Linear Regression

Cornelia Caragea

Department of Computer Science and Engineering University of North Texas

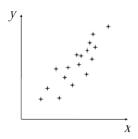
Acknowledgments: Piyush Rai, Andrew Ng

June 21, 2016

Linear Regression with One Variable

Linear Regression: One-Dimensional Case

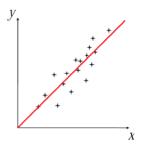
Regression: we observe a real-valued input x and we wish to use x to predict the value of a real-valued target t (or y).



- Given: a set of N input-target pairs
 - The inputs (x) and targets (y) are one dimensional scalars
- Goal: Model the relationship between x and y

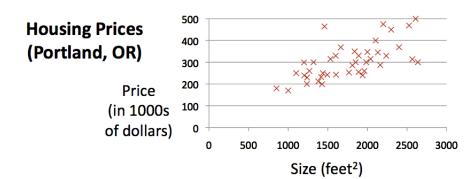
Linear Regression: One-Dimensional Case

- Assumption: the relationship between x and y is linear
- Linear relationship defined by a straight line with parameter w
- Equation of the straight line: $y = wx (y = w_0 + w_1x_1)$

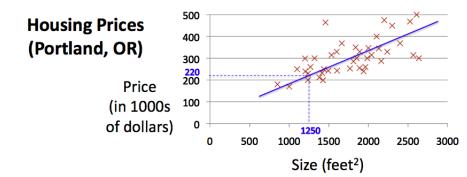


- The line may not fit the data exactly
- But we can try making the line a reasonable approximation

Example - House Price Prediction



Example - House Price Prediction



Data Representation

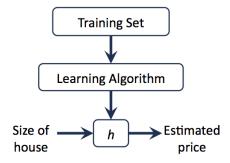
Training set of housing prices (Portland, OR):

Size in feet $^2(x)$	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

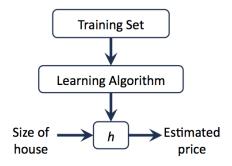
Notation:

- N = number of training examples
- x's = "input" variable / features
- y's = "output" variable / "target" variable
- (x, y) one training example
- $(x^{(i)}, y^{(i)})$ the i^{th} training example

Model Representation



Model Representation



How do we represent *h*?

$$h_w(x) = w_0 + w_1 x$$

Regression: estimating $h_w(x)$ of x that minimizes a cost function.

Model Representation

Training set of housing prices (Portland, OR):

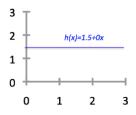
Size in feet $^2(x)$	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
	• • •

Hypothesis: $h_w(x) = w_0 + w_1 x$

- Model parameters: w_i's
- How to choose w_i's?

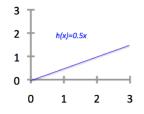
Hypothesis

$$h_w(x) = w_0 + w_1 x$$



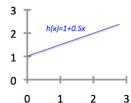
$$w_0 = 1.5$$

 $w_1 = 0$



$$w_0 = 0$$

 $w_1 = 0.5$

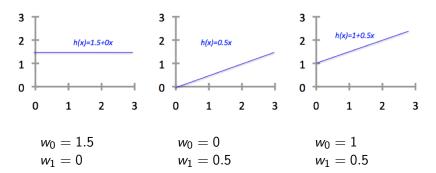


$$w_0 = 1$$

 $w_1 = 0.5$

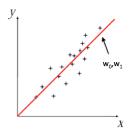
Hypothesis

$$h_w(x) = w_0 + w_1 x$$

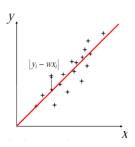


How to choose a hypothesis?

Intuition

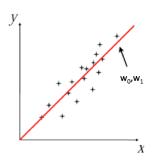


Idea: Choose w_0 , w_1 s.t. $h_w(x)$ is close to y for our training examples (x, y).



- Error for the pair (x_i, y_i) pair: $e_i = y_i wx_i$
- The total squared error: $E = \frac{1}{2N} \sum_{i=1}^{N} e_i^2 = \frac{1}{2N} \sum_{i=1}^{N} (y_i - wx_i)^2$
- The best fitting line is defined by *w* minimizing the total error *E*

The Cost Function



Idea: Choose w_0 , w_1 s.t. $h_w(x)$ is close to y for our training examples (x, y).

$$\min_{w_0,w_1} \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2,$$

where

$$h_w(x) = w_0 + w_1 x$$

$$E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2,$$

Hence,

$$\min_{w_0,w_1} E(w_0,w_1),$$

Cost Function Intuition

Hypothesis:

$$h_w(x) = w_0 + w_1 x$$

Parameters:

Cost Function:

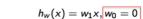
$$E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2,$$

Goal:

$$\min_{w_0, w_1} E(w_0, w_1),$$

Simplified:

Hypothesis:



Parameters:

Cost Function:

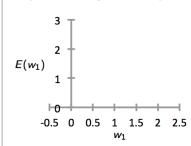
$$E(w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2,$$

Goal:

$$\min_{w_1} E(w_1),$$

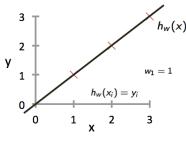
 $h_w(x_i) = y_i$

 $E(w_1)$ (function of the parameter w_1)



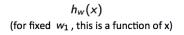
$$E(w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2 = \frac{1}{2N} \sum_{i=1}^{N} (w_1 x_i - y_i)^2$$
$$= \frac{1}{2N} (0^2 + 0^2 + 0^2) = 0$$

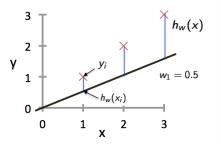
 $h_w(x)$ (for fixed w_1 , this is a function of x)



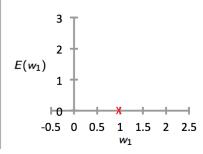
 $E(w_1)$ (function of the parameter w_1)

$$E(w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2 = \frac{1}{2N} \sum_{i=1}^{N} (w_1 x_i - y_i)^2$$
$$= \frac{1}{2N} (0^2 + 0^2 + 0^2) = 0$$



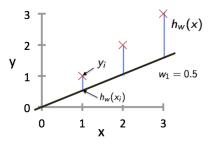


$$E(w_1)$$
 (function of the parameter w_1)

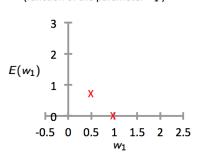


$$E(0.5) = \frac{1}{2N} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2]$$
$$= \frac{1}{2 \times 3} (3.5) \approx 0.58$$

 $h_w(x)$ (for fixed w_1 , this is a function of x)

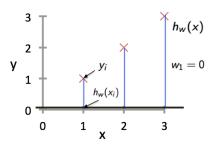


 $E(w_1)$ (function of the parameter w_1)

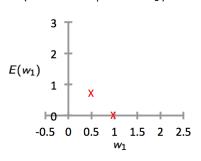


$$E(0.5) = \frac{1}{2N} \left[(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \right]$$
$$= \frac{1}{2 \times 3} (3.5) \approx 0.58$$

 $h_{w}(x)$ (for fixed w_1 , this is a function of x)

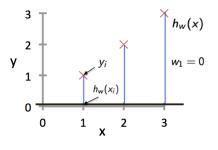


$$E(w_1)$$
 (function of the parameter w_1)

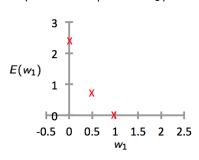


$$E(0) = \frac{1}{2N} \left[1^2 + 2^2 + 3^2 \right]$$
$$= \frac{1}{2 \times 3} (14) \approx 2.3$$

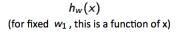
 $h_w(x)$ (for fixed w_1 , this is a function of x)

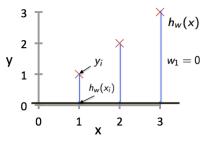


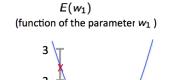
$$E(w_1)$$
 (function of the parameter w_1)

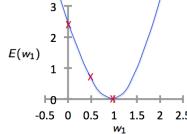


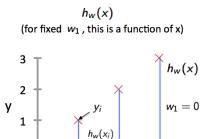
$$E(0) = \frac{1}{2N} [1^2 + 2^2 + 3^2]$$
$$= \frac{1}{2 \times 3} (14) \approx 2.3$$



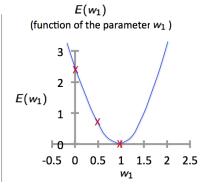








3



How to Minimize E(w)?

0

0

Gradient Descent

```
Given: some function E(w_0, w_1)
Want: \min_{w_0, w_1} E(w_0, w_1)
```

Outline:

- Start with some w_0, w_1
- Keep changing w_0 , w_1 to reduce $E(w_0, w_1)$ until hopefully we end up at a minimum

Gradient Descent Algorithm

```
repeat until convergence { w_j := w_j - \alpha \frac{\partial}{\partial w_j} E(w_0, w_1) (for j = 0 and j = 1) }
```

- ullet α the learning rate
- $\frac{\partial}{\partial w_j} E(w_0, w_1)$ derivative of E.

```
Correct: Simultaneous update \begin{aligned} & \mathsf{temp0} := w_0 - \alpha \frac{\partial}{\partial w_0} E(w_0, w_1) \\ & \mathsf{temp1} := w_1 - \alpha \frac{\partial}{\partial w_1} E(w_0, w_1) \\ & w_0 := \mathsf{temp0} \\ & w_1 := \mathsf{temp1} \end{aligned}
```

```
\begin{split} & \text{Incorrect} \\ & \text{temp0} := w_0 - \alpha \frac{\partial}{\partial w_0} E(w_0, w_1) \\ & w_0 := \text{temp0} \\ & \text{temp1} := w_1 - \alpha \frac{\partial}{\partial w_1} E(w_0, w_1) \\ & w_1 := \text{temp1} \end{split}
```

Gradient Descent Algorithm

```
repeat until convergence { w_j := w_j - \alpha \frac{\partial}{\partial w_j} E(w_0, w_1) (for j = 0 and j = 1) }
```

- ullet α the learning rate
- $\frac{\partial}{\partial w_j} E(w_0, w_1)$ derivative of E.

```
Correct: Simultaneous update  temp0 := w_0 - \alpha \frac{\partial}{\partial w_0} E(w_0, w_1)   temp1 := w_1 - \alpha \frac{\partial}{\partial w_1} E(w_0, w_1)   w_0 := temp0   w_1 := temp1
```

- If α is too small, gradient descent can be slow.
- \bullet If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Incorrect

 $w_0 := \text{temp0}$

 $w_1 := temp1$

temp0 := $w_0 - \alpha \frac{\partial}{\partial w_0} E(w_0, w_1)$

temp1 := $w_1 - \alpha \frac{\partial}{\partial w_1} E(w_0, w_1)$

Gradient Descent for Linear Regression

Gradient Descent Algorithm for the Linear Regression Model

```
repeat until convergence { w_j := w_j - \alpha \frac{\partial}{\partial w_j} E(w_0, w_1) (for j = 0 and j = 1) }
```

where

$$h_w(x) = w_0 + w_1 x$$

 $E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2$

$$\frac{\partial}{\partial w_j} E(w_0, w_1) = \frac{\partial}{\partial w_j} \frac{1}{2N} \sum_{i=1}^N (h_w(x_i) - y_i)^2$$
$$= \frac{\partial}{\partial w_j} \frac{1}{2N} \sum_{i=1}^N (w_0 + w_1 x_i - y_i)^2$$

$$j = 0 : \frac{\partial}{\partial w_0} E(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (h_w(x_i) - y_i)$$
$$j = 1 : \frac{\partial}{\partial w_1} E(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (h_w(x_i) - y_i) x_i$$

Gradient Descent for Linear Regression

Gradient Descent Algorithm for the Linear Regression Model

```
repeat until convergence {  w_0 := w_0 - \alpha \frac{1}{N} \sum_{i=1}^{N} (h_w(x_i) - y_i)   w_1 := w_1 - \alpha \frac{1}{N} \sum_{i=1}^{N} (h_w(x_i) - y_i) x_i  }
```

Update w_0 and w_1 simultaneously.

Summary

Linear Regression Model with One Variable

- Model Representation
- How to choose a hypothesis?
- Cost Function
- Gradient Descent