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ABSTRACT
Despite the popularity of Collaborative Filtering (CF), CF-based

methods are haunted by the cold-start problem, which has a signifi-

cantly negative impact on users’ experiences with Recommender

Systems (RS). In this paper, to overcome the aforementioned draw-

back, we first formulate the relationships between users and items

as a bipartite graph. Then, we propose a new spectral convolution

operation directly performing in the spectral domain, where not
only the proximity information of a graph but also the connectivity

information hidden in the graph are revealed. With the proposed

spectral convolution operation, we build a deep recommendation

model called Spectral Collaborative Filtering (SpectralCF). Bene-

fiting from the rich information of connectivity existing in the

spectral domain, SpectralCF is capable of discovering deep connec-

tions between users and items and therefore, alleviates the cold-start
problem for CF. To the best of our knowledge, SpectralCF is the

first CF-based method directly learning from the spectral domains
of user-item bipartite graphs. We apply our method on several

standard datasets. It is shown that SpectralCF significantly out-

performs state-of-the-art models. Code and data are available at

https://github.com/lzheng21/SpectralCF.
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Figure 1:A toy example of a user-itembipartite graphBwith
edges representing observed user-item interactions. Red cir-
cles and green rectangles denote users and items, respec-
tively.
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1 INTRODUCTION
The effectiveness of recommender systems (RS) often relies on how

well users’ interests or preferences can be understood and inter-

actions between users and items can be modeled. Collaborative

Filtering (CF) [19] is one of the widely used and prominent tech-

niques for RS. The underlying assumption of the CF approach is

that if a user u1 shares a common item with another user u2, u1
is also likely to be interested in other items liked by u2. Although
CF has been successfully applied to many recommendation appli-

cations, the cold-start problem is considered as one of its major

challenges [19]. The problem arises when a user interacted with

a very small number of items. Consequently, the user shares few

items with other users, and effectively recommending for the user

becomes a challenging task for RS.

If we formulate the relationships between users and items as

a bipartite graph
1
, we argue that the connectivity information of

the graph can play an important role for tackling the cold-start
problem. For example, let us see a bipartite graph B in Figure 1. A

cold-start useru1 only interacts with item i1. Sinceu1 shares i1 with

1
In this paper, we use the terminology "graph" to refer to the graph/network structure

of data and "network" for the architecture of machine learning models.

https://github.com/lzheng21/SpectralCF
https://doi.org/10.1145/3240323.3240343
https://doi.org/10.1145/3240323.3240343


RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada L. Zheng et al.

user u2 and user u3, as a result, three items (i2, i3 and i4) connected
with u2 or u3 can all be recommended to u1 by a CF-based model.

However, a natural and important question arises: which one in the

three items is the most reliable recommendation for u1? The key to

answer the question lies in the user-item connectivity information.

In fact, if we take a look at the connections of the graph, it is clear

that there is only one path existing between u1 and i2 (or i3), while
two paths connectu1 to i4. Thus, compared with i2 and i3, obviously,
i4 is a more reliable recommendation for u1.

However, existing CF-basedmethods, includingmodel-based and

memory-based approaches, often suffer from the difficulty of model-

ing the connectivity information. Previous model-based approaches,

such as Matrix Factorization (MF) [19], are usually designed to ap-

proximate the direct connections (or proximities). However, indirect

connectivity information hidden in the graph structures is rarely

captured by traditional model-based approaches. For instance, it

is formidable for them to model the number of paths between u1
and i4 in Figure 1. Whereas a number of memory-based approaches

[14, 25] is introduced to model the connectivity information, these

methods often rely on pre-defined similarity functions. However, in

the real world, defining an appropriate similarity function suitable

for diverse application cases is never an easy task.

Spectral graph theory [27] studies connections between com-

binatorial properties of a graph and the eigenvalues of matrices

associated to the graph, such as the laplacian matrix (see Definition

2.4 in Section 2). In general, the spectrum of a graph focuses on the

connectivity of the graph, instead of the geometrical proximity. To

see how does the spectral domain come to help for recommenda-

tions and better understand the advantages of viewing a user-item

bipartite graph in the spectral perspective, let us revisit the toy

example shown in Figure 1. For the bipartite graph B, we visually

plot its vertices in one specific frequency domain. Although vertices

do not come with coordinates, a popular way to draw them in a

space is to use eigenvectors of a laplacian matrix associated with

the graph to supply coordinates [28]. Figure 2 shows that, compared

with i2 and i3, i4 becomes closer to u1 in the space
2
. Thus, when

transformed into the frequency domain, i4 is revealed to be a more

suitable choice than i2 or i3 for u1. The underlying reason is that

the connectivity information of the graph has been uncovered in

the frequency domain, where the relationships between vertices

depend on not only their proximity but also connectivity. Thus,

exploiting the spectrum of a graph can help better explore and

identify the items to be recommended.

Inspired by the recent progress [6, 17] in node/graph classifica-

tion methods, we propose a spectral graph theory based method to

leverage the broad information existing in the spectral domain to

overcome the aforementioned drawbacks and challenges. Specifi-

cally, to conquer the difficulties (see Section 3.3) of directly learning

from the spectral domain for recommendations, we first present a

new spectral convolution operation (see Eq. (10)), which is approxi-

mated by a polynomial to dynamically amplify or attenuate each

frequency domain. Then, we introduce a deep recommendation

model, named Spectral Collaborative Filtering (SpectralCF), built by

2
In spectral graph theory, smaller (or larger) eigenvalues of the associated laplacian

matrix corresponds to lower- (or higher-) frequency domains. In Figure 1, we plot

each vertex j at the point (µ
1
(j), µ

2
(j)), where µl (j) indicates the jth value of the lth

eigenvector of the laplacian matrix L.
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Figure 2: Vertices of the bipartite graph in Figure 1 are plot-
ted in a frequency domain. Note that the vertices not shown
above are omitted for simplicity.

multiple proposed spectral convolution layers. SpectralCF directly

performs collaborative filtering in the spectral domain.
The key contributions of this work can be summarized as follows:

• Novelty: To the best of our knowledge, it is the first CF-

based method directly learning from the spectral domains of
user-item bipartite graphs.

• A deep recommendation model: We propose a new spec-

tral convolution operation performing in the spectral domain.
Stacked by multiple layers of the proposed spectral con-

volution operation, a deep recommendation model, named

Spectral Collaborative Filtering (SpectralCF), is introduced.

• Strong Performance: In the experiments, SpectralCF out-

performs state-of-the-art comparative models. It is shown

that SpectralCF effectively utilizes the rich information of

connectivity existing in the spectral domain to ease the cold-
start problem.

The rest of the paper is organized as follows. In Section 2, we

provide preliminary concepts. Section 3 describes SpectralCF in

detail. Experiments are presented in Section 4 to analyze SpectralCF

and demonstrate its effectiveness compared with state-of-the-art

techniques for RS. In Section 5, we give a short review of the works

related to our study. Finally, conclusions are presented in Section 6.

2 DEFINITIONS AND PRELIMINARIES
In this section, we present the background and preliminaries of this

study. Throughout the paper, we denote scalars by either lowercase

or uppercase letters, vectors by boldfaced lowercase letters, and

matrices by boldfaced uppercase letters. Unless otherwise specified,

all vectors are considered to be column vectors. Let I denote an
identity matrix, and 1 and 0 denote matrices of ones and zeros,

respectively. In addition, we define the following definitions in this

paper as:

Definition 2.1. (Bipartite Graph). A bipartite user-item graph with
N vertices and E edges for recommendations is defined as B =

{U,I, E}, whereU and I are two disjoint vertex sets of users and
items. Every edge e ∈ E has the form e = (u, i) where u ∈ U and
i ∈ I and denotes that useru has interacted with item i in the training
set.
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Definition 2.2. (Implicit Feedback Matrix). An implicit feedback
matrix R is a |U| × |I| matrix defined as following:

Rr, j =

{
1 if (ur , i j ) interaction is observed,
0 otherwise. (1)

Definition 2.3. (Adjacent Matrix). For the bipartite graph B, its
corresponding adjacent matrix A can be defined as:

A =

[
0 R
R⊺ 0

]
, (2)

where A is an N × N matrix.

Definition 2.4. (Laplacian Matrix). The random walk laplacian
matrix L is defined as L = I − D−1A, where I is the N × N identity
matrix and D is the N × N diagonal degree matrix defined as Dnn =∑
j An, j .

This paper focuses on the recommendation problem with im-

plicit feedbacks, where we only observe whether a person has

viewed/liked/clicked an item and do not observe explicit ratings.

Let I+i denote the set of all items liked by user i and I−
i denote the

remaining items. We define the recommendation problem which

we study in this paper as the following:

Definition 2.5. (Problem Definition). Given a user set U and an
item set I, for each user u ∈ U who has liked/clicked/viewed an item
set I+u ⊆ I, we aim to recommend a ranked list of items from I−

u
that are of interests to the user.

3 PROPOSED MODEL
In this section, we first describe the process of performing a graph
fourier transform on a bipartite graphB for recommendations. Then

we propose to place a novel spectral convolution filter on vertices

(users and items) of the bipartite graph to dynamically filter the

contributions of each frequency component in the spectral domain.
Later, a polynomial approximation is employed to overcome the

shortcomings of the proposed convolution operation. Finally, with

the approximate convolution operation, we introduce our final rec-

ommender system, named Spectral Collaborative Filtering, stacked

by multiple spectral convolution layers.

3.1 Graph Fourier Transform
Definition 3.1. (Graph Signal). Given any graph G = {V, E},
where V and E are a vertex and an edge set, respectively, a graph
signal is defined as a state vector x ∈ R |V |×1 over all vertices in the
graph, where x j is the jth value of x observed at the jth vertex of G.

The classical fourier transform is defined as an expansion of a

function f in terms of the complex exponentials as:

ˆf (ξ ) =
∫ +∞
−∞

f (x)e−2π iξdx , (3)

where i is an imaginary number, and the complex exponentials

(e−2π iξ ) form an orthonormal basis.

Analogously, the graph fourier transform is defined as an expan-

sion of an observed graph signal in terms of the eigenvectors of

the graph laplacian L, and the eigenvectors serve as a basis in the

spectral domain. Let us assume that a graph signal (x ∈ R |V |×1
) is

observed on a graph G, we define the graph fourier transform and

its inverse on G as:

x̂(l) =
N−1∑
j=0

x(j)µl (j) and x(j) =
N−1∑
l=0

x̂(l)µl (j), (4)

where x(j), x̂(l) and µl (j) denote the jth, lth and jth value of x , x̂ and

µl , respectively; µl denotes the lth eigenvector of L; x̂ represents a

graph signal which has been transformed into the spectral domain.
For simplicity, we rewrite Eq. (4) in the matrix form as x̂ = U ⊺x
and x = Ux̂ , respectively, whereU = {µ

0
, µ

1
, ..., µl , ..., µN−1} are

eigenvectors of L.
In particular, for a bipartite graph B, assume that there are two

types of graph signals: xu ∈ R |U |×1
and x i ∈ R |I |×1

, associated

with user and item vertices, respectively. We transform them into

the spectral domain and vice versa as :[
x̂u

x̂ i

]
= U ⊺

[
xu

x i

]
and

[
xu

x i

]
= U

[
x̂u

x̂ i

]
. (5)

3.2 Spectral Convolution Filtering
The broad information of graph structures exists in the spectral
domain, and different types of connectivity information between

users and items can be uncovered in different frequency domains. It

is desirable to dynamically adjust the importance of each frequency

domain for RS.

To this end, we propose a convolution filter, parameterized byθ ∈
RN

, as дθ (Λ) = diaд([θ0λ0,θ1λ1, ...,θN−1λN−1]) into the spectral
domain as:[

xunew
x inew

]
= Uдθ (Λ)

[
x̂u

x̂ i

]
= Uдθ (Λ)U ⊺

[
xu

x i

]
, (6)

where xunew and x inew are new graph signals on B learned by the

filter дθ (Λ), and Λ = {λ0, λ1, ..., λN−1} denotes eigenvalues of the
graph laplacian matrix L.

In Eq. (6), a convolution filter дθ (Λ) is placed on a spectral graph

signal
[
x̂u

x̂ i

]
, and each value of θ is responsible for boosting or

diminishing each corresponding frequency component. The eigen-

vector matrixU in Eq. (6) is used to perform an inverse graph fourier
transform.

3.3 Polynomial Approximation
Recall that we proposed a convolution operation, as shown in Eq. (6),

to directly perform in the spectral domain. Although the filter is able
to dynamicallymeasure contributions of each frequency component

for the purpose of recommendations, there are two limitations.

First, as shown in Eq. (6), the learning complexity of the filter is

O(N ), where N is the number of vertices. That is, unlike classical

Convolutional Neural Networks (CNNs), the number of parameters

of the filter is linear to the dimensionality of data. It constrains the

scalability of the proposed filter. Second, the learned graph signals
(xunew ∈ R |U |×1

and x inew ∈ R |I |×1
) are vectors. It means that

each vertex of users or items is represented by a scalar feature.

However, a vector for every user and item is necessary to model

the deep and complex connections between users and items.

The first limitation can be overcome by using a polynomial

approximation. We first demonstrate that the set of all convolution
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Figure 3: The feed-forward procedure of SpectralCF. The function sp(:;U ,Λ,Θ) denotes the spectral convolution operation
shown in Eq. (10).

filters Sд = {дθ (Λ) = diaд([θ0λ0,θ1λ1, ...,θN−1λN−1]),θ ∈ RN }
is equal to the set of finite-order polynomials Sh = {hθ ′(Λ) =
N−1∑
p=0

θ ′pΛ
p ,θ ′ ∈ RN }.

Proposition 3.1. Sh is equal to Sд .

Proof. Let us consider an instance hθ ′(Λ) ∈ Sh . Then, hθ ′(Λ) =
N−1∑
p=0

θ ′pΛ
p = diaд([

N−1∑
p=0

θ ′pλ
p−1
0

·λ0,
N−1∑
p=0

θ ′pλ
p−1
1

·λ1, ...,
N−1∑
p=0

θ ′pλ
p−1
N−1 ·

λN−1]). So,hθ ′(Λ) ∈ Sд . Now, consider a convolution filter дθ (Λ) ∈

Sд . Then, there must exist a polynomial function ϕ(λ) =
N−1∑
p=0

apλ
p

that interpolates through all pairs (λi ,θiλi ) for i ∈ {0, 1, ...,N − 1}.
The maximum degree of such a polynomial is at most N − 1 as

there are maximum N points to interpolate. Therefore, дθ (Λ) =
N−1∑
p=0

apΛ
p = ha (Λ) ∈ Sh . □

Now, we can approximate the convolution filters by using first

P polynomials as the following:

дθ (Λ) ≈
P∑
p=0

θ ′pΛ
p . (7)

In this way, the learning complexity of the filter becomes O(P),
where P is a hyper-parameter, and independent from the number

vertices. Specially, we limit the order of the polynomial, P , to 1 in

order to avoid over-fitting. By substituting Eq. (7) into Eq. (6), we

have: [
xunew
x inew

]
= (θ ′

0
UU ⊺ + θ ′

1
UΛU ⊺)

[
xu

x i

]
. (8)

Furthermore, it is beneficial to further decrease the number of

parameters by setting θ ′ = θ ′
0
= θ ′

1
. As a result, Eq. (8) becomes:[

xunew
x inew

]
= θ ′(UU ⊺ +UΛU ⊺)

[
xu

x i

]
, (9)

where θ ′ is a scalar.
For the second limitation, one can generalize the graph signals

(xu ∈ R |U |×1
and x i ∈ R |I |×1

) to C-dimensional graph sig-
nals: Xu ∈ R |U |×C

and X i ∈ R |I |×C
. Hence, Eq. (9) becomes[

Xu
new

X i
new

]
= (UU ⊺ +UΛU ⊺)

[
Xu

X i

]
θ ′. To take one step further,

we generalize the filter parameter θ ′ to a matrix of filter parameters

Θ′ ∈ RC×F
with C input channels and F filters. As a result, our

final spectral convolution operation is shown as the following:[
Xu
new

X i
new

]
= σ

(
(UU ⊺ +UΛU ⊺)

[
Xu

X i

]
Θ′

)
, (10)

where Xu
new ∈ R |U |×F

and X i
new ∈ R |I |×F

denote convolution

results learned with F filters from the spectral domain for users and

items, respectively; σ denotes the logistic sigmoid function.

In fact, Eq. (10) is a general version of Eq. (9) as it is equivalent

to perform Eq. (9) in C input channels with F filters. Hereafter, the

proposed convolution operation as shown in Eq. (10) is denoted as

a function sp(:;U ,Λ,Θ′), which is parameterized byU ,Λ and Θ′
.

3.4 Multi-layer Model
Given user vectors Xu

and item vectors X i
, new graph singals

(Xu
new and X i

new ) in Eq. (10) are convolution results learned from

the spectral domain with a parameter matrix Θ′ ∈ RC×F
. As in

classical CNNs, one can regard Eq. (10) as a propagation rule to

build a deep neural feed-forward network based model, which we

refer as Spectral Collaborative Filtering (SpectralCF).

Similar to word embedding techniques, we first randomly ini-

tialize user vectors Xu
0
and item vectors X i

0
. Taking Xu

0
and X i

0
as

inputs, a K layered deep spectralCF can be formulated as:[
Xu
K

X i
K

]
= sp

(
...sp

(︸    ︷︷    ︸
K

[
Xu
0

X i
0

]
;U ,Λ,Θ′

0

)
...;U ,Λ,Θ′

K−1

)
, (11)

where Θ′
K−1 ∈ RF×F

is a matrix of filter parameters for the k
th

layer;Xu
k andX i

k denote the convolution filtering results of the k
th

layer.

In order to utilize features from all layers of SpectralCF, we

further concatenate them into our final latent factors of users and

items as:

Vu =
[
Xu
0
,Xu

1
, ...,Xu

K
]

and Vi =
[
Xi
0
,Xi

1
, ...,Xi

K
]
, (12)

where Vu ∈ R |U |×(C+KF )
and Vi ∈ R |I |×(C+KF )

.

In terms of the loss function, the conventional BPR loss suggested

in [23] is employed. BPR is a pair-wise loss to address the implicit

data for recommendations. Unlike point-wise based methods [18],

BPR learns a triple (r , j, j ′), where item j is liked/clicked/viewed by

user r and item j ′ is not. By maximizing the preference difference

between j and j ′, BPR assumes that the user i prefers item j over
the unobserved item j ′. In particular, given a user matrixVu

and an

item matrixV i
as shown in Eq. (12), the loss function of SpectralCF

is given as:

L = arg min

V u ,V i

∑
(r, j, j′)∈D

−ln σ (vur ⊺vi
j −vur

⊺
vi
j′) (13)

+λr eд(| |Vu | |2
2
+ | |V i | |2

2
),

wherevur andvi
j denote rth and j

th
column of Vu

and V i
, respec-

tively; λr eд represents the weight on the regularization terms. The
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Algorithm 1: SpectralCF
Input: Training set: D := {(r, j, j′) |r ∈ U ∧ j ∈ I+i ∧ j′ ⊆ I−

i },
number of epochs E , batch size B , number of layers K ,

dimension of latent factors C , number of filters F ,
regularization term λr eд , learning rate λ, laplacian matrix L
and its corresponding eigenvectors U and eigenvalues Λ.

Output:Model’s parameter set: Ψ = {Θ′
0
, Θ′

1
, ..., Θ′

K−1, X
u
0
, X i

0
}.

1 Randomly initialize Xu
0
and Xi

0
from a Gaussian distribution

N(0.01, 0.02);
2 for e = 1, 2, · · · , E do
3 Generate the e

th
batch of size B by uniformly sampling from U,

I+i and I−
i ;

4 for k = 0, 1, · · · , K − 1 do
5 Calculate X u

k+1 and X
i
k+1 by using Eq. (10);

6 end
7 Concatenate [X u

0
, X u

1
, ..., X u

K ] into V u
and

[X i
0
, X i

1
, ..., X i

K ] into V i
;

8 Estimate gradients
∂L
∂Ψe by back propagation;

9 Update Ψe+1 according to the procedure of RMSprop

optimization [29];

10 end
11 return ΨE .

training data D is generated as:

D = {(r , j, j ′)|r ∈ U ∧ j ∈ I+i ∧ j ′ ∈ I−
i }. (14)

3.5 Optimization and Prediction
At last, RMSprop [29] is used to minimize the loss function. The

RMSprop is an adaptive version of gradient descent which adap-

tively controls the step size with respect to the absolute value of

the gradient. It is done by scaling the updated value of each weight

by a running average of its gradient norm.

As shown in Algorithm 1, for a batch of randomly sampled triple

(r , j, j ′), we update parameters in each epoch using the gradients

of the loss function. After the training process, with optimized Θ,
Xu
0
and X i

0
, we derive the user r ’s preference over item j asvur

⊺vi
j .

The final item recommendation for a user r is given according to

the ranking criterion as Eq. (15).

r : j1 ≽ j2 ≽ ... ≽ jn ⇒ vur
⊺
vi
j1 > v

u
r
⊺
vi
j2 > ... > v

u
r
⊺
vi
jn . (15)

4 EXPERIMENTS
As discussed in the introduction section, leveraging the connectivity

information in a user-item bipartite graph is essentially important

for an effective recommendation model. In this section, we argue

that, directly learning from the spectral domain, the proposed Spec-

traCF can reveal the rich information of graph structures existing

in the spectral domain for making better recommendations. One

may ask the following research questions:

RQ1: How much does SpectralCF benefit from the connectivity

information learned from the spectral domain?
RQ2: Does SpectralCF learn from the spectral domain in an effective
way?

RQ3: Compared with traditional methods, can SpectralCF better

counter the cold-start problem?
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Figure 4: Effects of hyper-parameter K in terms of Re-
call@20 and MAP@20 in the dataset ofMovieLens-1M.

In this section, in order to answer the questions above, we conduct

experiments to compare SpectralCF with state-of-the-art models.

4.1 Comparative Methods
To validate the effectiveness of SpectralCF, we compare it with six

state-of-the-art models. The comparative models can be catego-

rized into two groups: (1) CF-based Models: To answer RQ1, we
compare SpectralCF with four state-of-the-art CF-based methods

(ItemKNN, BPR, eALS and NCF) which ignore the information in

the spectral domain; (2) Graph-based Models: For RQ2, we are
interested in how effectively does SpetralCF learn the connectivity

information from the spectral domain. We therefore compare Spec-

tralCF with two graph-based models: GNMF and GCMC. Although

the two models are also CF-based, we term them as graph-based

models since they learn the structural information from a bipartite

graph. These two groups of comparative models are summarized

below:

• ItemKNN [25]: ItemKNN is a standard neighbor-based col-

laborative filtering method. The model finds similar items

for a user based on their similarities.

• BPR [23]: We use Bayesian Personalized Ranking based

Matrix Factorization. BPR introduces a pair-wise loss into

the Matrix Factorization to be optimized for ranking [8].

• eALS [12]: This is a state-of-the-art matrix factorization

based method for item recommendation. This model takes all

unobserved interactions as negative instances and weighting

them non-uniformly by the item popularity.

• NCF [11]: Neural Collaborative Filtering fuses matrix fac-

torization and Multi-Layer Perceptron (MLP) to learn from

user-item interactions. The MLP endows NCF with the abil-

ity of modelling non-linearities between users and items.

• GNMF [3]: Graph regularized Non-negativeMatrix Facto-
rization considers the graph structures by seeking a matrix

factorization with a graph-based regularization.

• GCMC [2]: Graph Convolutional Matrix Completion uti-

lizes a graph auto-encoder to learn the connectivity infor-

mation of a bipartite interaction graph for latent factors of

users and items.

Please note that, GNMF and GCMC are originally designed for

explicit datasets. For a fair comparison, we follow the setting of

[13] to adapt them for implicit data.
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Table 1: The hyper-parameter setting of SpectralCF.

Hyper-parameters K C F λr eд B E λ

Values 3 16 16 0.001 1, 024 200 0.001

4.2 Datasets
We test our method as well as comparative models on three publicly

available datasets
3
:

• MovieLens-1M [10]: This movie rating dataset has been

widely used to evaluate collaborative filtering algorithms.

We used the version containing 1,000,209 ratings from 6,040

users for 3,900 movies. While it is a dataset with explicit feed-

backs, we follow the convention [11] that transforms it into

implicit data, where each entry is marked as 0 or 1 indicating

whether the user has rated the item. After transforming, we

retain a dataset of 1.0% density.

• HetRec [4]: This dataset has been released by the Second In-

ternational Workshop on Information Heterogeneity and

Fusion in Recommender Systems
4
. It is an extension of

MovieLens-10M dataset and contains 855,598 ratings, 2,113

users and 10,197 movies. After converting it into implicit

data as MovieLens-1M, we obtain a dataset of 0.3% density.

• Amazon Instant Video [20]: The dataset consists of 426,922
users, 23,965 videos and 583,933 ratings from Amazon.com.

Similarly, we transformed it into implicit data and removed

users with less than 5 interactions. As a result, a dataset of

0.12% density is obtained.

4.3 Experimental Setting
Ideally, a recommendation model should not only be able to retrieve

all relevant items out of all items but also provide a rank for each

user where relevant items are expected to be ranked in the top.

Therefore, in our experiments, we use Recall@M and MAP@M

to evaluate the performance of the top-M recommendations. Re-

call@M is employed to measure the fraction of relevant items re-

trieved out of all relevant items. MAP@M is used for evaluating

the ranking performance of RS. The Recall@M for each user is then

defined as:

Recall@M =
#items the user likes among the top M

total number of items the user likes

. (16)

The final results reported are average recall over all users.

For each dataset, we randomly select 80% items associated with

each user to constitute the training set and use all the remaining as

the test set. For each evaluation scenario, we repeat the evaluation

five times with different randomly selected training sets and the

average performance is reported in the following sections.

We use a validation set from the training set of each dataset

to find the optimal hyper-parameters of comparative methods in-

troduced in the Section 4.1. For ItemKNN, we employ the cosine

distance to measure item similarities. The dimensions of latent fac-

tors for BPR, eALS and GNMF are searched from {8,16,32,64,128} via

the validation set. The hyperparameter λ of eALS is selected from

0.001 to 0.04. Since the architecture of a multi-layer perceptron

(MLP) is difficult to optimize, we follow the suggestion from the

3MovieLens-1M andHetRec are available at https://grouplens.org/datasets/; andAmazon
Instant Video can be found at http://jmcauley.ucsd.edu/data/amazon/

4
http://ir.ii.uam.es/hetrec2011/

original paper [11] to employ a three-layer MLP with the shape of

(32, 16, 8) for NCF. The dropout rate of nodes for GCMC is searched

from {0.3,0.4,0.5,0.6,0.7,0.8}. Our SpectralCF has one essential hyper-

parameter: K . Figure 4 shows how the performances of SpectralCF

vary as K is set from 1 to 5 on the validation set of MovieLens-1M.

As we can see, in terms of Recall@20 and MAP@20, SpectralCF

reaches its best performances when K is fixed as 3. Other hyper-

parameters of SpectralCF are empirically set and summarized in

Table 1, where λ denotes the learning rate of RMSprop. Our models

are implemented in TensorFlow [1].

4.4 Experimental Results (RQ1 and RQ2)
In Figure 5, we compare SpectralCF with four CF-based models

and two graph-based models in terms of Recall@M on all three

datasets. Overall, when M is varied from 20 to 100, SpectralCF

consistently yields the best performance across all cases. Among CF-

based comparative models, ItemKNN gives the worst performances

in all three datasets, indicating the necessity of modeling users’

personalized preferences rather than just recommending similar

items to users. For graph-based models (GNMF and GCMC), they

generally underperform CF-based models such as BPR and NCF.

The unsatisfying performance of GNMF shows that adding a graph-

based regularization is not sufficient to capture complex structures

of graphs. Though GCMC directly performs on a user-item bipartite

graph, each vertex in the graph is only allowed to learn from its

neighbors. This constrains its ability of capturing global structures

in the graph. Among all comparative models, benefiting from its

capability of modeling non-linear relationships between users and

items, NCF beats all other models and becomes the strongest one.

However, none of models above are able to directly perform in the

spectral domain. They lose the rich information in the domain and as

a result, SpectralCF greatly outperforms NCF by 16.1%, 16.2% and

28.0% in the dataset of MovieLen-1M, HetRec and Amazon Instant
Video, respectively.

In Figure 6, we compare SpectralCF with all comparative mod-

els in terms of MAP@M. Again, when M is in a range from 20

to 100, SpectralCF always yields the best performance. Neighbor-

based ItemKNN performs the worst among all models. It further

shows the advantages of modeling users’ personalized preferences.

Compared with NCF and BPR, graph-based models (GNMF and

GCMC) again fail to show convincing ranking performances mea-

sured by MAP@M. For CF-based models, while NCF beats other

CF-based models in the dataset of HetRec, BPR shows itself as a

strong model for ranking, owing to its pairwise ranking loss. It

slightly outperforms NCF on average in the datasets of MovieLens-
1M and Amazon Instant Video. However, SpectralCF improves BPR

by 15.9%, 64.9% and 47.5% in the dataset of MovieLen-1M, HetRec
and Amazon Instant Video, respectively.

Overall, as shown in Figure 5 and 6, not surprisingly, the per-

formances of all models decline as the dataset becomes sparse.

However, SpectralCF always outperforms all comparative models

regardless of the sparsities of the datasets. By comparing spectralCF

with traditional CF-based models, we demonstrate that the rich

information of connectivity existing in the spectral domain assists

SpectralCF in learning better latent factors of users and items. By

https://grouplens.org/datasets/
http://jmcauley.ucsd.edu/data/amazon/
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Figure 5: Performance comparison in terms of recall@M with M varied from 20 to 100. Errors bars are 1-standard deviation.
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Figure 6: Performance comparison in terms of MAP@M with M varied from 20 to 100. Errors bars are 1-standard deviation.

comparing SpectralCF with graph-based models, we show that

SpectralCF can effectively learn from the spectral domain.

4.5 Quality of Recommendations for Cold-start
Users (RQ3)

To answer RQ3, in this section, we conduct an experiment to in-

vestigate the quality of recommendations made by SpectralCF for

cold-start users. To this end, in the dataset of MovieLens-1M, we

build training sets with different degrees of sparsity by varying

the number of items associated with each user, denoted as P , from
one to five. All the remaining items associated with users are used

as the test set. We compare SpectralCF with BPR, which is widely

known and also shown as a strong ranking performer in Figure 6.

The test results are reported in the Table 2.

In Table 2, it is shown that, suffering from the cold-start prob-
lem, the performances of BPR and SpectralCF inevitably degrade.

However, regardless of the number of items associated with users,

SpectralCF consistently outperforms BPR in terms of Recall@20

and MAP@20. On average, SpectralCF improves BPR by 36.8%
and 33.8% in Recall@20 and MAP@20, respectively. Hence, it is

demonstrated that compared with BPR, spectralCF can better han-

dle cold-start users and provide more reliable recommendations.

5 RELATEDWORKS
There are two categories of studies related to our work: deep learn-

ing based RS and graph-based RS. In this section, we will first

briefly review existing works in the area of deep RS. Then, we focus

on presenting recent works on graph-based RS. Despite all these

Table 2: Performance Comparison in terms of Recall@20
and MAP@20 in the sparse training sets. In the dataset of
MovieLens-1M, we vary the number of items associated with
each users, denoted as P , from 1 to 5. The average results are
reported and the best results are in bold. The standard devi-
ation is shown in parentheses.

P 1 2 3 4 5

BPR

0.021

(0.003)

0.029

(0.004)

0.031

(0.003)

0.034

(0.004)

0.038

(0.003)

Recall

@20

SpectralCF

0.031
(0.003)

0.039
(0.003)

0.042
(0.002)

0.045
(0.003)

0.051
(0.003)

Improve-

ment

47.6% 34.5% 35.5% 32.4% 34.2%

BPR

0.014

(0.002)

0.017

(0.002)

0.021

(0.002)

0.024

(0.003)

0.027

(0.003)

MAP

@20

SpectralCF

0.019
(0.002)

0.024
(0.002)

0.028
(0.003)

0.031
(0.003)

0.035
(0.002)

Improve-

ment

35.7% 41.2% 33.3% 29.2% 29.6%

approaches, SpectralCF is the first model to directly learn latent

factors of users and items from the spectral domains of user-item
bipartite graphs.

5.1 Deep Recommender Systems
One of the early works utilizing deep learning for RS builds a Re-

stricted Boltzmann Machines (RBM) based method to model users
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using their rating preferences [24]. Although the method is still

a relatively shallow model, it slightly outperforms Matrix Factor-

ization technique and shows the promising future for deep recom-

mender systems. In [32], a generative model and a discriminative

model are employed to play a minimax game. The two models are

iteratively optimized and achieve promising results for the item

recommendation problem. Inspired by [24], [43] proposed a CF Neu-

ral Autoregressive Distribution Estimator (CF-NADE) model for

collaborative filtering tasks. CF-NADE shares parameters between

different ratings. [11] presents to utilize a Multilayer Perceptron

(MLP) to model user-item interactions.

A number of researchers proposed to build a hybrid recom-

mender systems to counter the sparsity problem. [34] introduce

Convolutional Neural Networks (CNN) and Deep Belief Network

(DBN) to assist representation learning for music data. As such,

their model is able to extract latent factors of songs without rat-

ings while CF based techniques like MF are unable to handle these

songs. These approaches above pre-train embeddings of users and

items with matrix factorization and utilize deep models to fine-tune

the learned item features based on item content. In [7] and [30],

multi-view deep models are built to utilize item information from

more than one domain. [16] integrates a CNN with PMF to analyze

documents associated with items to predict users’ future explicit

ratings. [42] leverage two parallel neural networks to jointly model

latent factors of users and items. To incorporate visual signals into

RS, [33] propose CNN-based models to incorporate visual signals

into RS. They make use of visual features extracted from product

images using deep networks to enhance the performance of RS. [38]

investigates how to leverage the multi-view information to improve

the quality of recommender systems. [5] jointly trains wide linear

models and deep neural networks for video recommendations. [31]

and [40] utilize RNN to consider word orders and extract complex

semantics for recommendations. [35] applies an attention mech-

anism on a sequence of models to adaptively capture the change

of criteria of editors. [41] leverages an attentional model to learn

adaptive user embeddings. A survey on the deep learning based RS

with more works on this topic can be found in [39].

5.2 Graph-based Recommender Systems
In order to learn latent factors of users and items from graphs,

a number of researchers have proposed graph-based RS. [44] de-

velops a semi-supervised learning model on graphs for document

recommendation. The model combines multiple graphs in order

to measure item similarities. In [37], they propose to model the

check-in behaviors of users and a graph-based preference propaga-

tion algorithm for point of interest recommendation. The proposed

solution exploits both the geographical and temporal influences in

an integrated manner. [9] addresses the problem of personalized tag

recommendation by modeling it as a "query and ranking" problem.

Inspired by the recent success of graph/node embedding methods,

[2] proposes a graph convolution network based model for rec-

ommendations. In [2], a graph auto-encoder learns the structural

information of a graph for latent factors of users and items. [3] adds

graph-based regularizations into the matrix factorization model to

learn graph structures. Graph-regularized methods are developed

for the problemm of matrix completion in [22]. [21] combines a

convolutional neural network and a recurrent neural network to

model the dynamic rating generation process. Although this work

also considers the spectral domain, they learn from a graph con-

structed from side information, such as genres or actors for movies.

In contrast, our method learns directly from user-item bipartite

graphs and does not require the side information. Thus, this work

is not comparable to our method.

Additionally, some scholars have proposed to incorporate the

heterogeneous information on a graph for recommendations. [15]

suggests a general latent factor model for entities in a graph. [36]

introduces a recommendation model for implicit data by taking

advantage of different item similarity semantics in the graph. [26]

introduces a semantic path based personalized recommendation

method to predict the rating scores of users on items.

However, all works above are different from ours because they

fail to consider the rich information in the spectral domains of user-
item bipartite graphs. Also, our study focuses on learning from

the implicit feedbacks, and leaves incorporating the heterogeneous

information in a graph and the item content for future works.

6 CONCLUSIONS
It is shown that the rich information of connectivity existing in the

spectral domain of a bipartite graph is helpful for discovering deep

connections between users and items. In this paper, we introduce a

new spectral convolution operation to directly learn latent factors

of users and items from the spectral domain. Furthermore, with the

proposed operation, we build a deep feed-forward neural network

based recommendation model, named Spectral Collaborative Fil-

tering (SpectralCF). Due to the rich information of connectivity

existing in the spectral domain, compared with previous works,

SpectralCF is capable of discovering deep connections between

users and items and therefore, alleviates the cold-start problem for

CF. To the best of our knowledge, SpectralCF is the first CF-based

method directly learning from the spectral domains of user-item bi-

partite graphs. We believe that it shows the potential of conducting

CF in the spectral domain, and will encourage future works in this

direction.

In comparisonwith four state-of-the-art CF-based and two graph-

based models, SpectralCF achieved 20.1% and 42.6% improvements

averaging on three standard datasets in terms of Recall@M and

MAP@M, respectively.

Additionally, in the experiments, by varying the number of items

associated with each user from 1 to 5, we build training sets with

different degrees of sparsity to investigate the quality of recom-

mendations made by SpectralCF for cold-start users. By comparing

SpectralCF with BPR, on average, SpectralCF improves BPR by

36.8% and 33.8% in Recall@20 and MAP@20, respectively. It is

validated that SpectralCF can effectively ameliorate the cold-start
problem.
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