Practical Issues

June 20, 2016

Credits for slides: Allan, Arms, Manning, Lund, Noble, Page.

Evaluation Framework

Methods to Estimate Performance

- Holdout
 - Reserve ½ for training and ½ for testing
 - Reserve 2/3 for training and 1/3 for testing
- To limit the effect of one lucky or unlucky train/test split it is common to average through:
 - Random subsampling
 - Repeated holdout
 - Stratified sampling
 - Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

Random sub-sampling

Stratified Sampling

- The holdout method reserves a certain amount for testing and uses the remainder for training
- For small or "unbalanced" datasets, training samples might not be representative for all classes
- For instance, only few instances of some classes
- Stratified sample
 - Make sure that each class is represented with approximately equal proportions in both subsets

3-Fold Cross Validation

k-Fold Cross Validation

- Split the data to k sets of approximately equal size (and class distribution, if stratified)
- For i=1 to k:
 - Use i-th subset for testing and remaining (k-1) subsets for training
- Compute average accuracy
- k-fold CV can be repeated several, say, 10 times

A Note on Parameter Tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - Stage 1: builds the basic structure
 - Stage 2: optimizes parameter settings
- The test data can't be used for parameter tuning!
- Proper procedure uses three sets:
 - training data, validation data, and test data
- Validation data is used to optimize parameters

Train, Validation, and Test

Test Statistics: Contingency Table of Classification Results

true positive, false positive false negative, true negative

Classification Accuracy

- CA = (TP+TN) / N
- Proportion of correctly classified examples

Sensitivity

- Sensitivity = TP / (TP + FN)
- Proportion of correctly detected positive examples
- In medicine (+, -: presence and absence of a disease):
 - chance that our model correctly identifies a patient with a disease

Specificity

- Specificity = TN / (FP + TN)
- Proportion of correctly detected negative examples
- In medicine:
 - chance that our model correctly identifies a patient without a disease

To summarize: Evaluation Measures

Start with a CONTINGENCY table

where N=TP+FP+FN+TN

Of all patients that actually have the disease, what fraction did we correctly detect as having the disease?

TN+FP

	actual +	actual -	Sensitivity/	Sensitivity/Recall	
			SN = -	TP	
predicted +	TP	FP	311 -	TP+FN	
			Precision		
predicted -	FN	TN	DD -	TP	
			PR =-	TP+FP	
Accuracy = -	TP+TN Error =	FP+FN	Of all patients we predicted +, what fraction actually have the disease?		
	N	N	Specificity		
			SP =	TN	

Receiver Operating Characteristic (ROC) Curve

False positive rate

$$FPR = \frac{FP}{FP + TN}$$

How to Draw an ROC Curve?

Threshold

Test Result

$$\frac{P(+\mid x)}{P(-\mid x)} > \theta$$

Test Result

without the disease

with the disease

Test Result

Test Result

Moving the Threshold: right

Moving the Threshold: left

Receiver Operating Characteristic (ROC) Curve

ROC Curve Comparison

Area Under ROC

- Is expected to be from 0.5 to 1.0
- The score is not affected by class distributions
- Characteristic landmarks
 - 0.5: random classifier
 - below 0.7: poor classification
 - 0.7 to 0.8: ok, reasonable classification
 - 0.8 to 0.9: here is where very good predictive models start

ROC Curve Extremes

Best classifier:

Worst classifier:

AUC = 1 perfect discrimination

AUC = 0.5 random discrimination

AUC = probability of correct discrimination

Comparing Two Learning Schemes

- Frequent question: which of two learning schemes performs better?
- Note: this is domain dependent!
- Obvious way: compare 10-fold CV estimates
- Generally sufficient in applications (we don't lose if the chosen method is not truly better)
- However, what about machine learning research?
- Need to show convincingly that a particular method works better

Final Thoughts

- Never test on the learning set
- Use some sampling procedure for testing
- Bottom line: good models are those that are useful in practice!