
Neural Networks

Acknowledgments: Andrew Ng and Tom Mitchell

June 24, 2016

Neural Networks June 24, 2016 1 / 26



Logistic Regression is not very powerful

Logistic Regression only gives linear decision boundaries in the original
space.

Neural Networks June 24, 2016 2 / 26



Neural Nets for the Win!

Neural networks can learn much more complex functions and non-linear
decision boundaries!

Neural Networks June 24, 2016 3 / 26



Multilayer Networks
Multilayer networks: capable of expressing a rich variety of non-linear decision
surfaces.
Example: the speech recognition task

Distinguish among 10 possible vowels spoken in the context of “h_d": hid,
had, head, hood, etc.

The input speech signal represented by two numerical parameters obtained
from a spectral analysis of the sound.

Neural Networks June 24, 2016 4 / 26



A Differentiable Threshold Unit
What type of unit to use as the basis for constructing multilayer networks?

Linear units
I However, multiple layers of cascaded linear units still produce only

linear functions
I Want networks capable of representing highly non-linear functions.

Perceptron unit
I However, its discontinuous threshold makes it un-differentiable, and

hence, unsuitable for gradient descent.

Sigmoid unit
I whose output is a nonlinear and differentiable function of its inputs.

Neural Networks June 24, 2016 5 / 26



Sigmoid Unit Representation

x0 x0 = 1 (bias unit)
w10

x1 w11

x2 w12

a1 o = hw (x), hw (x) = 1
1+e−wT x

x =

 x0
x1
x2

 w =

 w10
w11
w12



a1 = σ(w10x0 + w11x1 + w12x2)

Neural Networks June 24, 2016 6 / 26



Neural Network Representation

w
(1)
10

w
(1)
11

w
(1)
21

w
(1)
12

w
(1)
22

w
(1)
20 w

(2)
10

w
(2)
11

w
(2)
12

x0

x1

x2

a
(2)
1

a
(3)
1

a
(2)
2

o = hw (x),

a
(2)
0

Layer 1 Layer 2 Layer 3

Input Layer Hidden Layer Output Layer

Neural Networks June 24, 2016 7 / 26



Neural Network Representation

w
(1)
10

w
(1)
11

w
(1)
21

w
(1)
12

w
(1)
22

w
(1)
20 w

(2)
10

w
(2)
11

w
(2)
12

x0

x1

x2

a
(2)
1

a
(3)
1

a
(2)
2

o = hw (x),

a
(2)
0

a
(j)
i = “activation” of unit i in layer j .

a
(2)
1 = σ(w

(1)
10 x0 + w

(1)
11 x1 + w

(1)
12 x2)

a
(2)
2 = σ(w

(1)
20 x0 + w

(1)
21 x1 + w

(1)
22 x2)

hw (x) = a
(3)
1 = σ(w

(2)
10 a

(2)
0 + w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 )

Neural Networks June 24, 2016 8 / 26



Non-Linear Classification Example: XNOR

Dataset D:
e1 : 0, 0, 1
e2 : 0, 1, 0
e3 : 1, 0, 0
e4 : 1, 1, 1

x1 x2 y = x1 XNOR x2

0 0 1
0 1 0
1 0 0
1 1 1

x1 XNOR x2 = x1 AND x2 OR ¬x1 AND ¬x2

Neural Networks June 24, 2016 9 / 26



x1 AND x2

+1

−30
x1 +20

x2 +20

a1 o = hw (x), hw (x) = 1
1+e−wT x

hw (x) = a1 = σ(−30 + 20x1 + 20x2)

x1 x2 y = x1 AND x2

0 0 σ(−30) ≈ 0
0 1 σ(−10) ≈ 0
1 0 σ(−10) ≈ 0
1 1 σ(+10) ≈ 1

Thus, hw (x) = x1 AND x2.

Neural Networks June 24, 2016 10 / 26



x1 OR x2

+1

−10
x1 +20

x2 +20

a1 o = hw (x), hw (x) = 1
1+e−wT x

hw (x) = a1 = σ(−10 + 20x1 + 20x2)

x1 x2 y = x1 OR x2

0 0 σ(−10) ≈ 0
0 1 σ(+10) ≈ 1
1 0 σ(+10) ≈ 1
1 1 σ(+30) ≈ 1

Thus, hw (x) = x1 OR x2.

Neural Networks June 24, 2016 11 / 26



¬x1 AND ¬x2

+1

+10
x1 −20

x2 −20
a1 o = hw (x), hw (x) = 1

1+e−wT x

hw (x) = a1 = σ(+10− 20x1 − 20x2)

x1 x2 y = ¬x1 AND ¬x2

0 0 σ(+10) ≈ 1
0 1 σ(−10) ≈ 0
1 0 σ(−10) ≈ 0
1 1 σ(−30) ≈ 0

Thus, hw (x) = ¬x1 AND ¬x2.

Neural Networks June 24, 2016 12 / 26



x1 XNOR x2

−30

20

−20

20

−20

10 −10

20

20

+1

x1

x2

a
(2)
1

a
(3)
1

a
(2)
2

o = hw (x),

+1

x1 x2 a
(2)
1 = x1 AND x2 a

(2)
2 = ¬x1 AND ¬x2 y = x1 XNOR x2

0 0 0 1 1
0 1 0 0 0
1 0 0 0 0
1 1 1 0 1

Thus, hw (x) = x1 XNOR x2.

Neural Networks June 24, 2016 13 / 26



Other Neural Network Representations

x1

x2

x3

a
(2)
1

a
(2)
2

a
(2)
3

a
(3)
1

a
(3)
1

a
(4)
1 o = hw (x),

Layer 1 Layer 2 Layer 3 Layer 4

Input Layer Hidden Layer Hidden Layer Output Layer

Neural Networks June 24, 2016 14 / 26



Multiple Output Units: One-vs-all

Pedestrian?

Car?estrian

Motorcycle?

Truck?trian

y ∈ R4

Want hw (x) ≈


1
0
0
0

 when pedestrian, hw (x) ≈


0
1
0
0

, when car, etc.

Neural Networks June 24, 2016 15 / 26



Learning Neural Networks

We can derive gradient decent rules to train

One sigmoid unit

Multilayer networks of sigmoid units → Backpropagation

Neural Networks June 24, 2016 16 / 26



Error Gradient for a Sigmoid Unit

∂E

∂wi
=

∂

∂wi

1
2

∑
d∈D

(yd − od)2

=
1
2

∑
d

∂

∂wi
(yd − od)2

=
1
2

∑
d

2(yd − od)
∂

∂wi
(yd − od)

=
∑
d

(yd − od)

(
−∂od
∂wi

)
= −

∑
d

(yd − od)
∂od
∂netd

∂netd
∂wi

Neural Networks June 24, 2016 17 / 26



Error Gradient for a Sigmoid Unit

But we know:
∂od
∂netd

=
∂σ(netd)

∂netd
= od(1− od)

∂netd
∂wi

=
∂(wT · xd)

∂wi
= xi,d

So:

∂E

∂wi
= −

∑
d∈D

(yd − od)od(1− od)xi,d

Neural Networks June 24, 2016 18 / 26



The Backpropagation Algorithm

Learns the weights for a multilayer network, given a network with a fixed set
of units and interconnections.

Employs the gradient descent to attempt to minimize the squared error
between the network output values and the target values for these outputs.

The error function for networks with multiple output units:

E (w) =
1
2

∑
d∈D

∑
k∈outputs

(ykd − okd)2,

where outputs is the set of output units in the network, ykd and okd are the
target and output values associated with the k th output unit and training
example d .

The error function on training example d :

Ed(w) =
1
2

∑
k∈outputs

(ykd − okd)2,

Neural Networks June 24, 2016 19 / 26



The Backpropagation Algorithm for Feedforward Networks
with Two Layers of Sigmoid Units
Notation: xji the input from unit i into unit j , wji the corresponding weight.
Initialize all weights to small random numbers (e.g., between −.05 and .05).
Until satisfied, do

For each training example xd , do
// Propagate the input forward through the network:

I Input xd to the network and compute the network outputs
// Propagate the errors backward through the network:

I For each output unit k , calculate its error term δk

δk ← ok(1− ok)(yk − ok)

I For each hidden unit h, calculate its error term δh

δh ← oh(1− oh)
∑

k∈outputs

wkhδk

I Update each network weight wji

wji ← wji + ∆wji where ∆wji = ηδjxji

Neural Networks June 24, 2016 20 / 26



Gradient Computation: Forward Propagation for Networks
with Two Layers of Sigmoid Units

Given one training example (x , y):
Forward propagation:

a(1) = x

a(2) = σ(w(1)Ta(1))

a(3) = σ(w(2)Ta(2)) = hw(x)

a(1) a(2) a(3)

Neural Networks June 24, 2016 21 / 26



Gradient Computation: Backpropagation for Networks with
Two Layers of Sigmoid Units

δ
(l)
j = “error” of node j in layer l .

For each output unit (in layer 3):

δ
(3)
j = a

(3)
j (1− a

(3)
j )(yj − a

(3)
j )

Or equivalently,
δ
(3)
j = oj(1− oj)(yj − oj)

For each hidden unit (in layer 2):

δ
(2)
j = a

(2)
j (1− a

(2)
j )w(2)T

j δ(3)

δ(2) δ(3)

Neural Networks June 24, 2016 22 / 26



More on Backpropagation

The error surface of a multilayer network can have multiple local minima:

I Gradient descent is only guaranteed to converge to a local minimum
(not necessarily global minimum)

I Backpropagation found to produce excellent results in many real-world
applications.

Backpropagation minimizes error over training examples

Training can take thousands of iterations → slow!

Using network after training is very fast

Neural Networks June 24, 2016 23 / 26



Generalization, Overfitting, and Stopping Criterion

What is an appropriate condition for terminating the weight update loop?

Continue training until the error E on the training examples falls below some
predetermined threshold.

I May overfit the training examples at the cost of decreasing
generalization accuracy over other unseen examples.

Successful method for overcoming overfitting

I Provide a validation set to the algorithm in addition to the training set
I Monitor the error wrt the validation set, while using the training set to

derive the gradient descent search
I Use the number of iterations that result in the lowest error over the

validation set

Neural Networks June 24, 2016 24 / 26



Alternative Error Functions
Gradient descent can be performed for any error function E that is differentiable
wrt the parameterized hypothesis space.

Basic backpropagation algorithm defines E in terms of the sum of squared
errors of the network

Other definitions have been used that incorporate other constraints into the
weight-tuning rule:

I Penalize large weights:

E (w) ≡ 1
2

∑
d∈D

∑
k∈outputs

(ykd − okd)2 + γ
∑
i,j

w2
ji

I Minimize the cross entropy of the network wrt the target values (when
probabilistic outputs are desired)

−
∑
d∈D

yd log od + (1− yd) log(1− od)

Note: for each definition of E , a new weight-tuning rule for the gradient descent
must be derived

Neural Networks June 24, 2016 25 / 26



Concluding

Training a neural network:

Pick a network architecture (connectivity pattern between neurons)

I Number of input units: Dimension of features xi
I Number of output units: Number of classes
I Reasonable default: 1 hidden layer, or if > 1 hidden layer, have the

same number of hidden units in every layer

Run forward propagation and back propagation to learn the network weights.

Neural Networks June 24, 2016 26 / 26


