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Linear Regression with Multiple Variables

Recap: Linear Regression: One-Dimensional Case

Given: a set of N input-target pairs
Goal: Model the relationship between x and y

Assumption: the relationship between x and y is linear

Linear relationship - defined by a straight line with parameter w

The line may not fit the data exactly, but look for a reasonable approximation
The total squared error: E =

∑N
i=1 e

2
i =

∑N
i=1(yi − wxi )

2

The best fitting line is defined by w minimizing the total error E
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Multivariate Linear Regression
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one closest to the targets y
Linear regression uses the sum-of-squared error notion of closeness

Similar intuition carries over to higher dimensions too
Fitting a D-dimensional hyperplane to the data (hard to visualize)

The hyperplane is defined by parameters w (a D × 1 weight vector)
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Example - House Price Prediction

Multiple features (variables):

Notation:

n = number of features
x (i) = input (features) of the i th training example

x
(i)
j = value of feature j in the i th training example
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Model Representation

Previously: hw (x) = w0 + w1x

hw (x) = w0 + w1x1 + w2x2 + w3x3 + w4x4

hw (x) = 80+ 0.1x1 + 0.001x2 + 3x3 + 2x4

More generally,

hw (x) = w0 + w1x1 + w2x2 + · · ·+ wnxn
For convenience of notation, define x0 = 1. Hence,

hw (x) =
n∑

j=0

wjxj = wTx = [w0w1 · · ·wn]


x0
x1
· · ·
xn


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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x(1), y (1)), · · · , (x(N), y (N))}

Inputs x(i) : n-dimensional vectors (Rn), targets y (i) : scalars (R)

In the linear model: target is a linear function of the model
parameters

y = hw(x) = w0 +
n∑

j=1

wjxj = w0 +wTx

x = [x1, · · · , xn]

wj ’s and w0 are the model parameters (w0 is an offset)

w = [w1, · · · ,wn], the weight vector (to be learned from D)
Parameters define the mapping from the inputs to targets

How to choose w?
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Linear Regression: Gradient Descent Solution

One solution: Iterative minimization of the cost function
Cost Function:

E(w0,w1, · · · ,wn) =
1
2N

N∑
i=1

(
hw (x

(i))− y (i)
)2
,

Goal:
min

w0,w1,··· ,wn
E(w0,w1, · · · ,wn),

How: Using Gradient Descent (GD)

A general recipe for iteratively optimizing similar loss functions

Gradient Descent rule:

Initialize the weight vector w = w0

Update w by moving along the direction of negative gradient
−∂E

∂w
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Linear Regression: Gradient Descent Solution

Initialize w = w0

Repeat until convergence:

wj := wj − α
∂E

∂wj

:= wj − α
1
N

N∑
i=1

(wTx(i) − y (i))x(i)j

Simultaneously update for every j = 0, · · · , n

α is the learning rate

Stop: When some criteria is met (e.g., max. # of iterations), or
the rate of decrease of E falls below some threshold.
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Gradient Descent for Linear Regression

Gradient Descent for Univariate
Linear Regression
n = 1

repeat until convergence {
w0 := w0 − α 1

N

∑N
i=1
(
hw (x(i))− y (i)

)
w1 := w1 −α 1

N

∑N
i=1
(
hw (x(i))− y (i)

)
x(i)

}

Update w0 and w1 simultaneously.

Gradient Descent for Multivariate
Linear Regression
n > 1

repeat until convergence {
w0 := w0 −α 1

N

∑N
i=1
(
hw (x(i))− y (i)

)
x
(i)
0

w1 := w1 −α 1
N

∑N
i=1
(
hw (x(i))− y (i)

)
x
(i)
1

w2 := w2 −α 1
N

∑N
i=1
(
hw (x(i))− y (i)

)
x
(i)
2

...
wn := wn −α 1

N

∑N
i=1
(
hw (x(i))− y (i)

)
x
(i)
n

}

Update w0,w1, · · · ,wn simultaneously.

To choose α, try:
· · · , 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, · · ·
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Polynomial Regression



Linear Regression with Multiple Variables

Regression In Higher Dimensions - The More General Case

Nonlinear relationships between x and y can be modeled using
some suitably chosen functions φj

Given training data D = {(x(1), y (1)), · · · , (x(N), y (N))}
Inputs x(i) : n-dimensional vectors (Rn), targets y (i) : scalars (R)

In the linear model: target is a linear function of the model
parameters

y = hw(x) = w0 +
m∑
j=1

wjφj(x) = wTφ(x)

wj ’s and w0 are the model parameters (w0 is an offset)

Parameters define the mapping from the inputs to targets

φ = [φ0, φ1, · · · , φm]
Each φj is called a basis function

Allows change of representation of the input x (often desired)
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Basis Function Expansions

Polynomial basis: 1, x , x2, · · · , xn

hw(x) = w0 + w1x + w2x
2 + · · ·+ wMxM =

M∑
j=0

wjx
j

Note that h is nonlinear in x, but linear in w
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Regression

Fit a polynomial to the training data to determine the values of w.
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Polynomial Curve Fitting
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Overfitting or Generalization

Generalization: the ability to correctly predict new examples that
differ from those used for training

Overfitting: poor generalization
Performance on Test:
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Summary

Linear Regression Model with Multiple Variables

Model Representation
How to choose a hypothesis?
Polynomial Curve Fitting
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