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A Note on Hyperplanes

Separates an n-dimensional space into two half-spaces.

Defined by an outward pointing normal vector w ∈ Rn

w is orthogonal to any vector lying on the hyperplane

Assumption: The hyperplane passes through origin. If not,

I have a bias term b; we will then need both w and b to define it
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Linear Classification via Hyperplanes

Linear Classifiers: Represent the decision boundary by a hyperplane w

For binary classification, w is assumed to point towards the positive class

Classification rule:
y = sgn(wTx + b) = sgn(

∑n
j=1 wjxj + b)

I wT x + b > 0⇒ y = +1
I wT x + b < 0⇒ y = −1

Goal: To learn the hyperplane (w, b) using the training data
D = {(x1, y1), · · · , (xN , yN)}.
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Linear Classification via Hyperplanes

Assume that the training data set is linearly separable

Hence, there exist parameters w and b s.t.

I wT xi + b > 0 for points having yi = +1
I wT xi + b < 0 for points having yi = −1
I or equivalently, yi (wT xi + b) > 0 for all training data points.

Of the many possible choices, which one is the best?

I Intuitively, we want the hyperplane having the maximum margin (where the
margin is defined as the smallest distance between the decision boundary and
any of the samples)
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The Concept of Margin

The perpendicular distance of a point x from a hyperplane wTx + b = 0 is
given by

γ =
|wTx + b|
‖w‖

Margin is given by the perpendicular distance to the closest point xn from
the data.

Support Vector Machine finds the hyperplane with the maximum margin.
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Support Vector Machine (SVM)

Probably the most popular/influential classification algorithm

Backed by solid theoretical groundings (Vapnik and Cortes, 1995)

A hyperplane based classifier

Uses the Maximum Margin Principle

I Finds the hyperplane with maximum separation margin on the training data
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Support Vector Machine

Goal: Find the hyperplane with maximum separation margin on the training

Interested in solutions for which all data points are correctly classified, s.t.
yi (wTxi + b) > 0 for all i = 1, · · · ,N.

We wish to optimize the parameters w and b in order to maximize the
margin.

The maximum margin solution is found by solving:

argmax
w,b

{
1
‖w‖

min
i

[
yi (wTxi + b)

]}
Direct solution - very complex ⇒ rescaling
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Support Vector Machine
Assume the hyperplane is such that

I wTxi + b ≥ 1 for yi = +1
I wTxi + b ≤ −1 for yi = −1

For the point that is closest to the decision surface, set:

yi (wTxi + b) = 1

All other points satisfy the constraints:

yi (wTxi + b) ≥ 1, i = 1, · · · ,N
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Support Vector Machine: The Optimization Problem

Hence,

argmax
w,b

{
1
‖w‖

min
i

[
yi (wTxi + b)

]}
becomes argmax

w,b

1
‖w‖

which is equivalent to the optimization problem:

argmin
w,b

1
2
‖w‖2

subject to
yi (wTxi + b) ≥ 1, i = 1, · · · ,N

A quadratic programming problem - minimizing a quadratic function subject
to a set of linear inequality constraints.
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Large Margin = Good Generalization

Large margins intuitively mean good generalization

Recall: Margin γ = 1
‖w‖

Large margin ⇒ small ‖w‖

Small ‖w‖ ⇒ regularized/simple solutions (wi ’s don’t become too large)

Simple solutions ⇒ good generalization on test data
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Solving the SVM Optimization Problem
Our optimization problem is:

Minimize f (w, b) = ‖w‖2
2

subject to 1 ≤ yi (wTxi + b), i = 1, · · · ,N

Introducing Lagrange Multipliers αi (i = {1, · · · ,N}), one for each
constraint, leads to the Primal Lagrangian:

Minimize LP(w, b, α) =
‖w‖2

2 +
∑N

i=1 αi{1− yi (wTxi + b)}

subject to αi ≥ 0, i = 1, · · · ,N

We can now solve this Lagrangian
I i.e., optimize LP(w, b, α) w.r.t. w, b, and α
I Making use of the Lagrangian Duality theory.
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Solving the SVM Optimization Problem

Take (partial) derivatives of LP w.r.t. w, b and set them to zero:

∂LP
∂w

= 0⇒ w =
N∑
i=1

αiyixi ,
∂LP
∂b

= 0⇒
N∑
i=1

αiyi = 0

Substituting these in the Primal Lagrangian LP gives the Dual
Lagrangian

Maximize LD(α) =
∑N

i=1 αi − 1
2
∑N

i ,j=1 αiαjyiyj(xTi xj)

subject to
∑N

i=1 αiyi = 0, αi ≥ 0, i = 1, · · · ,N

This is a Quadratic Programming problem in α
I Several off-the-shelf solvers exist to solve such QPs
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Dual vs. Primal

Generally, the computational complexity of a quadratic programming
problem in n variables is O(n3).

Going from Primal to Dual: n variables vs N variables.

I If n (dimension) is smaller than N (number of data points), the move
to the dual problem appears disadvantageous.

However, it allows the model to be reformulated using kernels, and so the
maximum margin classifier can be applied efficiently to feature spaces whose
dimensionality exceeds the number of data points, including infinite feature
spaces.

Suport Vector Machines June 23, 2016 13 / 34



Support Vector Machine: Prediction

Prediction rule: y = sgn(wTx + b)

Substituting

w =
N∑
i=1

αiyixi

I Prediction rule becomes:

y = sgn

(
N∑
i=1

αiyixTxi + b

)

What is b?
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Support Vector Machine: Sparse solution
Most αi ’s in the solution are zero (sparse solution)

I Reason: SVM constrained optimization satisfies Karush-Kuhn-Tucker
(KKT) conditions:

αi ≥ 0
yi (wTxi + b)− 1 ≥ 0

αi{yi (wTxi + b)− 1} = 0
Thus for every data point, either αi = 0 or yi (wTxi + b) = 1.

I αi is non-zero only if xi lies on one of the two margin boundaries, i.e.,
for which yi (wTxi + b) = 1.

I These examples are called
support vectors

I Support vectors “support" the
margin boundaries

Once the model is trained, a significant proportion of the data points can be
discarded and only the support vectors retained.
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Solving for b

Note that any support vector xi satisfies yi (wTxi + b) = 1, or equivalently

yi

∑
j∈S

αjyjxTi xj + b

 = 1

where S denotes the set of indices of the support vectors.

We can solve this eq. for b using an arbitrarily chosen support vector xi .

However, a numerically more stable solution is obtained by first multiplying
by yi , making use of y2

i = 1, and then averaging these equations over all
support vectors and solving for b.

Solving for b, we obtain:

b =
1
NS

∑
i∈S

yi −
∑
j∈S

αjyjxTi xj


where NS is the total number of support vectors.
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SVM - Non-Separable Case

Non-separable case: No hyperplane can separate the classes perfectly

Still want to find the maximum margin hyperplane but this time:

I We will allow some training examples to be misclassified
I We will allow some training examples to fall within the margin region
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SVM - Non-Separable Case
Recall: For the separable case (training loss = 0), the constraints were:

yi (wTxi + b) ≥ 1 ∀i

For the non-separable case, we relax the above constraints:
I Data points are allowed to be on the “wrong side” of the margin, but

with a penalty that increases with the distance from that margin.
I Make this penalty a linear function of this distance.
I Introduce slack variable ξi , which represent the distance that each xi

goes past the margin boundary.

yi (wTxi + b) ≥ 1−ξi , ξi ≥ 0 ∀i

misclassification when ξi > 1

A data point that is on the decision
boundary will have ξi = 1
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SVM - Non-separable case
Non-separable case: We will allow misclassified training examples

I but we want their number to be minimized
⇒ by minimizing the sum of slack variables (

∑N
i=1 ξi )

The optimization problem for the non-separable case

Minimize f (w, b) = ‖w‖2
2 +C

∑N
i=1 ξi

subject to yi (wTxi + b) ≥ 1−ξi , ξi ≥ 0, i = 1, · · · ,N

C dictates which term (‖w‖
2

2 or C
∑N

i=1 ξi ) will dominate the
minimization

I Small C ⇒ ‖w‖2
2 dominates ⇒ prefer large margins

F but allow potentially large numbers of misclassified training examples
I Large C ⇒ C

∑N
i=1 ξi dominates ⇒ prefer small numbers of

misclassified examples
F at the expense of having a small margin
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SVM - Non-separable case: The Optimization Problem

Our optimization problem is:

Minimize f (w, b, ξ) = ‖w‖2
2 +C

∑N
i=1 ξi

subject to 1 ≤ yi (wTxi + b)+ξi , 0 ≤ ξi , i = 1, · · · ,N

Introducing Lagrange Multipliers αi , βi (i = {1, · · · ,N}), for the
constraints, leads to the Primal Lagrangian:

Minimize LP(w, b, ξ, α, β) =
‖w‖2

2 +C
∑N

i=1 ξi +
∑N

i=1 αi{1− yi (wT xi + b)−ξi}−
∑N

i=1 βiξi

subject to αi , βi ≥ 0, i = 1, · · · ,N

Comparison note: Terms in red were not there in the separable case
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SVM - Non-separable case: The Optimization Problem
Take (partial) derivatives of LP w.r.t. w, b, ξi and set them to zero:

∂LP

∂w
= 0⇒ w =

N∑
i=1

αiyixi ,
∂LP

∂b
= 0⇒

N∑
i=1

αiyi = 0,
∂LP

∂ξi
= 0⇒ C − αi − βi = 0

Using C − αi − βi = 0 and βi ≥ 0 ⇒ αi ≤ C

Substituting these in the Primal Lagrangian LP gives the Dual
Lagrangian

Maximize LD(α) =
∑N

i=1 αi − 1
2
∑N

i ,j=1 αiαjyiyj(xTi xj)

subject to
∑N

i=1 αiyi = 0, 0 ≤ αi≤ C , i = 1, · · · ,N

This is a Quadratic Programming problem in α
Given α, the solution for w, b has the same form as the separable case
Note: α is again sparse. Nonzero αi ’s correspond to the support
vectors
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Support Vector Machine: Sparse solution
Karush-Kuhn-Tucker (KKT) conditions:

αi ≥ 0

yi (wT xi + b)− 1 + ξi ≥ 0

αi{yi (wT xi + b)− 1 + ξi} = 0

βi ≥ 0

ξi ≥ 0

βiξi = 0

Thus for every data point, either αi = 0 or yi (wTxi + b) = 1− ξi .
When αi = 0, the corresponding points do not contribute to the predictive
model.

The remaining points constitute the support vectors, i.e., those for which
αi > 0, and hence, they must satisfy yi (wTxi + b) = 1− ξi .

I If αi < C ⇒ βi > 0⇒ ξi = 0 (xi lies on the margin.)
I Points xi with αi = C can lie inside the margin and can either be

correctly classified if ξi ≤ 1 or misclassified if ξi > 1.

Once the model is trained, a significant proportion of the data points can be
discarded and only the support vectors retained.
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Support Vectors in the Non-Separable Case
The separable case has only one type of support vectors

I ones that lie on the margin boundaries wTx + b = −1 and
wTx + b = +1

The non-separable case has three types of support vectors

1 Lying on the margin boundaries wTx + b = −1 and wTx + b = +1
(ξi = 0)

2 Lying within the margin region (0 < ξi < 1) but still on the correct side
3 Lying on the wrong side of the hyperplane (ξi ≥ 1)
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Support Vector Machines: some notes

Training time of the standard SVM is O(N3) (have to solve the QP)

I Can be prohibitive for large datasets

Several extensions exist

I Nonlinear separation boundaries by applying the Kernel Trick
I More than 2 classes (multiclass classification)

Popular SVM implementations: libSVM, SVMLight, SVM-struct, etc.
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Kernel Methods: Motivation
Often we want to capture nonlinear patterns in the data

I Nonlinear Classification: Classes may not be separable by a linear
boundary

Linear models (e.g., linear SVM) are not just rich enough

Kernels: Make linear models work in nonlinear settings
I By mapping data to higher dimensions where it exhibits linear patterns
I Apply the linear model in the new input space
I Mapping means changing the feature representation

Note: Such mappings can be expensive to compute in general
I Kernels give such mappings for (almost) free
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Classifying non-linearly separable data
Consider this binary classification problem

I Each example represented by a single feature x
I No linear separator exists for this data

Now map each example as x → {x , x2}
I Each example has now two features (“derived” from the old

representation)

Data now becomes linearly separable in the new representation

Linear in the new representation means non-linear in the old representation
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Classifying non-linearly separable data

Let’s look at another example:

I Each example represented by two
features x = {x1, x2}

I No linear separator exists for this
data

Now map each example as x = {x1, x2} → z→ {x2
1 ,
√
2x1x2, x

2
2}

I Each example has now three features (“derived” from the old
representation)

I Data now becomes linearly separable in
the new representation
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Feature Mapping

Consider the following mapping φ for an example x = {x1, · · · , xn}

φ : x→ {x2
1 , x

2
2 , · · · , x2

n , x1x2, x1x3, · · · , x1xn, · · · , xn−1xn}

It’s an example of a quadratic mapping

I Each new feature uses a pair of the original features

Problem: Mapping usually leads to the number of features blow up!

I Computing the mapping itself can be inefficient in such cases
I Moreover, using the mapped representation could be inefficient too

F e.g., imagine computing the similarity between two examples:
φ(x)Tφ(z)

Thankfully, Kernels help us avoid both these issues!

I The mapping doesn’t have to be explicitly computed
I Computations with the mapped features remain efficient
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Kernels as High Dimensional Feature Mapping
Consider two examples x = {x1, x2} and z = {z1, z2}
Let’s assume we are given a function k (kernel) that takes as input x and z

The above k implicitly defines a mapping φ to a higher dimensional space

φ(x) = {x2
1 ,
√
2x1x2, x

2
2}

Note that we didn’t have to define/compute this mapping

Simply defining the kernel a certain way gives a higher dim. mapping φ

Moreover the kernel k(x , z) also computes the dot product φ(x)Tφ(z)
I φ(x)Tφ(z) would otherwise be much more expensive to compute

explicitly
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Kernels: Formally Defined

Recall: Each kernel k has an associated feature mapping φ

φ takes input x ∈ X (input space) and maps it to F (“feature space”)

Kernel k(x, z) takes two inputs and gives their similarity in F space

φ : X → F

k : X × X → R, k(x, z) = φ(x)Tφ(z)

F needs to be a vector space with a dot product defined on it

I Also called a Hilbert Space
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Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs
I Linear (trivial) Kernel:

k(x, z) = xT z (mapping function φ is identity - no mapping)

I Quadratic Kernel:

k(x, z) = (xT z)2 or (1+ xT z)2

I Polynomial Kernel (of degree d):

k(x, z) = (xT z)d or (1+ xT z)d

I Radial Basis Function (RBF) Kernel:

k(x, z) = exp[−γ‖x− z‖2]

F γ is a hyperparameter (also called the kernel bandwidth)

Note: Kernel hyperparameters (e.g., d , γ) chosen via cross-validation
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Kernelized SVM Training

Recall the SVM dual Lagrangian:

Maximize LD(α) =
∑N

i=1 αi − 1
2
∑N

i ,j=1 αiαjyiyj(xTi xj)

subject to
∑N

i=1 αiyi = 0, 0 ≤ αi≤ C , i = 1, · · · ,N

Replacing xTi xj by φ(xi )Tφ(xj) = k(xi , xj) = Kij , where k(., .) is some
suitable kernel function

Maximize LD(α) =
∑N

i=1 αi − 1
2
∑N

i ,j=1 αiαjyiyjKij

subject to
∑N

i=1 αiyi = 0, 0 ≤ αi≤ C , i = 1, · · · ,N

SVM learns a linear separator in the kernel defined feature space F
I This corresponds to a non-linear separator in the original space X
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Kernelized SVM Prediction

Prediction for a test example x (assume b = 0)

y = sign(wTx) = sign(
∑
i∈S

αiyixTxi )

S is the set of support vectors (i.e., examples for which αi > 0)
Replacing each example with its feature mapped representation
(x→ φ(x))

y = sign(wTx) = sign(
∑
i∈SV

αiyiφ(x)Tφ(xi )) = sign(
∑
i∈SV

αiyik(xi , x))
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