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Linear Regression with Multiple Variables

Recap: Linear Regression: One-Dimensional Case

@ Given: a set of N input-target pairs
@ Goal: Model the relationship between x and y

@ Assumption: the relationship between x and y is linear

@ Linear relationship - defined by a straight line with parameter w

y

@ The line may not fit the data exactly, but look for a reasonable approximation

@ The total squared error: E = 3N 2 = SN (y; — wx;)?
@ The best fitting line is defined by w minimizing the total error E
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Multivariate Linear Regression
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, fit hyperplanes

@ For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one closest to the targets y

o Linear regression uses the sum-of-squared error notion of closeness

Similar intuition carries over to higher dimensions too

o Fitting a D-dimensional hyperplane to the data (hard to visualize)

The hyperplane is defined by parameters w (a D x 1 weight vector)
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Example - House Price Prediction

Multiple features (variables):

Size (feet?) Number of Number of Age of home |Price ($1000)
bedrooms floors (years)
X4 Xy X3 Xa y
2104 5 1 45 460
1416 3 2 40 232
1534 3 2 30 315
852 2 1 36 178
Notation:

@ n = number of features

o x() = input (features) of the i* training example
(0

® x;' = value of feature j in the it training example
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Model Representation

Previously: hy(x) = wo + wix J

hw(Xx) = wo + wixy + waxo + waxs + waxg J
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Model Representation

Previously: hy(x) = wo + wix J

hw(x) = wo + wixi + woxo + w3x3 + waxs
hw(x) =80+ 0.1x3 + 0.001x2 + 3x3 + 2x4
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Model Representation

Previously: hy(x) = wo + wix |

hw(x) = wo + wixi + woxo + w3x3 + waxs
hw(x) =80+ 0.1x; + 0.001x2 + 3x3 + 2x4

More generally,

hw(Xx) = wo + wixy + waxa + - - - + WpXp
For convenience of notation, define xg = 1. Hence,

X0
n

hy(x) = Z wixj = w’x = [wowi - - wp]
j=0

X1

Xn
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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x(®), yM) ... (x(M) y(M))1

Inputs x() : n-dimensional vectors (R"), targets y(!) : scalars (R)

In the linear model: target is a linear function of the model
parameters

n
y = hu(x) = W0+ZWJXJ': wo +w'x
j=1

X = [X17"' aXn]

w;'s and wy are the model parameters (wy is an offset)

o w=[wy, -, w,|, the weight vector (to be learned from D)
o Parameters define the mapping from the inputs to targets
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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x(®), yM) ... (x(M) y(M))1

Inputs x() : n-dimensional vectors (R"), targets y(!) : scalars (R)

In the linear model: target is a linear function of the model
parameters

n
y = hu(x) = W0+ZWJXJ': wo +w'x
j=1

° X:[X]_,"' aXn]

w;'s and wy are the model parameters (wy is an offset)

o w=[wy, -, w,|, the weight vector (to be learned from D)
o Parameters define the mapping from the inputs to targets

How to choose w?
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Linear Regression: Gradient Descent Solution

@ One solution: [terative minimization of the cost function
Cost Function:

1< 2
E(wo,wy, -+, w WZ(’M ()) )

Goal:

min E(wo, w1, -, wyp),
wo,W1, -+ ,Wp

@ How: Using Gradient Descent (GD)
@ A general recipe for iteratively optimizing similar loss functions

@ Gradient Descent rule:

o Initialize the weight vector w = wP
o Update w by moving along the direction of negative gradient
OE
T ow
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Linear Regression: Gradient Descent Solution

o Initialize w = w°®

@ Repeat until convergence:
OoE
4 = W; — oe——
J J aVVJ
1N
) T (i )Yy (7
= w—ay Z(w x() — y(’))xj(.')
i=1
@ Simultaneously update for every j =0,--- ,n
@ « is the learning rate
@ Stop: When some criteria is met (e.g., max. # of iterations), or

the rate of decrease of E falls below some threshold.



Linear Regression with Multiple Variables

Gradient Descent for Linear Regression

Gradient Descent for Univariate Gradient Descent for Multivariate
Linear Regression Linear Regression

n=1 n>1

repeat until convergence { repeat until convergence {

wo = wo — afy 31y (hw(x1) - y() wo = wo —ady 1Ly (hu(x) = y10)
w = wi—agy S (A (D) = yD) <D ad SV (x0) — y ) £
’ wa = wa—ak S (hu(x() = y@) )

Update wp and wj simultaneously. :
Wy = Wn_a% ZlNzl (hW(X(I)) — y(i)) X,(,i)

Update wo, wi, - - - , w, simultaneously.

@ To choose «, try:
e ---,0.001,0.003,0.01,0.03,0.1,0.3,1, - -
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Polynomial Regression
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Regression In Higher Dimensions - The More General Case

Nonlinear relationships between x and y can be modeled using
some suitably chosen functions ¢;

@ Given training data D = {(x(1), y(1)) ... (x(M) y(M))1
@ Inputs x() : n-dimensional vectors (R"), targets y() : scalars (R)

@ In the linear model: target is a linear function of the model
parameters

Y = hlx) = o 3 wio(x) = wTo(x)
j=1

@ w;'s and wy are the model parameters (wyg is an offset)

o Parameters define the mapping from the inputs to targets

¢:[¢0;¢17"' 7¢m]

@ Each ¢; is called a basis function

@ Allows change of representation of the input x (often desired)
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Basis Function Expansions

e Polynomial basis: 1, x,x2,---,x"

M
hw(x) = wo + wix + wox? + - 4+ wyxM = Z ijxj
j=0

Note that h is nonlinear in x, but linear in w
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Regression

Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable = along with o
the corresponding target variable ¢
{. The green curve shows the o} o
function sin(2xx) used to gener- o, O

ate the data. Our goal is to pre- 0
dict the value of ¢ for some new o
value of x, without knowledge of (o]
the green curve. o)

Fit a polynomial to the training data to determine the values of w.
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Polynomial Curve Fitting

1 -0 M=0 1 Q-0 M=1
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Overfitting or Generalization

Generalization: the ability to correctly predict new examples that
differ from those used for training

Overfitting: poor generalization
Performance on Test:

—&— Training
—o— Test

=
=S
e
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Summary

Linear Regression Model with Multiple Variables

@ Model Representation
@ How to choose a hypothesis?

@ Polynomial Curve Fitting
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