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Logistic Regression

Linear Classification

Goal: Assign input vector x to one of the K discrete classes Ck .

Generally, the input space is divided into decision regions, whose
boundaries are called decision boundaries.

For linear models, decision boundaries are linear functions of the
input vector x.

Data sets whose classes can be separated exactly by linear decision
boundaries are said to be linearly separable.

Examples of binary classification (y ∈ {0, 1}):
Email: spam / not spam?
Tumor: malignant / benign?
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Logistic Regression

Linear Classification

In regression problems, y is a real number, hw(x) = wTx (in the
simplest case), where hw(x) can be any real-valued number.

In classification problems, we wish to predict discrete class labels, or
more generally posterior probabilities that lie in the range (0, 1), i.e.,
0 ≤ hw(x) ≤ 1.

Generalized linear models: transform the linear function of w
using a nonlinear function σ(·): hw(x) = σ(wTx).
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Logistic Regression for Binary Classification

Generalized linear model for classification where σ(·) is the logistic
sigmoid function, i.e., σ(z) = 1

1+e−z

Properties of σ:

Symmetry: σ(−z) = 1− σ(z)
Inverse: z = ln(σ/1− σ) (aka logit function)
Derivative: dσ/dz = σ(1− σ)



Logistic Regression

Logistic Regression for Binary Classification

Transform the linear function of w using σ(·)

Hypothesis Representation for Logistic Regression:

hw(x) = σ(wTx) =
1

1+ e−wT x ,

where x is a feature vector

Hypothesis Output Interpretation:

hw(x) = P(y = 1|x,w) - the confidence in the predicted label
P(y = 0|x,w) = 1− P(y = 1|x,w)

Logistic regression seen as probabilistic discriminative model

Directly models conditional probabilities P(y |x)



Logistic Regression

Decision Boundary

How does the decision boundary look like for Logistic Regression?

Suppose predict y = 1 if hw(x) ≥ 0.5 ⇔ wTx ≥ 0
Predict y = 0 if hw(x) < 0.5 ⇔ wTx < 0

Decision boundary: wTx = 0.

Hence, the decision boundary is therefore linear ⇒ Logistic
Regression is a linear classifier (note: it is possible to kernelize
and make it nonlinear)



Logistic Regression

Cost Function

Training set: {(x(1), y (1)), (x(2), y (2)), · · · , (x(N), y (N))}

Hypothesis representation:

hw(x) =
1

1+ e−wT x

How to choose parameters w?

Previously, for linear regression, E (w) = 1
2

∑N
i=1 (hw(x(i))− y (i))2

For logistic regression, E (w) =
∑N

i=1 Cost(hw(x(i)), y (i))
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Logistic Regression

Cost Function

Cost(hw(x), y) = − log(hw(x)) if y = 1

Cost(hw(x), y) = − log(1− hw(x)) if y = 0

If y = 1
if hw(x) = 1, Cost = 0
If hw(x)→ 0, Cost →∞
Captures intuition that if hw(x) = 0, but y = 1, we will
penalize the learning algorithm by a very large cost.
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Logistic Regression

Cost Function

Cost Function for Logistic Regression:

E (w) =
N∑
i=1

Cost(hw(x(i)), y (i))

= −

[
N∑
i=1

y (i) log(hw(x(i))) + (1− y (i)) log(1− hw(x(i)))

]

To fit parameters w:
min
w

E (w)

To make a prediction given a new x: Output

hw(x) =
1

1+ e−wT x



Logistic Regression

Gradient Descent

Cost Function for Logistic Regression:

E (w) = −

[
N∑
i=1

y (i) log(hw(x(i))) + (1− y (i)) log(1− hw(x(i)))

]

Want:
min
w

E (w)

Repeat until convergence {

wj := wj − α
∂E (w)

∂wj

} (simultaneously update all wj).
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The algorithm looks the same as for linear regression! Is it?

No.
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Multiclass Logistic Regression

Examples:

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Research articles by topics: Machine Learning, Data Mining,
Algorithms

Multiclass logistic regression (k > 2):

We maintain a separator weight vector wk for each class k
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Multiclass Logistic Regression

Train a logistic regression classifier h(k)w (x) for each class k to
predict the probability that class is k .

On a new input x, to make a prediction, pick the class k that
maximizes

maxkh
(k)
w (x)
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Nonlinear Basis Functions in Linear Models

We use linear classification models

If non-linearity in input space, make nonlinear transformations
of the inputs using a vector of basis functions φ(x).
Linear-separability in feature space does not imply
linear-separability in input space
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Logistic Regression for the Non-Linear Case

Hypothesis Representation for Logistic Regression:

hw(φ) = σ(wTφ) =
1

1+ e−wTφ
,

where φ is an M-dimensional feature vector

Hypothesis Output Interpretation:

hw(φ) = P(y = 1|φ,w) - the confidence in the predicted label
P(y = 0|φ,w) = 1− P(y = 1|φ,w)
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Summary

Logistic Regression Model

Model Representation
How to Choose a Hypothesis?
Multiclass Logistic Regression
Logistic Regression for the Non-Linear Case
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