the category of spectral clus-
tering approaches. However, there are two major differences.
The matrix whose eigenvectors are used for clustering plays
the key role in spectral clustering. In HAM, this matrix
is computed based on the harmonic function learning idea
in conjunction with the sparsity-inducing `2,1-norm, while
conventional spectral clustering methods are often based on
the graph Laplacian matrices. Second, spectral clustering
gives a closed-form solution, and HAM needs to be opti-
mized in a half-quadratic way. In practice, the main compu-
tational load of HAM and spectral clustering is to compute

the eigenvectors, therefore they have the same order of time
complexity.

5. EXPERIMENTS
To evaluate the effectiveness of HAM, we conduct exten-

sive experiments on real-world social networks, and com-
pare them with various baseline methods. As there hardly
exist comparative methods that can simultaneously detect
communities and SH spanners, we compare our approach to
community detection and SH spanner detection methods,
respectively. Since the quality of detected communities can
be well affected by the spotted SH spanners, we first investi-
gate the effectiveness of HAM on SH spanner detection. We
then study the performance of HAM on community detec-
tion. Finally, we discuss the results and the reasons behind
them.

5.1 Dataset Description
We adopt three real-world social network datasets from

different contexts.

• Karate Club [38] is the network of friendships between
members of a karate club that splits into two clubs due
to a dispute between the coach and administrator.

• DBLP is a co-authorship network where two authors
are connected if they publish at least one paper to-
gether. Publication venue defines an individual ground-
truth community; authors who published to the same
journal or conference form a community.

• YouTube is a video-based social network, where users
form friendship with each other based on their inter-
actions over videos and users can create groups which
other users can join. Such user-defined groups are con-
sidered as ground-truth communities.

The DBLP and YouTube data were obtained from [37].
We sample 5 datasets from each and measure the average
performance. Since we focus on detecting distinct commu-
nities, the communities of interest should not have too much
overlaps with other communities. We compute the number
of cross edges between each pair of communities, and di-
vide it by the number of nodes in the smaller community as
the cross ratio between the community pair. The sampling
rule is: randomly pick a community, and then take all the
nodes within the community if the cross ratios between the
picked community and the existing selected communities is
less than a threshold (set as 0.3 in the experiment). We re-
peat the sampling process until the number of nodes or the
number of communities in the sampled network reaches a
predefined limit (set as 2, 000 and 20, respectively, in the ex-
periment) or no more community to be picked. Table 2 sum-
marizes the original datasets and also the sampled datasets
for the large networks.

5.2 Structural Hole Spanner Detection

5.2.1 Compared Methods
We compare HAM with the following seven state-of-the-

art methods, each of which represents a different strategy
for detecting the top-k SH spanners.

• HAM is our proposed method, which selects the nodes
that have neighbors belonging to more different com-
munities as the SH spanners.



Table 2: Summary of experimental datasets. Sampled datasets are listed by the mean ± standard deviation.

Characteristics
Types of data Datasets # Nodes # Edges # Cross edges # SH spanners # Communities
Original data Karate Club 34 78 11 13 2

DBLP 1557.6±362.19 4915.6±451.95 127.4±41.60 189±49.44 15±4.24
Sampled data YouTube 1310±133.67 2853.5±289.69 82.5±15.18 91.3±13.57 15.25±2.06

Table 3: Structural hole spanner detection results (average SHII ). Column 2 indicates the used Information
Diffusion model

Comparative Methonds
Datasets ID model HAM Constraint PageRank BC 2-Step MaxD HIS AP BICC

LT 0.343 0.295 0.159 0.159 0.159 0.159 0.132 0.295
Karate Club IC 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.002

SH spanners [3,20,9] [1,34,3] [34,1,33] [1,34,33] [34,1,33] [34,1,33] [32,9,14] [1,3,34]
LT 5.384 0.404 0.357 0.958 0.394 0.272 0.718 0.550

DBLP IC 3.578 0.229 0.190 0.821 0.203 0.135 0.304 0.495
LT 3.951 2.447 1.236 1.226 1.935 1.674 3.198 1.630

YouTube IC 2.452 1.254 0.662 0.791 1.014 0.798 2.148 0.799

• Constraint [4] uses constraint to estimate the impor-
tance of each node and select the top-k nodes with the
lowest constraint scores as the SH spanners.

• PageRank [26] is the traditional node ranking algo-
rithm, which returns the nodes with the top-k page
rank scores as the SH spanners.

• Betweenness Centrality (BC) [2] assigns each node a
score that is the number of shortest paths (between all
pairs of nodes) on which the node lies, then selects the
top-k nodes with the highest scores as the SH spanners.

• 2-Step [32] assigns each node a score that is the number
of pairs of its neighbors without edges between them,
and then selects the top-k highest scores as the SH
spanners.

• MaxD [20] is a supervised learning strategy, which fo-
cuses on predefined communities and minimal cut the-
ory to select the top-k nodes, such that after removing
these nodes the decrease of the minimal cut will be
maximized.

• HIS [20] is also a supervised method. It assigns each
node v a score that simulates the likelihood of v as
a structural hole spanner across the given subset of
communities, and then selects the top-k nodes with
the highest scores as the SH spanners.

• AP BICC [28] is a recently proposed SH spanner de-
tection method, which selects the top-k SH spanners
based on articulation points (AP) (that is, nodes of a
graph that connect two or more otherwise unconnected
parts of the graph) and bounded inverse closeness cen-
trality (BICC), such that after removing these nodes
the increase of the mean distance of the network will be
maximized. We set the bounded parameter to l = 2,
and the number of nodes used in the BICC to K = 50,
as they suggested.

5.2.2 Evaluation criteria
Currently there is no standard criteria available for eval-

uating the performance of the top-k SH spanners. Here we
base on simulating the information diffusion process [12] in
the given network to evaluate the performance. Since a SH
spanner usually dominates the spread of information across
communities, when using the more effective SH spanner as
a seed (source) node, the faster the information would be
diffused to different communities. Hence, the number of the
influenced outsiders, which are the ones reside in the com-
munities different from the SH spanner’s community, should
be larger. However, the number of outsiders is related to
the size of the given community. Further, considering a well
connected node in the center of a community can also prop-
agate its influence to other communities through its neigh-
bors, simply relying on the number of influenced outsiders
may not be able to discriminate SH spanners from center
nodes. Thus, to give a evaluation criterion that is suitable
for a variety of SH spanners and can distinguish SH span-
ners from center nodes, we consider the proposition of the
number of the influenced outsiders to the total number of
all the influenced nodes. Formally, we define the structural
hole influence index under a certain diffusion model as the
evaluation criterion.

• Structural Hole Influence Index (SHII): Let s be the
given seed, Cp be the community that the given seed
belongs to, and Iv be an indicator of whether a node
v is influenced by using a certain information diffusion
model. We define SHII as follows:

SHII(s) =

∑
Ci∈C\Cp

∑
v∈Ci

Iv∑
Ci∈C

∑
v∈Ci

Iv

where C is the set of all the communities. Generally,
higher SHII corresponds to better performance.

In this study, we use two different and widely used informa-
tion diffusion models [17]: Linear Threshold (LT) model and
Independent Cascade (IC) model to find the set of influenced
nodes. Since it is unlikely to simulate the information diffu-
sion procedure using only one seed, for the given SH spanner



Figure 2: Visualization of the identified SH span-
ners in Karate Club, where the large blue shadowed
nodes represent SH Spanners discovered by HAM.

candidate, we randomly select a certain number (5% of the
number of the nodes that are in the same community as
the candidate) of the candidate’s neighbors along with the
candidate as the seed set in the LT/IC model. For each SH
spanner candidate, we repeat the random selection for 1,000
times and run the LT and IC models for 100,000 times for
each selected seed set. Finally, we report the average SHII
for each method.

5.2.3 Experiment Result
Table 3 reports the performance of each method in terms

of the proposed evaluation criterion. From the results, we
can observe that HAM significantly outperforms all the other
baseline methods even the supervised methods (i.e., MaxD
and HIS), which are aware of the ground truth of the com-
munities. Specifically, it can be seen in the DBLP data that
the SHII achieved by HAM under the LT model is 5.384,
which is more than 5 times higher than that obtained by
BC and HIS, about 10 times larger than that achieved by
Constraint, PageRank, 2-Step, MaxD, and AP BICC.

For qualitative analysis, in Figure 2, we visualize the net-
work of Karate Club using the tool Networkx [14] and mark
the identified SH spanners by HAM to see the topological
position of them. The nodes with large blue shadow are the
top-3 SH spanners spotted and the colors of nodes indicate
the different communities they belong to. The results of
the other methods are listed in Table 3. We can find that
HAM captures the most intermediate nodes between com-
munities. In contrast, most of the compared methods take
the nodes with the highest degree as SH spanners, but actu-
ally these nodes are usually the center of the communities.
It obviously contradicts to the definition of SH spanners.
Although HIS does not focus on finding the nodes with the
highest degree, its identified SH spanners have less impact
on the information diffusion across different communities, as
can be seen that HIS has smaller values of SHII than all the
other methods.

5.3 Community Detection
We apply the results of identified top-k SH spanners by

HAM to help predict community structure. To further show
the effectiveness of the identified SH spanners, we evalu-

ate the community detection performance before and after
removing the top-k SH spanners for each comparative meth-
ods. When considering all the nodes in the network as the
prediction object, in our HAM method, for each SH spanner
we determine its community label via majority voting using
its connected nodes’ community labels.

5.3.1 Compared Methods
We compare HAM with the following commonly used al-

gorithms for community detection.

• Spectral Clustering [23] refers to a class of techniques
which rely on the eigenstructure of the graph Laplacian
to partition points into disjoint clusters with points in
the same cluster having high similarity and points in
different clusters having low similarity. Typical graph
Laplacians are: the unnormalized Laplacian defined
as L = D − A, the symmetric normalized Laplacian

Lsym = D−
1
2 LD−

1
2 and the asymmetric normalized

Laplacian Lasym = D−1L. We use these three matrices
based on spectral clustering, and denote them as SP,
SPsym and SPasym , respectively.

• Random Walk (RW) [31] is a special case of our ap-
proach, when the norm of the objective function is
Frobenius norm.

• Q-modularity (Q) [22] is a recently introduced com-
munity detection method that greedily computes par-
titions of networks into communities by maximizing
the so-called ‘modularity’. In particular, the author
has shown in [21] that it can use the largest eigen-
vectors of the ‘modularity’ matrix to characterize the
community structure in the graph.

5.3.2 Evaluation criteria
In order to evaluate the quality of the communities gener-

ated by different community detection approaches, we adopt
the following measures.

a) Accuracy (ACC ) is one of the most frequently used
criterion, which evaluates the quality of similarity be-
tween resulted cluster labels and ground truth labels.
Let ci represent the clustering label result from a com-
munity detection algorithm and yi represent the cor-
responding ground truth label of an arbitrary node vi.
Then ACC is defined as follows:

ACC =

∑n
i=1 δ(yi,map(ci))

n

where δ is the Kronecker delta function, and map(ci)
is the best mapping function that permutes clustering
labels to match the ground truth labels using the Kuh-
nMunkres algorithm. A larger ACC indicates better
clustering performance.

b) Normalized Mutual Information (NMI ) measures the
mutual information entropy between resulted cluster
labels and ground truth labels. For any two arbitrary
variables P and Q, NMI is defined as follows:

NMI =
I(P,Q)√
H(P )H(Q)

where I(P,Q) computes the mutual information be-
tween P and Q, and H(P ) and H(Q) are the entropies



Table 4: Community detection results “average score” on three datasets. “↑” indicates the larger the value
the better the performance; “↓” indicates the smaller the value the better the performance.

Evaluations with top-k SH spanners Evaluations without top-k SH spanners
Datasets Methods ACC ↑ NMI ↑ ACE ↓ Methods ACC ↑ NMI ↑ ACE ↓

Karate Club

HAM 1.000 1.000 0.000 HAM 1.000 1.000 0.000
SP 0.912 0.646 0.253 SP 1.000 1.000 0.000
SPsym 0.971 0.837 0.115 SPsym 1.000 1.000 0.000
SPasym 0.824 0.363 0.448 SPasym 0.968 0.824 0.125
RW 0.971 0.837 0.115 RW 1.000 1.000 0.000
Q 1.000 1.000 0.000 Q 1.000 1.000 0.000

DBLP

HAM 0.879 0.885 0.114 HAM 0.879 0.886 0.112
SP 0.693 0.790 0.162 SP 0.872 0.876 0.120
SPsym 0.680 0.756 0.179 SPsym 0.821 0.788 0.255
SPasym 0.307 0.472 0.687 SPasym 0.331 0.497 0.665
RW 0.790 0.810 0.154 RW 0.916 0.877 0.136
Q 0.429 0.634 0.373 Q 0.468 0.663 0.342

YouTube

HAM 0.953 0.938 0.100 HAM 0.954 0.940 0.100
SP 0.888 0.881 0.176 SP 0.909 0.908 0.160
SPsym 0.802 0.815 0.212 SPsym 0.826 0.857 0.158
SPasym 0.433 0.583 0.513 SPasym 0.545 0.630 0.499
RW 0.908 0.905 0.163 RW 0.933 0.922 0.143
Q 0.492 0.626 0.395 Q 0.515 0.721 0.294

of P and Q. An advantage of NMI is that it does
not necessarily increase when the number of clusters
increase. The larger the value, the better the perfor-
mance.

c) Average Cluster Entropy (ACE) is based on the impu-
rity of a cluster given the true classes in the data. Let
pij be the fraction of class j in obtained cluster i, and
ni be the size of cluster i, then ACE is defined as:

ACE =

m∑
i=1

ni(−
∑
j pij log(pij))

n

The smallest the value, the better the performance.
Particularly, the low values of ACE indicate homoge-
neous distribution of the nodes within each group [6].

5.3.3 Experiment Result
Table 4 summarizes the performance of different methods

according to three evaluation criteria. The performance be-
fore removing the top-k SH spanners (with top-k SH span-
ners) are shown in the left column and without top-k SH
spanners in the right column. From the left column of Ta-
ble 4 it can be seen that the performance of each method
on different datasets can be quite different. However, the
best method that outperforms other methods in all datasets
is HAM, especially for DBLP and YouTube datasets. We
can see the accuracies achieved by HAM (0.879 and 0.953,
respectively) are considerably larger than the second best
method (0.790 and 0.888, respectively). Moreover, HAM sig-
nificantly outperforms RW, which means that the sparsity-
inducing `2,1-norm is effective to increase the harmony within
the community. From the right column of Table 4, we can
see the performance of each comparative method substan-
tially benefits from the removal of top-k SH spanners. For
example, the accuracy performance of SP is improved from
0.693 to 0.872 on the DBLP dataset. These results suggest
that our proposed method can guarantee to find more posi-
tive structural hole spanners connecting to different commu-

nities, and removing them makes the community structure
more apparent, thus facilitating better community detection
performance.

5.4 Discussion
We now turn to the discussion of the experimental results.

Table 3 shows HAM is substantially better than other SH
spanner detection methods. The reason is that HAM finds
the SH spanners who bridge different communities, while
most other methods detect the SH spanners with higher
degree, which collaborate with many nodes in their own
community. In other words, structural hole spanners are
more likely to connect the nodes between communities than
higher-degree nodes. Thus they have great potentials to
control information flow between communities. Moreover,
the left column of Table 4 shows the community detection
performance gain of HAM over other methods is significant.
This result is due to the absence of SH spanners in our origi-
nal community detection procedure. Removing SH spanners
helps make the community structure more tangible such that
different communities are easier to be separated. As can be
seen in the right column of Table 4, the performance of each
comparative method is improved after removing the identi-
fied top-k SH spanners detected by HAM.

In addition, Figure 3 shows convergence curves of HAM.
From this figure, we can see that the proposed optimization
algorithm converges quickly in the vicinity of the minimum,
i.e., only around 20 iterations. At the same time, it can also
be seen from Figure 3 that the objective function converges
to a very small value, which is consistent with intuitive in-
terpretation of SH spanner selection process. Furthermore,
our method needs no parameter tuning, which makes it even
more appealing.

6. RELATED WORK
To the best of our knowledge, this is the first work to si-

multaneously address the problems of community detection
and SH spanner detection. Our work is related to both com-



0 5 10 15 20 25 30 35 40 45 50
0.2

0.25

0.3

0.35

0.4

0.45

Iterative Number

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

(a) Karate Club

0 5 10 15 20 25 30 35 40 45 50
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Iterative Number

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

(b) DBLP

0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Iterative Number

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

(c) YouTube

Figure 3: : Convergence curve of HAM over Karate Club, DBLP and YouTube datasets

munity detection techniques and SH spanners mining. We
briefly discuss both of them.

6.1 Community Detection
Community detection, with its root in graph partitioning

and graph clustering, has been pivotal to network science.
A plethora of algorithms have been presented to address
this task over the years, be it cut-based [9], spectrum-based
[23], modularity-based [22], or information theoretic [29].
To cover all community detection algorithms is beyond the
scope of this paper, and interested readers can refer to the
survey papers such as [10].

In recent years, a variety of methods inspired by different
paradigms are put forward for community detection [35]. A
prominent one is to consider the structural roles of individ-
ual nodes. This desideratum is motivated by the observation
on many real-world networks that, by nature, community
and structural role discovery are interdependent and com-
plementary to each other. Real-world communities often
contain nodes with various roles for it to function, such as
ones that interface with other communities and ones that are
peripheral to community cores. On the other hand, the role
assignment of a node also depends on the communities that
the node itself, its neighbors and beyond belong to. There-
fore, there exists a strong and crucial need to detect com-
munities and roles jointly. Recent work has leveraged role
detection techniques for community detection [30]. None of
those methods, however, consider the SH spanner detection.

6.2 Structural Hole Spanner Detection
Structural Hole theory is first introduced by [4] to find

the key employees in organizations for integrating operations
across functional and business boundaries. A series of em-
pirical studies [3, 27] have demonstrated that advantages ac-
crue to SH spanners who occupy bridging positions between
different communities. In the literature, many strategies [13,
18] have been devised to model the property of structural
holes in a network. [13] proposed a network formation model
that a vertex serves as an intermediary between many ver-
tices. The strategic link formation in their model leads to a
star network, while real-world networks are not necessary of
the star topology.

In recent years, several approaches have been proposed to
find the top-k SH spanners. [13] formulated SH spanners as
nodes that reside on large number of shortest paths between
different pairs of nodes. Because counting all the shortest
paths is time-consuming, [32] proposed a 2-Step approach
that only counts the number of shortest paths with length

two. Most recently, [28] viewed the SH spanners as a set of
vertices whose removal will result in the maximum increase
on the mean distance of the network, which is the average of
the lengths of all pairs of vertices in the network. They then
proposed the AP BICC model, by exploiting the bounded
inverse closeness centrality (BICC) of vertices and making
use of articulation points (AP) of the network.

To our best knowledge, there is only one paper that uti-
lized the community information for mining the top-k SH
spanners [20], which assumes the communities are given.
One instantiation of their proposed model is to find a set
of vertices whose removal leads to the maximum decrease in
the minimum cut in the given set of communities. However,
communities usually are not known in most scenarios, thus
the quality of the solution relies on the quality of communi-
ties found. In contrast, given only the topological structure
of the network, our proposed HAM can detect the commu-
nities and the top-k SH spanners simultaneously. Further-
more, as demonstrated in the experiment, HAM captures
the most influential intermediate nodes between communi-
ties, while most of the previous methods take the nodes in
the center of the communities as SH spanners.

7. CONCLUSION
In this work, we proposed a novel Harmonic Modular-

ity (HAM) method for simultaneously detecting the poten-
tial communities and the top-k SH spanners, using only the
topological structure of the network. Specifically, we ap-
plied the harmonic function analysis to measure the har-
monic modularity and to obtain the community indicator.
We further investigated the sparsity level of the interactions
between communities, with particular emphasis on the nodes
connecting to multiple communities, to discriminate the in-
dicator of SH spanners and assist the community guidance.
Extensive experiments conducted on three real-world social
networks demonstrated that HAM can capture the charac-
teristics of structural hole spanners, and the proposed algo-
rithm significantly outperform several comparative methods
(even the methods using the supervised community infor-
mation) in the top-k SH spanner identification problem and
also the community detection problem, respectively.
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