# Social and Information Network Analysis

#### Link Analysis and Web Search

Department of Computer Science and Engineering University of North Texas

Acknowledgement: Ray Mooney

June 15, 2016

Searching the Web: The Problem of Ranking

#### Searching the Web



#### Searching the Web



# Searching the Web: The Problem of Ranking

- When issuing the single-word query "Cornell," a search engine does not have very much to go on.
  - Did the searcher want information about the university?
  - The university's hockey team?
  - Cornell College in Iowa?
  - The Nobel-Prize-winning physicist Eric Cornell?

# Searching the Web: The Problem of Ranking

- Search engines determine how to rank pages using automated methods that look at the Web itself, not some external source of knowledge.
- There must be enough information intrinsic to the Web and its structure to figure out that "Cornell University" is the best answer.

#### Web Search System



#### Key issues for search engines:

• To filter, from among an enormous number of relevant documents, the few that are most important

#### Web Search System

Understanding the network structure of Web pages is crucial for understanding what documents a search engine should return!

Back to the query "Cornell":

- No internal features of the page www.cornell.edu are really helpful:
  - "Cornell" does not necessarily occur more frequently within this page content than within others, relevant to the query

#### Web Search System

Understanding the network structure of Web pages is crucial for understanding what documents a search engine should return!

Back to the query "Cornell":

- No internal features of the page www.cornell.edu are really helpful:
  - "Cornell" does not necessarily occur more frequently within this page content than within others, relevant to the query
- Rather, features extracted from the link structure are more helpful:
  - When a page is relevant to the query "Cornell", very often it links to www.cornell.edu

Link Analysis using Hubs and Authorities

- We can use links to assess the authority of a page on a topic, through implicit endorsements that other pages on the topic confer through their links to it.
- Experiment with the query "Cornell":
  - Collect pages that are relevant to "Cornell' using IR (text-only) techniques.
  - Let these pages "vote" through their links for pages on the Web.
  - Which page on the Web receives the greatest number of in-links from pages that are relevant to Cornell?

- We can use links to assess the authority of a page on a topic, through implicit endorsements that other pages on the topic confer through their links to it.
- Experiment with the query "Cornell":
  - Collect pages that are relevant to "Cornell' using IR (text-only) techniques.
  - Let these pages "vote" through their links for pages on the Web.
  - Which page on the Web receives the greatest number of in-links from pages that are relevant to Cornell?
    - Answer: www.cornell.edu

- Experiment with the query "newspapers":
  - What is the "best" answer to the query "newspapers"?

- Experiment with the query "newspapers":
  - What is the "best" answer to the query "newspapers"?
    - No single right answer
  - Best expected answer: A list of most important ones
  - Collect pages relevant to "newspapers" and let them vote through their links
    - Result: a mix of prominent newspapers along with pages that are going to receive a lot of in-links no matter what the query is - pages like Yahoo!, Facebook, and Amazon.

#### In-Links



The unlabeled circles represent pages relevant to the query "newspaper"

#### In-Links

Four highly-ranked pages:



The unlabeled circles represent pages relevant to the query "newspaper"

3 votes

#### Finding Good Lists

- In addition to the newspapers themselves, there is another kind of useful answer to our query: pages that compile lists of resources relevant to the topic.
- If we could find good list pages for newspapers, we would have another approach to the problem of finding the newspapers themselves.
- Intuitively, these pages have some sense where the good answers are, and we score them highly as lists.
  - A page's value as a list is equal to the sum of the votes received by all pages that it voted for.

# Finding Good Lists



# Re-Weighting



#### Authorities and Hubs

- Authorities for a query are pages that are recognized as providing significant, trustworthy, and useful information on a topic
  - In-degree (number of pointers to a page) is one simple measure of authority
  - However in-degree treats all links as equal
  - Links from pages that are themselves authoritative should count more
- Hubs for a query are index pages that provide lots of useful links to relevant content pages (topic authorities)

#### Authorities and Hubs - Examples

- Authorities:
  - Newspaper home pages
  - Course home pages
  - Home pages of auto manufacturers
- Hubs
  - List of newspapers
  - Course bulletin
  - List of US auto manufacturers

# Ranking by Hyperlink-Induced Topic Search (HITS) algorithm

#### **HITS**

- Algorithm developed by Kleinberg in 1998, as part of IBM's Clever search project
- Attempts to computationally determine hubs and authorities on a particular topic through analysis of a relevant subgraph of the web
- Based on mutually recursive facts:
  - Hubs point to lots of authorities
  - Authorities are pointed to by lots of hubs

#### The HITS Algorithm

- Computes hubs and authorities for a particular topic specified by a normal query
- First determines a set of relevant pages for the query called the base set S
- Analyze the link structure of the web subgraph defined by S to find authority and hub pages in this set

#### Constructing a Base Subgraph

- For a specific query Q, let the set of documents returned by a standard search engine be called the root set R
- Initialize the base set S to R
- Add to S all pages pointed to by any page in R
- Add to S all pages that point to any page in R





#### **HITS**

Goal: Given a query, find:

Good sources of content (authorities)



• Good sources of links (hubs)



#### Intuition

Authority comes from in-edges.
 Being a good hub comes from out-edges.



Better authority comes from in-edges from good hubs.
 Being a better hub comes from out-edges to good authorities.



#### Iterative Algorithm

- Use an iterative algorithm to slowly converge on a mutually reinforcing set of hubs and authorities
- Maintain for each page  $p \in S$ :
  - Authority score:  $a_p$  (vector **a**)
  - Hub score:  $h_p$  (vector **h**)
- Initialize all  $a_p = h_p = 1$
- Maintain normalized scores:

$$\sum_{p \in S} (a_p)^2 = 1 \text{ and } \sum_{p \in S} (h_p)^2 = 1$$

## HITS Update Rules

Authorities are pointed to by lots of good hubs:

$$a_p = \sum_{q:q\to p} h_q$$

• Hubs point to lots of good authorities:

$$h_p = \sum_{q: p \to q} a_q$$

• Repeat until vectors **a** and **h** converge

#### The HITS Iterative Algorithm

- Initialize  $a_p = h_p = 1$  for all  $p \in S$
- For i = 1 to k:
  - For all  $p \in S$ : update authority scores

$$a_p = \sum_{q:q \to p} h_q$$

• For all  $p \in S$ : normalize **a** 

$$a_p = a_p/c, c : \sum_{p \in S} (a_p/c)^2 = 1$$

• For all  $p \in S$ : update hub scores

$$h_p = \sum_{q: p \to q} a_q$$

• For all  $p \in S$ : normalize **h** 

$$h_p = h_p/c, c : \sum_{p \in S} (h_p/c)^2 = 1$$

#### The HITS Iterative Algorithm

```
1 G := set of pages
2 for each page p in G do
    p.auth = 1 // p.auth is the authority score of the page p
    p.hub = 1 // p.hub is the hub score of the page p
 5 function HubsAndAuthorities(G)
    for step from 1 to k do // run the algorithm for k steps
      norm = 0
      for each page p in G do // update all authority values first
        p.auth = 0
10
        for each page q in p.incomingNeighbors do // p.incomingNeighbors is the set of pages that link to p
           p.auth += q.hub
12
        norm += square(p.auth) // calculate the sum of the squared auth values to normalise
1.3
      norm = sqrt(norm)
14
      for each page p in G do // update the auth scores
15
         p.auth = p.auth / norm // normalise the auth values
16
      norm = 0
17
      for each page p in G do // then update all hub values
        p.hub = 0
18
19
         for each page r in p.outgoingNeighbors do // p.outgoingNeighbors is the set of pages that p links to
20
           p.hub += r.auth
21
        norm += square(p.hub) // calculate the sum of the squared hub values to normalise
22
      norm = sqrt(norm)
23
      for each page p in G do // then update all hub values
24
        p.hub = p.hub / norm // normalise the hub values
```

#### Convergence

What happens if we do this for larger and larger values of k?

- Algorithm converges to a fix-point if iterated indefinitely
- In practice, 20 iterations produce fairly stable results
- Regardless of the initial hub and authority values (provided they are positive), we generally reach the same limiting values

## Finding Similar Pages Using Link Structure

- Given a page, p, let R (the root set) be t (e.g., 200) pages that point to p.
- Grow a base set S from R.
- Run HITS on S.
- Return the best authorities in S as the best similar-pages for p.
- Finds authorities in the "link neighborhood" of p.

# Similar Page Results

- Given "honda.com"
  - toyota.com
  - ford.com
  - bmwusa.com
  - saturncars.com
  - nissanmotors.com
  - audi.com
  - volvocars.com

# The PageRank Algorithm

## PageRank

#### Query-independent ranking algorithm:

- Alternative link-analysis method used by Google (Brin & Page, 1998)
- Does not attempt to capture the distinction between hubs and authorities
- Ranks pages just by authority
- Applied to the entire web rather than a local neighborhood of pages surrounding the results of a query
- The endorsement that forms the basis for the PageRank measure of importance is that a page is important if it is cited by other important pages

### Idea Behind PageRank

- Just measuring in-degree (citation count) doesn't account for the authority of the source of a link
- PageRank starts with the simple "voting" based on in-links
- Nodes repeatedly pass endorsements across their out-going links, with the weight of a node's endorsement based on the current estimate of its PageRank
  - More important nodes make stronger endorsements

#### Initial PageRank Idea

• Can view it as a process of PageRank "flowing" from pages to the pages they cite.



# Initial PageRank Algorithm

- Iterate rank-flowing process until convergence:
- Let S be the set of pages
- Initialize  $R(A) = \frac{1}{|S|} = \frac{1}{n}$  for all  $A \in S$
- Until ranks do not change (convergence)
  - For each  $A \in S$ :

$$R'(A) = \sum_{B \to A} \frac{1}{out(B)} R(B)$$

$$c=1/\sum_{A\in S}R'(A)$$

• For each  $A \in S : R(A) = cR'(A)$  (normalize)



# PageRank Algorithm - Example



What are the PageRank values after the first two updates?



# PageRank Algorithm - Example

#### Result

| Step | A    | В    | C    | D    | E    | F    | G    | H    |
|------|------|------|------|------|------|------|------|------|
| 1    | 1/2  | 1/16 | 1/16 | 1/16 | 1/16 | 1/16 | 1/16 | 1/8  |
| 2    | 3/16 | 1/4  | 1/4  | 1/32 | 1/32 | 1/32 | 1/32 | 1/16 |

#### Problem with Initial Idea

- The web is full of dead-ends
  - A group of pages that only point to themselves but are pointed to by other pages act as a "rank sink" and absorb all the rank in the system



# PageRank Algorithm - Modified Example



PageRank that flows from C to F and G can never circulate back into the network - links out of C function as a "slow leak".

#### Teleporting

- At a dead end, jump to a random web page
- At any non-dead end, with probability 10%, jump to a random web page
- With remaining probability (90%), go out on a random link
  - 10% the  $\epsilon$  parameter

$$R(A) = c \left( \epsilon/n + (1 - \epsilon) \sum_{(B,A) \in G} R(B)/out(B) \right)$$

- ullet c is a normalizing constant set so that the rank of all pages always sums to 1
- Result of teleporting: it cannot get stuck locally

# The PageRank Algorithm

- Let S be the total set of pages and n = |S|
- Choose  $\epsilon$  s.t.  $0 < \epsilon < 1$ , e.g., 0.15
- Initialize  $R(A) = \frac{1}{n}$  for all  $A \in S$
- Until ranks do not change (convergence)
  - For each  $A \in S$ :

$$R'(A) = \left[ (1 - \epsilon) \sum_{B \to A} \frac{R(B)}{out(B)} \right] + \frac{\epsilon}{n}$$
$$c = 1 / \sum_{A \in S} R'(A)$$

• For each  $A \in S : R(A) = cR'(A)$  (normalize)

#### The Random Surfer Model

- PageRank can be seen as modeling a "random surfer" that starts on a random page and then at each point:
  - With probability  $\frac{\epsilon}{n}$  randomly jumps to page A
  - Otherwise, randomly follows a link on the current page
- R(A) models the probability that this random surfer will be on page A at any given time
- "Jumps" are needed to prevent the random surfer from getting "trapped" in web sinks with no outgoing links

### Speed of Convergence

- Early experiments on Google used 322 million links
- PageRank algorithm converged (within small tolerance) in about 52 iterations

#### PageRank Retrieval

- Preprocessing:
  - Given graph of links, compute the rank of each page A
- Query processing:
  - Retrieve pages meeting query
  - Rank them by their PageRank
  - Order is query-independent
- The reality
  - PageRank is used in Google, but so are many other clever heuristics

### PageRank vs. HITS

- Computation
  - Once for all documents and queries (offline)
- Query-independent
  - Requires combination with query-dependent criteria

- Computation
  - Requires computation for each query
- Query-dependent
- Quality depends on quality of start set
- Gives hubs as well as authorities

# Link Analysis Conclusions

- Link analysis uses information about the structure of the web graph to aid search
- It is one of the major innovations in web search
- It is the primary reason for Google's success