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Why Text Classification? 

§  Users may have ongoing information needs 
§  Might want to track developments in a particular topic such 

as “multicore computer chips” 

§  The classification of documents by topic capture the 
generality and scope of the problem space.  



Classification Problems 

§  Email filtering: spam / non spam 
§  Email foldering / tagging: Work, Friends, Family, Hobby 
§  Research articles by topics: Machine Learning, Data 

Mining, Algorithms 
§  Sentiment Analysis: positive / negative 
§  Emotion Detection: anger, happiness, joy, sadness, etc.  
§  Tumor: malignant / benign  
§  Medical diagnosis: Not ill, Cold, Flu  
 



Data Representation 



Data Representation 

§  N = number of training examples 
§  x’s = “input” variable / features 
§  y’s = “output” variable / “target” variable 
§  (x,y) – one training example 
§  (x(i),y(i)) – the ith training example 



Training and Classification 



Summary of Basic Probability Formulas 

§  Product rule: probability of a conjunction of two events A and B 

§  Sum rule: probability of a disjunction of two events A and B 

§  Bayes theorem: the posterior probability of A given B 

§  Theorem of total probability: if events A1,…, An are mutually 
exclusive with  
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P(A∧ B) = P(A |B)P(B) = P(B | A)P(A)
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P(A∨ B) = P(A) + P(B) − P(A∧ B)

P(A | B) = P(B | A)P(A)
P(B)



Bayes Classifiers for Categorical Data 
Task: Classify a new instance x based on a tuple of attribute 

values                                  into one of the classes cj ∈ C   
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Example Color Shape Class 
1 red circle positive 
2 red circle positive 
3 red square negative 
4 blue circle negative 

attributes 

values 



Joint Distribution 
§  The joint probability distribution for a set of random variables, X1,…,Xn 

gives the probability of every combination of values: P(X1,…,Xn) 
 

 
 
 
§  The probability of all possible conjunctions can be calculated by 

summing the appropriate subset of values from the joint distribution. 
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Joint Distribution 
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§  Therefore, all conditional probabilities can also be calculated. 

circle square 
red 0.20 0.02 
blue 0.02 0.01 

circle square 
red 0.05 0.30 
blue 0.20 0.20 

positive negative 

25.005.020.0)( =+=∧ circleredP
57.03.005.002.020.0)( =+++=redP



Joint Distribution 
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Joint Distribution 
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Bayes Classifiers  
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cMAP = argmax
c j ∈C

P(x1,x2,…,xn | c j )P(c j )



Bayes Classifiers  
 

§  P(cj) 
§  Can be estimated from the frequency of classes in the 

training examples. 
§  P(x1,x2,…,xn|cj)  

§  O(|X|n|C|) parameters 
§  Could only be estimated if a very, very large number of 

training examples was available. 
§  Need to make some sort of independence 

assumptions about the features to make learning 
tractable. 
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Flu 

X1 X2 X5 X3 X4 
fever sinus cough runnynose muscle-ache 

The Naïve Bayes Classifier 

§  Conditional Independence Assumption: attributes 
are independent of each other given the class: 

§  Multi-valued variables: multivariate model 
§  Binary variables: multivariate Bernoulli model 
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Learning the Model 

§  First attempt: maximum likelihood estimates 
§  simply use the frequencies in the data 
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§  What if we have seen no training cases where patient had no flu 
and muscle aches? 

§  Zero probabilities cannot be conditioned away, no matter the 
other evidence! 

Problem with Max Likelihood 
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Flu 

X1 X2 X5 X3 X4 
fever sinus cough runnynose muscle-ache 



Smoothing to Improve 
Generalization on Test Data 
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Underflow Prevention 

§  Multiplying lots of probabilities, which are between 0 and 
1 by definition, can result in floating-point underflow. 

§  Since log(xy) = log(x) + log(y), it is better to perform all 
computations by summing logs of probabilities rather 
than multiplying probabilities. 

§  Class with highest final un-normalized log probability 
score is still the most probable. 
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Probability Estimation Example 

Probability positive negative 

P(Y) 

P(small | Y) 

P(medium | Y) 

P(large | Y) 

P(red | Y) 

P(blue | Y) 

P(green | Y) 

P(square | Y) 

P(triangle | Y) 

P(circle | Y) 

Ex Size Color Shape Class 

1 small red circle positive 

2 large red circle positive 

3 small red triangle negative 

4 large blue circle negative 



Probability Estimation Example 

Probability positive negative 

P(Y) 0.5 0.5 

P(small | Y) 0.5 0.5 

P(medium | Y) 0.0 0.0 

P(large | Y) 0.5 0.5 

P(red | Y) 1.0 0.5 

P(blue | Y) 0.0 0.5 

P(green | Y) 0.0 0.0 

P(square | Y) 0.0 0.0 

P(triangle | Y) 0.0 0.5 

P(circle | Y) 1.0 0.5 

Ex Size Color Shape Class 

1 small red circle positive 

2 large red circle positive 

3 small red triangle negative 

4 large blue circle negative 



Naïve Bayes Example 

Probability positive negative 
P(Y) 0.5 0.5 

P(small | Y) 0.4 0.4 

P(medium | Y) 0.1 0.2 

P(large | Y) 0.5 0.4 

P(red | Y) 0.9 0.3 

P(blue | Y) 0.05 0.3 

P(green | Y) 0.05 0.4 

P(square | Y) 0.05 0.4 

P(triangle | Y) 0.05 0.3 

P(circle | Y) 0.9 0.3 

Test Instance: 
<medium ,red, circle> 
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cMAP = argmaxc
ˆ P (c) ˆ P (xi | c)
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Naïve Bayes Example 

Probability positive negative 
P(Y) 0.5 0.5 

P(medium | Y) 0.1 0.2 
P(red | Y) 0.9 0.3 

P(circle | Y) 0.9 0.3 

P(positive | X) =?



P(negative | X) =? 

Test Instance: 
<medium ,red, circle> 
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cMAP = argmaxc
ˆ P (c) ˆ P (xi | c)
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Naïve Bayes Example 

Probability positive negative 
P(Y) 0.5 0.5 

P(medium | Y) 0.1 0.2 
P(red | Y) 0.9 0.3 

P(circle | Y) 0.9 0.3 

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X) 
                            0.5        *               0.1              *        0.9            *        0.9 
                        =  0.0405 / P(X) 



P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)  
                                0.5       *              0.2               *        0.3             *     0.3 
                         =  0.009 / P(X) 

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1 

P(X) = (0.0405 + 0.009) = 0.0495  

= 0.0405 / 0.0495 = 0.8181 

= 0.009 / 0.0495 = 0.1818 

Test Instance: 
<medium ,red, circle> € 

cMAP = argmaxc
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Naïve Bayes for Text Classification 

Two models: 
§  Multivariate Bernoulli Model 
§  Multinomial Model 

  
  



Model 1: Multivariate Bernoulli 

§  One feature Xw for each word in dictionary 
§  Xw = true (1) in document d if w appears in d 
§  Naive Bayes assumption:  

§  Given the document’s topic, appearance of one word in 
the document tells us nothing about chances that another 
word appears 

§  Parameter estimation 

€ 

ˆ P (Xw =1 | c j ) = ?



Model 1: Multivariate Bernoulli 

§  One feature Xw for each word in dictionary 
§  Xw = true (1) in document d if w appears in d 
§  Naive Bayes assumption:  

§  Given the document’s topic, appearance of one word in 
the document tells us nothing about chances that another 
word appears 

§  Parameter estimation 

€ 

ˆ P (Xw =1 | c j ) = fraction of documents of topic cj 
in which word w appears 



Multinomial Naïve Bayes 
§  Class conditional unigram language 

§  Attributes are text positions, values are words. 
§  One feature Xi for each word position in document 

§  feature’s values are all words in dictionary 
§  Value of Xi is the word in position i 
§  Naïve Bayes assumption:  

§  Given the document’s topic, word in one position in the 
document tells us nothing about words in other positions 

§  Too many possibilities! 
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Multinomial Naive Bayes Classifiers 
§  Second assumption:  

§  Classification is independent of the positions of the words 
(word appearance does not depend on position) 

n  Use same parameters for each position 
n  Result is bag of words model (over tokens) 
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for all positions i,j, word w, and class c 
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Multinomial Naïve Bayes for Text 

§  Modeled as generating a bag of words for a 
document in a given category by repeatedly 
sampling with replacement from a vocabulary 
V = {w1, w2,…wm} based on the probabilities 
P(wj | ci). 

§  Smooth probability estimates with Laplace                 
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V| 

  



Naïve Bayes Classification 
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Parameter Estimation 

fraction of documents of topic cj 
in which word w appears 

§  Multivariate Bernoulli model: 

§  Multinomial model: 

§  Can create a mega-document for topic j by concatenating all 
documents in this topic 

§  Use frequency of w in mega-document 

€ 

ˆ P (Xw =1 | c j ) =

fraction of times in which  
word w appears  

across all documents of topic cj 
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Classification 

§  Multinomial vs Multivariate Bernoulli? 

§  Multinomial model is almost always more effective in 
text applications! 

 



Naïve Bayes - Spam Assassin 

§  Naïve Bayes has found a home in spam filtering 
§  Paul Graham’s A Plan for Spam 

§  A mutant with more mutant offspring... 
§  Widely used in spam filters  

§  Classic Naive Bayes superior when appropriately used  
§  According to David D. Lewis 

§  But also many other things: black hole lists, etc. 

§  Many email topic filters also use NB classifiers 



Naive Bayes is Not So Naive 
§  Naïve Bayes: First and Second place in KDD-CUP 97 competition, among 

16 (then) state of the art algorithms 
 Goal: Financial services industry direct mail response prediction model: Predict if the 
recipient of mail will actually respond to the advertisement – 750,000 records. 

§  Robust to Irrelevant Features 
 Irrelevant Features cancel each other without affecting results 

§  Very good in domains with many equally important features 

§  A good baseline for text classification! 
§  Very Fast: Learning with one pass of counting over the data; testing linear in the 

number of attributes, and document collection size 
§  Low Storage requirements 


