Neural Networks

Acknowledgments: Andrew Ng and Tom Mitchell

June 24, 2016

Neural Networks

1 / 26

Logistic Regression is not very powerful

Logistic Regression only gives linear decision boundaries in the original space.

Neural Nets for the Win!

Neural networks can learn much more complex functions and non-linear decision boundaries!

Multilayer Networks

Multilayer networks: capable of expressing a rich variety of non-linear decision surfaces.

Example: the speech recognition task

- Distinguish among 10 possible vowels spoken in the context of "h_d": hid, had, head, hood, etc.
- The input speech signal represented by two numerical parameters obtained from a spectral analysis of the sound.

A Differentiable Threshold Unit

What type of unit to use as the basis for constructing multilayer networks?

- Linear units
 - However, multiple layers of cascaded linear units still produce only linear functions
 - Want networks capable of representing highly non-linear functions.
- Perceptron unit
 - However, its discontinuous threshold makes it un-differentiable, and hence, unsuitable for gradient descent.
- Sigmoid unit
 - whose output is a nonlinear and differentiable function of its inputs.

Sigmoid Unit Representation

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \qquad w = \begin{bmatrix} w_{10} \\ w_{11} \\ w_{12} \end{bmatrix}$$

$$a_1 = \sigma(w_{10}x_0 + w_{11}x_1 + w_{12}x_2)$$

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣り(で

6 / 26

ural Networks June 24, 2016

Neural Network Representation

Input Layer Hidden Layer Output Layer

Neural Networks

Neural Network Representation

$$a_i^{(j)}$$
 = "activation" of unit i in layer j .

$$a_1^{(2)} = \sigma(w_{10}^{(1)}x_0 + w_{11}^{(1)}x_1 + w_{12}^{(1)}x_2)$$

$$a_2^{(2)} = \sigma(w_{20}^{(1)}x_0 + w_{21}^{(1)}x_1 + w_{22}^{(1)}x_2)$$

$$h_w(x) = a_1^{(3)} = \sigma(w_{10}^{(2)} a_0^{(2)} + w_{11}^{(2)} a_1^{(2)} + w_{12}^{(2)} a_2^{(2)})$$

Neural Networks

June 24, 2016

Non-Linear Classification Example: XNOR

Dataset	\mathcal{D} :

 $e_1:0,0,1$

 $e_2:0,1,0$

 $e_3:1,0,0$

 $e_4:1,1,1$

x_1	<i>x</i> ₂	$y = x_1 \text{ XNOR } x_2$
0	0	1
0	1	0
1	0	0
1	1	1

 x_1 XNOR $x_2 = x_1$ AND x_2 OR $\neg x_1$ AND $\neg x_2$

Neural Networks

$x_1 \text{ AND } x_2$

$$h_w(x) = a_1 = \sigma(-30 + 20x_1 + 20x_2)$$
 x_1
 x_2
 $y = x_1 \text{ AND } x_2$
 $\sigma(-30) \approx 0$
 $\sigma(-10) \approx 1$

Thus, $h_w(x) = x_1 \text{ AND } x_2$.

- 4 □ ▶ 4 @ ▶ 4 분 ▶ 4 분 ▶ 9 Q @

10 / 26

Neural Networks June 24, 2016

x_1 OR x_2

$$h_w(x) = a_1 = \sigma(-10 + 20x_1 + 20x_2)$$
 x_1
 x_2
 $y = x_1 \text{ OR } x_2$
 0
 $\sigma(-10) \approx 0$
 0
 1
 $\sigma(+10) \approx 1$
 1
 1
 $\sigma(+30) \approx 1$

Thus, $h_w(x) = x_1 \text{ OR } x_2$.

- 4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q ()

Neural Networks June 24, 2016 11 / 26

$\neg x_1 \text{ AND } \neg x_2$

$$h_w(x) = a_1 = \sigma(+10 - 20x_1 - 20x_2) egin{array}{c|cccc} x_1 & x_2 & y = \neg x_1 & \mathsf{AND} & \neg x_2 \\ \hline 0 & 0 & \sigma(+10) & \approx 1 \\ 0 & 1 & \sigma(-10) & \approx 0 \\ 1 & 0 & \sigma(-30) & \approx 0 \\ 1 & 1 & \sigma(-30) & \approx 0 \\ \hline \end{array}$$

Thus, $h_w(x) = \neg x_1 \text{ AND } \neg x_2$.

- 4 □ ▶ 4 @ ▶ 4 분 ▶ 4 분 ▶ 9 Q @

12 / 26

Neural Networks June 24, 2016

x_1 XNOR x_2

x_1	<i>x</i> ₂	$a_1^{(2)} = x_1 \text{ AND } x_2$	$a_2^{(2)} = \neg x_1 \text{ AND } \neg x_2$	$y = x_1 \text{ XNOR } x_2$
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

Thus, $h_w(x) = x_1 \text{ XNOR } x_2$.

◄□▶
■
■
■
●
●
●
●
●
●
●
●

13 / 26

ural Networks June 24, 2016

Other Neural Network Representations

Input Layer Hidden Layer Hidden Layer Output Layer

14 / 26

Neural Networks June 24, 2016

Multiple Output Units: One-vs-all

Pedestrian

Car

Motorcycle

Truck

$$y \in R^4$$

Want
$$h_w(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 when pedestrian, $h_w(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, when car, etc.

when pedestrian,
$$h_w(x) \approx$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, when car, etc.

Learning Neural Networks

We can derive gradient decent rules to train

- One sigmoid unit
- ullet Multilayer networks of sigmoid units o Backpropagation

Error Gradient for a Sigmoid Unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (y_d - o_d)^2
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (y_d - o_d)^2
= \frac{1}{2} \sum_{d} 2(y_d - o_d) \frac{\partial}{\partial w_i} (y_d - o_d)
= \sum_{d} (y_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)
= -\sum_{d} (y_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

Neural Networks

Error Gradient for a Sigmoid Unit

But we know:

$$\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d)$$
$$\frac{\partial net_d}{\partial w_i} = \frac{\partial (\mathbf{w}^T \cdot \mathbf{x}_d)}{\partial w_i} = x_{i,d}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (y_d - o_d) o_d (1 - o_d) x_{i,d}$$

Neural Networks

The Backpropagation Algorithm

- Learns the weights for a multilayer network, given a network with a fixed set of units and interconnections.
- Employs the gradient descent to attempt to minimize the squared error between the network output values and the target values for these outputs.
- The error function for networks with multiple output units:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (y_{kd} - o_{kd})^2,$$

where *outputs* is the set of output units in the network, y_{kd} and o_{kd} are the target and output values associated with the k^{th} output unit and training example d.

• The error function on training example d:

$$E_d(\mathbf{w}) = \frac{1}{2} \sum_{k \in outputs} (y_{kd} - o_{kd})^2,$$

4□ > 4□ > 4 = > 4 = > = 90

19 / 26

Neural Networks June 24, 2016

The Backpropagation Algorithm for Feedforward Networks with Two Layers of Sigmoid Units

Notation: x_{ji} the input from unit i into unit j, w_{ji} the corresponding weight. Initialize all weights to small random numbers (e.g., between -.05 and .05). Until satisfied, do

- For each training example x_d, do
 // Propagate the input forward through the network:
 - ▶ Input \mathbf{x}_d to the network and compute the network outputs
 - // Propagate the errors backward through the network:
 - For each output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k(1-o_k)(y_k-o_k)$$

• For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow o_h(1-o_h) \sum_{k \in outputs} w_{kh} \delta_k$$

Update each network weight w_{ji}

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$
 where $\Delta w_{ji} = \eta \delta_j x_{ji}$

Neural Networks June 24, 2016 20 / 26

Gradient Computation: Forward Propagation for Networks with Two Layers of Sigmoid Units

Given one training example (x, y): Forward propagation:

$$a^{(1)} = x$$
 $a^{(2)} = \sigma(\mathbf{w}^{(1)T}a^{(1)})$
 $a^{(3)} = \sigma(\mathbf{w}^{(2)T}a^{(2)}) = h_{\mathbf{w}}(x)$

Gradient Computation: Backpropagation for Networks with Two Layers of Sigmoid Units

$$\delta_{j}^{(I)}$$
 = "error" of node j in layer I .

For each output unit (in layer 3):

$$\delta_j^{(3)} = a_j^{(3)} (1 - a_j^{(3)}) (y_j - a_j^{(3)})$$
 Or equivalently,

$$\delta_j^{(3)} = o_j(1-o_j)(y_j-o_j)$$

For each hidden unit (in layer 2):

$$\delta_j^{(2)} = a_j^{(2)} (1 - a_j^{(2)}) \mathbf{w}_j^{(2)T} \delta^{(3)}$$

Neural Networks June 24, 20

More on Backpropagation

- The error surface of a multilayer network can have multiple local minima:
 - Gradient descent is only guaranteed to converge to a local minimum (not necessarily global minimum)
 - Backpropagation found to produce excellent results in many real-world applications.
- Backpropagation minimizes error over training examples
- ullet Training can take thousands of iterations o slow!
- Using network after training is very fast

Generalization, Overfitting, and Stopping Criterion

What is an appropriate condition for terminating the weight update loop?

- Continue training until the error *E* on the training examples falls below some predetermined threshold.
 - May overfit the training examples at the cost of decreasing generalization accuracy over other unseen examples.
- Successful method for overcoming overfitting
 - Provide a validation set to the algorithm in addition to the training set
 - Monitor the error wrt the validation set, while using the training set to derive the gradient descent search
 - ▶ Use the number of iterations that result in the *lowest error over the* validation set

Alternative Error Functions

Gradient descent can be performed for any error function E that is differentiable wrt the parameterized hypothesis space.

- Basic backpropagation algorithm defines E in terms of the sum of squared errors of the network
- Other definitions have been used that incorporate other constraints into the weight-tuning rule:
 - Penalize large weights:

$$E(\mathbf{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (y_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ji}^2$$

 Minimize the cross entropy of the network wrt the target values (when probabilistic outputs are desired)

$$-\sum_{d \in D} y_d \log o_d + (1 - y_d) \log(1 - o_d)$$

Note: for each definition of E, a new weight-tuning rule for the gradient descent must be derived

Neural Networks June 24, 2016 25 / 26

Concluding

Training a neural network:

- Pick a network architecture (connectivity pattern between neurons)
 - Number of input units: Dimension of features x_i
 - Number of output units: Number of classes
 - ▶ Reasonable default: 1 hidden layer, or if > 1 hidden layer, have the same number of hidden units in every layer
- Run forward propagation and back propagation to learn the network weights.

Neural Networks