# Linear Regression II

#### Cornelia Caragea

Department of Computer Science and Engineering University of North Texas

Acknowledgments: Piyush Rai, Andrew Ng

June 22, 2016

# Recap: Linear Regression: One-Dimensional Case

- Given: a set of N input-target pairs
- Goal: Model the relationship between x and y
- Assumption: the relationship between x and y is linear
  - Linear relationship defined by a straight line with parameter w



- The line may not fit the data exactly, but look for a reasonable approximation
- The total squared error:  $E = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i wx_i)^2$
- The best fitting line is defined by w minimizing the total error E

# Multivariate Linear Regression

# Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data



- Many planes are possible. Which one is the best?
- Intuition: Choose the one closest to the targets *y* 
  - Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
  - Fitting a *D*-dimensional hyperplane to the data (hard to visualize)
- The hyperplane is defined by parameters **w** (a  $D \times 1$  weight vector)

#### Example - House Price Prediction

#### Multiple features (variables):

| Size (feet²)   | Number of<br>bedrooms | Number of floors | Age of home (years) | Price (\$1000) |
|----------------|-----------------------|------------------|---------------------|----------------|
| X <sub>1</sub> | <b>X</b> <sub>2</sub> | X <sub>3</sub>   | X <sub>4</sub>      | у              |
| 2104           | 5                     | 1                | 45                  | 460            |
| 1416           | 3                     | 2                | 40                  | 232            |
| 1534           | 3                     | 2                | 30                  | 315            |
| 852            | 2                     | 1                | 36                  | 178            |
|                |                       |                  |                     |                |

#### **Notation:**

- n = number of features
- $x^{(i)} = \text{input (features) of the } i^{th} \text{ training example}$
- $x_i^{(i)}$  = value of feature j in the  $i^{th}$  training example

# Model Representation

Previously: 
$$h_w(x) = w_0 + w_1 x$$

$$h_w(x) = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4$$

# Model Representation

Previously: 
$$h_w(x) = w_0 + w_1 x$$

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$
  
$$h_w(x) = 80 + 0.1 x_1 + 0.001 x_2 + 3x_3 + 2x_4$$

# Model Representation

Previously: 
$$h_w(x) = w_0 + w_1 x$$

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$
  
$$h_w(x) = 80 + 0.1 x_1 + 0.001 x_2 + 3x_3 + 2x_4$$

#### More generally,

$$h_w(x) = w_0 + w_1x_1 + w_2x_2 + \cdots + w_nx_n$$
  
For convenience of notation, define  $x_0 = 1$ . Hence,

$$h_w(x) = \sum_{j=0}^n w_j x_j = \mathbf{w}^T \mathbf{x} = [w_0 w_1 \cdots w_n] \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$

# Linear Regression: In Higher Dimensions (Formally)

- Given training data  $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- Inputs  $\mathbf{x}^{(i)}$ : n-dimensional vectors  $(R^n)$ , targets  $y^{(i)}$ : scalars (R)
- In the linear model: target is a linear function of the model parameters

$$y = h_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{j=1}^{n} w_j x_j = w_0 + \mathbf{w}^T \mathbf{x}$$

- $\mathbf{x} = [x_1, \cdots, x_n]$
- $w_i$ 's and  $w_0$  are the model parameters ( $w_0$  is an offset)
  - $\mathbf{w} = [w_1, \dots, w_n]$ , the **weight vector** (to be learned from  $\mathcal{D}$ )
  - Parameters define the mapping from the inputs to targets

# Linear Regression: In Higher Dimensions (Formally)

- Given training data  $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- Inputs  $\mathbf{x}^{(i)}$ : *n*-dimensional vectors  $(R^n)$ , targets  $y^{(i)}$ : scalars (R)
- In the linear model: target is a linear function of the model parameters

$$y = h_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{j=1}^{n} w_j x_j = w_0 + \mathbf{w}^T \mathbf{x}$$

- $\mathbf{x} = [x_1, \cdots, x_n]$
- $w_i$ 's and  $w_0$  are the model parameters ( $w_0$  is an offset)
  - $\mathbf{w} = [w_1, \dots, w_n]$ , the **weight vector** (to be learned from  $\mathcal{D}$ )
  - Parameters define the mapping from the inputs to targets

How to choose w?

### Linear Regression: Gradient Descent Solution

One solution: *Iterative* minimization of the cost function Cost Function:

$$E(w_0, w_1, \dots, w_n) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x^{(i)}) - y^{(i)})^2,$$

Goal:

$$\min_{w_0,w_1,\cdots,w_n} E(w_0,w_1,\cdots,w_n),$$

- How: Using Gradient Descent (GD)
- A general recipe for iteratively optimizing similar loss functions
- Gradient Descent rule:
  - Initialize the weight vector  $\mathbf{w} = \mathbf{w}^0$
  - Update **w** by moving along the direction of negative gradient  $-\frac{\partial E}{\partial w}$

# Linear Regression: Gradient Descent Solution

- Initialize  $\mathbf{w} = \mathbf{w}^0$
- Repeat until convergence:

$$w_j := w_j - \alpha \frac{\partial E}{\partial w_j}$$
$$:= w_j - \alpha \frac{1}{N} \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}_j^{(i)}$$

- Simultaneously update for every  $j = 0, \dots, n$
- ullet  $\alpha$  is the learning rate
- **Stop:** When some criteria is met (e.g., max. # of iterations), or the rate of decrease of *E* falls below some threshold.

# Gradient Descent for Linear Regression

# Gradient Descent for Univariate Linear Regression

$$n = 1$$

```
repeat until convergence {  w_0 := w_0 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) \\ w_1 := w_1 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x^{(i)}  }
```

Update  $w_0$  and  $w_1$  simultaneously.

# Gradient Descent for Multivariate Linear Regression

```
repeat until convergence {  w_0 := w_0 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x_0^{(i)} \\ w_1 := w_1 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x_1^{(i)} \\ w_2 := w_2 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x_2^{(i)} \\ \vdots \\ w_n := w_n - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x^{(i)}) - y^{(i)} \right) x_n^{(i)} \\ \}
```

Update  $w_0, w_1, \dots, w_n$  simultaneously.

- To choose  $\alpha$ , try:
  - $\bullet$  ..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

# Polynomial Regression

### Regression In Higher Dimensions - The More General Case

Nonlinear relationships between x and y can be modeled using some suitably chosen functions  $\phi_i$ 

- Given training data  $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- Inputs  $\mathbf{x}^{(i)}$ : *n*-dimensional vectors  $(\mathbb{R}^n)$ , targets  $y^{(i)}$ : scalars  $(\mathbb{R})$
- In the linear model: target is a linear function of the model parameters

$$y = h_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

- $w_i$ 's and  $w_0$  are the model parameters ( $w_0$  is an offset)
  - Parameters define the mapping from the inputs to targets
- Each  $\phi_i$  is called a basis function
  - Allows change of representation of the input x (often desired)

# Basis Function Expansions

• Polynomial basis:  $1, x, x^2, \dots, x^n$ 

$$h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Note that h is nonlinear in x, but linear in w

#### Regression

Plot of a training data set of N=10 points, shown as blue circles, each comprising an observation of the input variable x along with the corresponding target variable t. The green curve shows the function  $\sin(2\pi x)$  used to generate the data. Our goal is to predict the value of t for some new value of x, without knowledge of the green curve.



Fit a polynomial to the training data to determine the values of w.

# Polynomial Curve Fitting



#### Overfitting or Generalization

Generalization: the ability to correctly predict new examples that differ from those used for training

Overfitting: poor generalization Performance on Test:



### Summary

#### Linear Regression Model with Multiple Variables

- Model Representation
- How to choose a hypothesis?
- Polynomial Curve Fitting