Linear Regression II

Cornelia Caragea

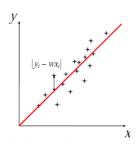
Department of Computer Science and Engineering University of North Texas

Acknowledgments: Piyush Rai, Andrew Ng

June 22, 2016

Recap: Linear Regression: One-Dimensional Case

- Given: a set of N input-target pairs
- Goal: Model the relationship between x and y
- Assumption: the relationship between x and y is linear
 - Linear relationship defined by a straight line with parameter w



- The line may not fit the data exactly, but look for a reasonable approximation
- The total squared error: $E = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i wx_i)^2$
- The best fitting line is defined by w minimizing the total error E

Multivariate Linear Regression

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one closest to the targets *y*
 - Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
 - Fitting a *D*-dimensional hyperplane to the data (hard to visualize)
- The hyperplane is defined by parameters **w** (a $D \times 1$ weight vector)

Example - House Price Prediction

Multiple features (variables):

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
X ₁	X ₂	X ₃	X ₄	у
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation:

- n = number of features
- $x^{(i)} = \text{input (features) of the } i^{th} \text{ training example}$
- $x_i^{(i)}$ = value of feature j in the i^{th} training example

Model Representation

Previously:
$$h_w(x) = w_0 + w_1 x$$

$$h_w(x) = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4$$

Model Representation

Previously:
$$h_w(x) = w_0 + w_1 x$$

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

$$h_w(x) = 80 + 0.1 x_1 + 0.001 x_2 + 3x_3 + 2x_4$$

Model Representation

Previously:
$$h_w(x) = w_0 + w_1 x$$

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

$$h_w(x) = 80 + 0.1 x_1 + 0.001 x_2 + 3x_3 + 2x_4$$

More generally,

$$h_w(x) = w_0 + w_1x_1 + w_2x_2 + \cdots + w_nx_n$$

For convenience of notation, define $x_0 = 1$. Hence,

$$h_w(x) = \sum_{j=0}^n w_j x_j = \mathbf{w}^T \mathbf{x} = [w_0 w_1 \cdots w_n] \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- Inputs $\mathbf{x}^{(i)}$: n-dimensional vectors (R^n) , targets $y^{(i)}$: scalars (R)
- In the linear model: target is a linear function of the model parameters

$$y = h_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{j=1}^{n} w_j x_j = w_0 + \mathbf{w}^T \mathbf{x}$$

- $\mathbf{x} = [x_1, \cdots, x_n]$
- w_i 's and w_0 are the model parameters (w_0 is an offset)
 - $\mathbf{w} = [w_1, \dots, w_n]$, the **weight vector** (to be learned from \mathcal{D})
 - Parameters define the mapping from the inputs to targets

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- Inputs $\mathbf{x}^{(i)}$: *n*-dimensional vectors (R^n) , targets $y^{(i)}$: scalars (R)
- In the linear model: target is a linear function of the model parameters

$$y = h_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{j=1}^{n} w_j x_j = w_0 + \mathbf{w}^T \mathbf{x}$$

- $\mathbf{x} = [x_1, \cdots, x_n]$
- w_i 's and w_0 are the model parameters (w_0 is an offset)
 - $\mathbf{w} = [w_1, \dots, w_n]$, the **weight vector** (to be learned from \mathcal{D})
 - Parameters define the mapping from the inputs to targets

How to choose w?

Linear Regression: Gradient Descent Solution

One solution: *Iterative* minimization of the cost function Cost Function:

$$E(w_0, w_1, \dots, w_n) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x^{(i)}) - y^{(i)})^2,$$

Goal:

$$\min_{w_0,w_1,\cdots,w_n} E(w_0,w_1,\cdots,w_n),$$

- How: Using Gradient Descent (GD)
- A general recipe for iteratively optimizing similar loss functions
- Gradient Descent rule:
 - Initialize the weight vector $\mathbf{w} = \mathbf{w}^0$
 - Update **w** by moving along the direction of negative gradient $-\frac{\partial E}{\partial w}$

Linear Regression: Gradient Descent Solution

- Initialize $\mathbf{w} = \mathbf{w}^0$
- Repeat until convergence:

$$w_j := w_j - \alpha \frac{\partial E}{\partial w_j}$$
$$:= w_j - \alpha \frac{1}{N} \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}_j^{(i)}$$

- Simultaneously update for every $j = 0, \dots, n$
- ullet α is the learning rate
- **Stop:** When some criteria is met (e.g., max. # of iterations), or the rate of decrease of *E* falls below some threshold.

Gradient Descent for Linear Regression

Gradient Descent for Univariate Linear Regression

$$n = 1$$

```
repeat until convergence {  w_0 := w_0 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) \\ w_1 := w_1 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x^{(i)}  }
```

Update w_0 and w_1 simultaneously.

Gradient Descent for Multivariate Linear Regression

```
repeat until convergence {  w_0 := w_0 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x_0^{(i)} \\ w_1 := w_1 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x_1^{(i)} \\ w_2 := w_2 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x_2^{(i)} \\ \vdots \\ w_n := w_n - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x_n^{(i)} \\ \}
```

Update w_0, w_1, \dots, w_n simultaneously.

- To choose α , try:
 - \bullet ..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Polynomial Regression

Regression In Higher Dimensions - The More General Case

Nonlinear relationships between x and y can be modeled using some suitably chosen functions ϕ_i

- Given training data $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- Inputs $\mathbf{x}^{(i)}$: *n*-dimensional vectors (\mathbb{R}^n) , targets $y^{(i)}$: scalars (\mathbb{R})
- In the linear model: target is a linear function of the model parameters

$$y = h_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

- w_i 's and w_0 are the model parameters (w_0 is an offset)
 - Parameters define the mapping from the inputs to targets
- Each ϕ_i is called a basis function
 - Allows change of representation of the input x (often desired)

Basis Function Expansions

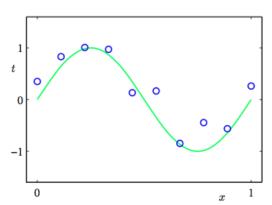
• Polynomial basis: $1, x, x^2, \dots, x^n$

$$h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Note that h is nonlinear in x, but linear in w

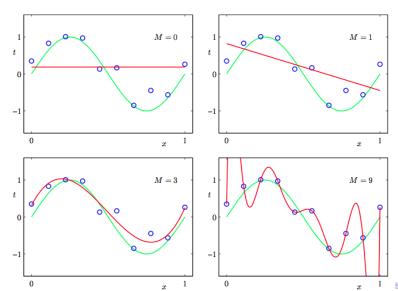
Regression

Plot of a training data set of N=10 points, shown as blue circles, each comprising an observation of the input variable x along with the corresponding target variable t. The green curve shows the function $\sin(2\pi x)$ used to generate the data. Our goal is to predict the value of t for some new value of x, without knowledge of the green curve.



Fit a polynomial to the training data to determine the values of w.

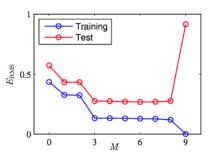
Polynomial Curve Fitting



Overfitting or Generalization

Generalization: the ability to correctly predict new examples that differ from those used for training

Overfitting: poor generalization Performance on Test:



Summary

Linear Regression Model with Multiple Variables

- Model Representation
- How to choose a hypothesis?
- Polynomial Curve Fitting