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Abstract—Recent advances in next-generation sequencing
technologies have resulted in an exponential increase in the rate
at which protein sequence data are being acquired. The k-gram
feature representation, commonly used for protein sequence
classification, usually results in prohibitively high dimensional
input spaces, for large values of k. Applying data mining
algorithms to these input spaces may be intractable due to
the large number of dimensions. Hence, using dimensionality
reduction techniques can be crucial for the performance and
the complexity of the learning algorithms. In this paper, we
study the applicability of a recently introduced feature hashing
technique to protein sequence classification, where the original
high-dimensional space is “reduced” by hashing the features,
using a hash function, into a lower-dimensional space, i.e.,
mapping features to hash keys, where multiple features can be
mapped (at random) to the same hash key, and “aggregating”
their counts. We compare feature hashing with the “bag of k-
grams” and feature selection approaches. Our results show
that feature hashing is an effective approach to reducing
dimensionality on protein sequence classification tasks.

Keywords-feature hashing; variable length k-grams; dimen-
sionality reduction.

I. INTRODUCTION

Many problems in computational biology, e.g., protein
function prediction, subcellular localization prediction, etc.,
can be formulated as sequence classification tasks [1], where
the amino acid sequence of a protein is used to classify the
protein in functional and localization classes.

Protein sequence data contain intrinsic dependencies be-
tween their constituent elements. Given a protein sequence
x = x0, · · · , xn−1 over the amino acid alphabet, the de-
pendencies between neighboring elements can be modeled
by generating all the contiguous (potentially overlapping)
sub-sequences of a certain length k, xi−k, · · · , xi−1, i =
k, · · · , n, called k-grams, or sequence motifs. Because the
protein sequence motifs may have variable lengths, generat-
ing the k-grams can be done by sliding a window of length
k over the sequence x, for various values of k.

Exploiting dependencies in the data increases the richness
of the representation. However, the fixed or variable length
k-gram feature representations, used for protein sequence
classification, usually results in prohibitively high dimen-
sional input spaces, for large values of k. Applying data
mining algorithms to these input spaces may be intractable

due to the large number of dimensions. Hence, using di-
mensionality reduction techniques can be crucial for the
performance and the complexity of the learning algorithms.

Models such as Principal Component Analysis [2], Latent
Dirichlet Allocation [3] and Probabilistic Latent Semantic
Analysis [4] are widely used to perform dimensionality
reduction. Unfortunately, for very high-dimensional data,
with hundreds of thousands of dimensions (e.g., 160, 000
4-grams), processing data instances into feature vectors at
run time, using these models, is computationally expensive,
e.g., due to inference at runtime in the case of LDA.

A less expensive approach to dimensionality reduction
is feature selection [5], [6], which reduces the number of
features by selecting a subset of the available features based
on some chosen criteria. In particular, feature selection by
average mutual information [7] selects the top features that
have the highest average mutual information with the class.
The main disadvantages of feature selection are: (i) feature
selection requires storing in memory the vocabularies of k-
grams, which can become difficult given today’s very large
collections of protein sequences, resulted due to progress on
sequencing technologies [8]; and (ii) it does not allow for
learning online features.

Recently, a new approach to dimensionality reduction,
called feature hashing has been introduced for text classifi-
cation [9], [10], [11], [12], which offers a very inexpensive,
yet effective, approach to reducing the number of features
provided as input to a learning algorithm, and overcomes the
disadvantages of feature selection. Feature hashing allows
random collisions into the latent factors. Specifically, the
original high-dimensional space is “reduced” by hashing the
features, using a hash function, into a lower-dimensional
space, i.e., mapping features to hash keys, where multiple
features can be mapped (at random) to the same hash
key, and “aggregating” their counts. Figure 1 shows the
application of feature hashing on sparse high-dimensional
feature spaces. Although very effective for reducing the
number of features from very high dimensions (e.g., 222)
to mid-size dimensions (e.g., 216), feature hashing can
result in significant loss of information, especially when
hash collisions occur between highly frequent features, with
significantly different class distributions.

In this paper, we study the applicability of feature hashing
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Figure 1: Feature hashing on sparse high-dimensional feature spaces. Hashing is performed to reduce very high dimensions
to mid-size dimensions, which does not significantly distort the data.

to protein sequence classification and address three main
questions: (i) What is the influence of the hash size on the
performance of protein sequence classifiers that use hash
features, and what is the hash size at which the performance
starts degrading, due to hash collisions? (ii) How effective
is feature hashing on prohibitively high dimensional k-gram
representations? (iii) How does the performance of feature
hashing compare to that of feature selection by average
mutual information?

The results of our experiments on the three protein sub-
cellular localization data sets show that feature hashing is
an effective approach to reducing dimensionality on protein
sequence classification tasks.

The paper is organized as follows. In Section 2, we discuss
the related work. We then provide background on feature
selection and feature hashing in Section 3. Section 4 presents
experiments and results, and Section 5 concludes the paper.

II. RELATED WORK

Feature Selection. Feature selection [5], [13], [7], is
a dimensionality reduction technique, which attempts to
remove redundant or irrelevant features in order to improve
classification performance of learning algorithms. Feature
selection methods have been widely used in Bioinformatics
for tasks such as sequence analysis, e.g., prediction of
protein function from sequence, gene prediction, where the
features could be the amino acids or k-grams; microarray
analysis; mass spectra analysis; and single nucleotide poly-
morphisms (SNPs) analysis, among others (see [14] for a
review and the citations therein).

Topic models. Topic models, such as Latent Dirichlet
Allocation (LDA) [3], Probabilistic Latent Semantic Anal-
ysis (PLSA) [4], and Latent Semantic Indexing (LSI) [15]
are dimensionality reduction models, designed to uncover
hidden topics, i.e., clusters of semantically related words
that co-occur in the documents. LSI uses singular value
decomposition to identify topics, which are then used to
represent documents in a low dimensional “topic” space.
LDA models each document as a mixture of topics (drawn

from a conjugate Dirichlet prior), and each topic as a
distribution over the words in the vocabulary.

LDA has recently emerged as an important tool for
modeling protein data. For example, Airoldi et al. [16]
proposed the mixed membership stochastic block models to
learn hidden protein interaction patterns. Pan et al. [17] used
LDA to discover latent topic features, which correspond to
hidden structures in the protein data, and input these features
to random forest classifiers to predict protein interactions.
However, topic models are computationally expensive, for
example, LDA requires inference at runtime to estimate the
topic distribution.

Feature Abstraction. Feature abstraction methods [18],
[19] are data organization techniques, designed to reduce a
model input size by grouping “similar” features into clusters
of features. Specifically, it learns an abstraction hierarchy
over the set of features using hierarchical agglomerative
clustering, based on the Jensen-Shannon divergence. A
cut through the resulting abstraction hierarchy specifies a
compressed model, where the nodes (or abstractions) on
the cut are used as “features” in the classification model.
Baker and McCallum [18] applied feature abstraction to
reduce the dimensionality of the feature space for document
classification tasks. Silvescu et al. [19] used it to simplify
the data representation provided to a learner on biological
sequence classification tasks.

Feature Hashing. Shi et al. [9] and Weinberger et al.
[10] presented hash kernels to map the high dimensional
input spaces into lower dimensional spaces for large scale
classification and large scale multitask learning (i.e., person-
alized spam filtering for hundreds of thousands of users),
respectively. Ganchev and Dredze [20] empirically showed
that hash features can produce accurate results on various
NLP applications. Forman and Kirshenbaum [11] proposed
a fast feature extraction approach by combining parsing and
hashing for text classification and indexing.

Hashing techniques have been also used in Bioinformat-
ics. For example, Wesselink et al. [21] applied hashing to
find the shortest contiguous subsequence that uniquely iden-



tifies a DNA sequence from a collection of DNA sequences.
Buhler and Tompa [22] applied Locality-Sensitive Hash-
ing (LSH) [23], a random hashing/projection technique, to
discover transcriptional regulatory motifs in eukaryotes and
ribosome binding sites in prokaryotes. Furthermore, Buhler
[24] applied LSH to find short ungapped local alignments on
a genome-wide scale. Shi et al. [9] used hashing to compare
all subgraph pairs on biological graphs.

In contrast to the approaches above, we used feature hash-
ing, a very inexpensive approach, to reduce dimensionality
on protein sequence classification tasks, and compared it
with feature selection by average mutual information.

Markov models. In the context of protein sequence
classification, it is worth mentioning the fixed and variable-
order Markov models (MMs), which capture dependencies
between neighboring sequence elements. MMs are among
the most widely used generative models of sequence data
[25]. In a kth order MM, the sequence elements satisfy the
Markov property: each element is independent of the rest
given the k preceding elements. One main disadvantages of
MMs in practice is that the number of parameters increases
exponentially with the range k of direct dependencies,
thereby increasing the risk of overfitting. Begleiter et al.
[26] (and papers cited therein) have examined methods for
prediction using variable order MMs, including probabilistic
suffix trees, which can be viewed as variants of abstraction
wherein the abstractions are constrained to share suffixes.

III. METHODS

The traditional k-gram approaches construct a vocabulary
of size d, which contains all k-grams in a protein data set. A
protein sequence is represented as a vector x with as many
entries as the number of k-grams in the vocabulary. For a
protein sequence, an entry i in x can record the frequency
of k-gram i in the sequence, denoted by xi. Because only a
small number of k-grams (compared to the vocabulary size)
occur in a particular sequence, the representation of x is very
sparse, i.e., only a small number of entries of x are non-zero.
However, storing the parameter vectors in the original input
space requires O(d) numbers, which can become difficult
given today’s very large collections of protein and DNA
sequence data.

Feature selection reduces the size of the parameter vectors
by selecting a subset of features from the original features,
but still requires a mapping from strings to integers. Feature
hashing eliminates the need for such a requirement by
implicitly encoding the mapping into a hash function.

Next, we briefly overview feature selection and feature
hashing.

A. Feature Selection by Average Mutual Information

Feature selection can be used to perform dimensionality
reduction by selecting a subset F of features from the set
of k-grams (of size d) such that |F| = b. The features are

Algorithm 1 Feature Hashing

Input: Protein sequence x; hash functions h and ξ, h :
S → {0, · · · , b− 1}, ξ : S → {±1}.
Output: Hashed feature vector xh.
xh := [0, · · · , 0];
for all k-gram ∈ x do
i = h(k-gram) % b; // Places k-grams into hash bins, from 0 to b-1.

xhi = xhi + ξ(k-gram); // Updates the ith hash feature value.

end for
return xh // Records values of hash features.

ranked according to a scoring function and the top m best
ranked features are selected.

As the scoring function, we used the average mutual
information [27] between the class variable Y and the
random variable over the absence or presence of a feature
xi in a document, denoted by Xi, which takes values 0 or
1, respectively. The average mutual information is defined
as follows:

I(Y,Xi) = H(Y )−H(Y |Xi) (1)

=
∑

Y ∈{yl}

∑
Xi∈{0,1}

p(Y,Xi) log
p(Y,Xi)

p(Y )p(Xi)

where H(Y ) is the entropy of the class variable, and
H(Y |Xi) is the entropy of the class variable conditioned
on the absence or presence of feature xi. The probability
p(Y,Xi) is estimated from counts gathered from D, and
p(Y ) and p(Xi) are obtained by marginalizing p(Y,Xi).

The feature selection representation. Let (x, y) be an
instance in D. The “bag of k-grams” representation of (x, y)
is given by: (#x1, · · · ,#xd, yl), where #xi, i = 1, · · · , d,
represents the frequency counts of the k-gram xi in the
protein sequence x. Given the selected set of features
F = {xi1 , · · · , xib}, the instance (x, y) is transformed into
(#xi1 , · · · ,#xib , y) (see Figure 2a).

B. Feature Hashing

Feature hashing [9], [10], [11], [12] is a dimensionality re-
duction technique, in which high-dimensional input vectors
x of size d are hashed into lower-dimensional feature vectors
xh of size b. The procedure for hashing a protein sequence
x is shown in Algorithm 1 (see also Figure 1). Let S denote
the set of all possible strings (or k-grams) and h and ξ
be two hash functions, such that h : S → {0, · · · , b − 1}
and ξ : S → {±1}, respectively. For a protein sequence
x, each k-gram in x is directly mapped, using h1, into
a hash key, which represents the index of the k-gram in
the feature vector xh, such that the hash key is a number
between 0 and b − 1. Each index in xh stores the value

1Note that h can be any hash function, e.g. hashCode() of the
Java String class, or murmurHash function available online at
http://sites.google.com/site/murmurhash/.



(“frequency counts”) of the corresponding hash feature. The
hash function ξ indicates whether to increment or decrement
the hash dimension of the k-gram, which renders the hash
feature vector xh to be unbiased (see [10] for more details).

Thus, an entry i in xh records the “frequency counts” of
k-grams that are hashed together into the same hash key i.
That is,

xhi =
∑

k:h(k)=i

ξ(k)xk, (2)

for k = 0, · · · , d − 1 and i = 0, · · · , b − 1. Note that in
the trivial case of ξ ≡ 1, xhi represents the actual frequency
counts (see Figure 2b).

As can be seen, multiple k-grams can be mapped, through
h, into the same hash key. According to Birthday Paradox,
if there are at least

√
b features, then collisions are likely to

happen [9], and hence, useful information for high accuracy
classification could be lost through feature hashing. The k-
grams in a collection of protein sequences typically follow a
Zipf distribution, i.e., only very few k-grams occur with high
frequency, whereas the majority of them occur very rarely
(see Figure 3). Because hash collisions are independent of
k-gram frequencies, most collisions are likely to happen
between infrequent k-grams. Weinberger et al. [10] have
proven that, for a feature vector x such that ‖x‖2 = 1,
the length of x is preserved with high probability, for
sufficiently large dimension (or hash size) b and sufficiently
small magnitude of x, i.e., ‖x‖∞ (lower and upper bounds
are theoretically derived).

However, for many practical applications, the value of b
can be smaller than the theoretical lower bound. This may
be problematic as the smaller the size of the hash vector xh

becomes, the more collisions occur in the data. Even a single
collision of very high frequency words with different class
distributions, can result in significant loss of information.

IV. EXPERIMENTS AND RESULTS

In this section, we empirically study the applicability of
feature hashing on three protein subcellular localization data
sets: psortNeg2 introduced in [28], plant, and non-plant3

introduced in [29].
The psortNeg data set is extracted from PSORTdb v.2.0

Gram-negative sequences, which contains experimentally
verified localization sites. Our data set consists of all proteins
that belong to exactly one of the following five classes:
cytoplasm (278), cytoplasmic membrane (309), periplasm
(276), outer membrane (391) and extracellular (190). The
total number of examples (proteins) in this data set is 1444.

The plant data set contains 940 examples belonging
to one of the following four classes: chloroplast (141),
mitochondrial (368), secretory pathway/signal peptide (269)

2www.psort.org/dataset/datasetv2.html
3www.cbs.dtu.dk/services/TargetP/datasets/datasets.php

and other (consisting of 54 examples with label nuclear and
108 examples with label cytosolic).

The non-plant data set contains 2738 examples, each
in one of the following three classes: mitochondrial (361),
secretory pathway/signal peptide (715) and other (consisting
of 1224 examples labeled nuclear and 438 examples labeled
cytosolic).

A. Experimental Design

Our experiments are designed to explore the following
questions: (i) What is the influence of the hash size on the
performance of biological sequence classifiers that use hash
features, and what is the hash size at which the performance
starts degrading, due to hash collisions? (ii) How effective
is feature hashing on prohibitively high dimensional k-gram
representations? (iii) How does the performance of feature
hashing compare to that of feature selection by average
mutual information?

To answer these questions, we proceed with the following
steps. We first preprocess the data by generating all the k-
grams from each collection of sequences, i.e., generating all
the contiguous (potentially overlapping) sub-sequences of
length k, for various values of k. This is done by sliding
a window of length k over sequences in each data set.
Note that if a k-gram does not appear in the data, it is not
considered as a feature4.

Given a protein sequence x, we apply feature hashing in
two settings as follows: (i) We first generate all the k-grams
of a fixed length k, i.e., k = 3. Each such k-gram is then
hashed into a hash key. We refer to this setting as the fixed-
length k-grams; (ii) We then generate all the k-grams of
various lengths k, for values of k = 1, 2, 3, and 4. Thus,
this setting uses the union of k-grams, for values of k from
1 to 4. Each such k-gram, i.e., unigram, 2-gram, 3-gram, or
4-gram, is hashed into a hash key. We refer to this setting
as the variable-length k-grams.

We train Support Vector Machine (SVM) classifiers [30]
on hash features, in both settings, fixed-length and variable-
length k-grams, and investigate the influence of the hash size
on the performance of the classifiers. Specifically, we train
SVM classifiers for values of the hash size ranging from a
1 bit hash to a 22 bit hash, in steps of 1, and compare their
performance.

Furthermore, we apply feature hashing to the sparse
high dimensional variable-length k-gram representations to
reduce the dimensionality to a mid-size b-dimensional space,
e.g., b = 216 or b = 214, and compare the performance
of SVM classifiers trained using hashed features with that
of their corresponding counterparts trained using feature
selection.

4The number of unique k-grams is exponential in k. However, for large
values of k, many of the k-grams may not appear in the data (and,
consequently, their frequency counts are zero). Note that the number of
unique k-grams is bounded by the cardinality of the multiset of k-grams.
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Figure 2: The transformation of “bag of k-grams” into: (a) feature selection, and (b) feature hashing representations.
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Figure 3: The variable length k-grams in each protein data set: (a) non-plant, (b) plant, and (c) psortNeg, follow a Zipf
distribution, i.e., only very few k-grams occur with high frequency, whereas the majority of them occur very rarely.

Specifically, the feature representations used in each case
are the following:
• a bag of b variable-length k-grams chosen from all d

variable-length k-grams, using feature selection by av-
erage mutual information (See Section III.C for details).
This experiment is denoted by FS.

• a bag of b hash features obtained using feature hashing
over all d variable-length k-grams, i.e., for each k-gram,
feature hashing produces an index i such that i = h(k-
gram) % b. This experiment is denoted by FH.

In our experiments, for SVM, we used the LibLinear
implementation5. As for the hash function, we experimented
with both the hashCode of the Java String class, and
murmurHash. We found that the results are not signifi-
cantly different from one another in terms of the number of
hash collisions and classification accuracy. We also experi-
mented with both ξ : S → {±1} and ξ ≡ 1 - actual counts,
and found that the results were not significantly different.
The results shown in the next subsection use the hashCode
function and ξ ≡ 1.

On all data sets, we report the average classification
accuracy obtained in a 5-fold cross validation experiment.
The results are statistically significant (p < 0.05). The

5Available at http://www.csie.ntu.edu.tw/ cjlin/liblinear/

Bag of fixed or non-plant
variable length k-grams Accuracy % # features
1-grams 71.21 20
2-grams 70.85 400
3-grams 79.80 7999
4-grams 79.03 146598
(1-2)-grams 70.56 420
(1-3)-grams 79.69 8419
(1-4)-grams 82.83 155017
(1-5)-grams 80.09 950849

Table I: The performance of SVM classifiers trained using
feature hashing on fixed length, 1-, 2-, 3-, 4-gram repre-
sentations, as well as variable length, (1-2)-, (1-3)-, (1-4)-,
(1-5)-grams representations, where the hash size is set to
222, on the non-plant data set.

classification accuracy is shown as a function of the number
of features. The x axis of all figures in the next subsection
shows the number of features on a log2 scale (i.e., number
of bits in the hash-table).

B. Results

Comparison of fixed length k-gram representations
with variable length k-gram representations. Table I
shows, on the non-plant data set, the performance of SVM
classifiers trained using feature hashing on fixed length
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Figure 4: Comparison of feature hashing with the “bag of variable length k-grams” approach, referred as baseline, and feature
selection on the protein data sets: (a) non-plant, (b) plant, and (c) psortNeg, respectively, using (1-4)-grams representations.

as well as variable length k-gram representations, where
the hash size is set to 222. As seen in the table, the
performance of SVMs trained on fixed length k-gram rep-
resentations is worse than that of SVM classifiers trained
using variable length k-gram representations, with (1-4)-
grams representation (i.e., k ranging from 1 to 4), resulting
in the highest performance. This is expected as the protein
sequence motifs, i.e., k-grams, have variable length. Hence,
the performance of SVM classifiers trained using variable
length k-gram representations increases as we add more
dependencies in the data (i.e., larger values of k), but starts
decreasing as k becomes greater than or equal to 5, due to
overfitting.

The number of variable length k-grams, for k ranging
from 1 to 4, is 155, 017. Feature hashing eliminates the
need for storing the vocabularies in memory by implicitly
encoding the mapping from strings to integers into a hash
function, and at the same time, allows for learning new
online features. Similar results are obtained for the plant
and psortNeg data sets (data not shown).

We conclude that feature hashing is very effective on pro-
hibitively high-dimensional n-gram representations, which
would otherwise be impractical to use, resulting in memory-
efficiency.

Because (1-4)-grams representation results in the highest
performance, we used it for subsequent experiments.

The influence of hash sizes on classifiers’ performance.
Figures 4a, 4b, and 4c show the influence of the hash size
b on the performance of the SVM classifiers, trained using
variable-length k-grams as feature representations, on the
three protein data sets used in this study, non-plant, plant,
and psortNeg, respectively. The values of b range from 210

to 222.
As can be seen in the figures, as the hash size b increases

from 210 to 222, the performance of SVM classifiers in-
creases as well, due to a smaller rate of hash collisions

for larger values of b. Table II shows, on all three data
sets used, the number of unique features and the percentage
of collisions for various hash sizes. The number of unique
features is calculated as the number of non-empty entries in
the hash vector, and the number of collisions as the number
of entries with at least one collision. Note that the percentage
of collisions below 214 is 100%.

As the hash size increases beyond 216, the performance
of SVM classifiers does not change substantially, and, even-
tually, converges. For example, on the non-plant data set,
with 216 hash size, SVM achieves 81.3% accuracy, whereas
with 222 hash size, SVM achieves an accuracy of 82.83%
(Figure 4a). On the plant data set, SVMs achieve 78.4% and
78.51% accuracy, with 216 and 222 hash sizes, respectively
(Figure 4b). Furthermore, as the hash size increases beyond
216, the percentage of hash collisions decreases until no
collisions occur (Table II). For all three data sets, with 222

hash size, there are no hash collisions. The performance of
SVMs trained on hash features in the 222 dimensional space
is matched by that of SVMs trained on hash features in the
218 dimensional space, suggesting that the hash collisions
beyond 218 does not significantly distort the data.

Because 222 (= 4, 194, 304) highly exceeds the number of
unique features, and the rate of hash collisions becomes zero,
this can be regarded as equivalent to the classifiers trained
without hashing, which require storing the vocabularies in
memory, referred as baseline (Figure 4). Moreover, we
considered 216 as the point where the performance starts
degrading. Note that the vocabulary sizes, i.e., the number
of unique variable length k-grams, for non-plant, plant, and
psortNeg, are 155, 017, 111, 544, and 124, 389, respectively.

We conclude that, if feature hashing is used to reduce
dimensionality from very large dimensions, e.g., 222 to
mid-size dimensions, e.g., 216, the hash collisions do not
substantially hurt the classification accuracy, whereas if it is
used to reduce dimensionality from mid-size dimensions to



Value of b non-plant plant psortNeg
# features Collisions % # features Collisions % # features Collisions %

222 155017 0 111544 0 124389 0
220 153166 1.21 110236 1.18 122894 1.22
219 147223 5.29 107299 3.95 118871 4.64
218 132754 16.30 99913 11.43 109535 13.22
217 99764 45.04 82141 31.38 87618 35.66
216 59358 78.53 53616 64.29 55555 68.85
215 32474 95.80 31788 89.56 32075 92.02
214 16384 100 16384 100 16384 100

Table II: The number of unique features (denoted as # features) as well as the rate of collisions on non-plant, plant, and
psortNeg data sets, respectively, for variable length k-gram representations, where k varies from 1 to 4.

smaller dimensions, e.g., 210, the hash collision significantly
distort the data, and the corresponding SVM classifiers result
in poor performance.

Comparison of feature hashing with baseline and
feature selection. Figures 4a, 4b, and 4c also show the
results of the comparison of feature hashing (FH) with
baseline, i.e., the “bag of k-grams”, and feature selection
(FS) on the three protein data sets, non-plant, plant, and
psortNeg, respectively, for (1-4)-grams representations.

As can be seen in the figures, feature hashing makes
it possible to train SVM classifiers that use substantially
smaller number of dimensions compared to the baseline, for
a small or no drop in accuracy, for hash sizes between 216

and 222. Furthermore, the performance of SVM classifiers
trained using feature hashing is similar or slightly better
compared to that of SVMs trained using feature selection,
for hash sizes greater than 216. For example, for 218 on non-
plant, the SVM trained using feature hashing achieves an
accuracy of 82.83%, whereas the SVM trained using feature
selection, for the same hash size, achieves an accuracy of
81.37%. This can be due to removal of important sequence
patterns, i.e., motifs, during the selection process. As the
hash size decreases below 216 (and the hash collisions
significantly distort the data), feature selection significantly
outperforms feature hashing, for the same choice of the
hash size. For example, for 214, on non-plant, the SVMs
trained using feature hashing and feature selection achieve
an accuracy of 78.67% and 80.13%, respectively. However,
for different choices of the hash size, the performance of
feature selection is smaller than that of feature hashing, e.g.,
on the non-plant data set, with 214, the accuracy of feature
selection is 80.13%, whereas on the same data set, with 218,
the accuracy of feature hashing is 82.83%.

We conclude that feature hashing results in slightly more
accurate models compared to feature selection, for relatively
large hash sizes. As the hash size decreases, feature se-
lection significantly outperforms feature hashing, for the
same choice of the hash size. However, similar to the
baseline, feature selection requires storing the vocabularies
in memory, and does not allow for learning new, online
features.

V. CONCLUSION

We presented an application of feature hashing to reduce
dimensionality of very high-dimensional feature vectors
to mid-size feature vectors on protein sequence data. We
compared feature hashing with feature selection, which is
another dimensionality reduction technique.

The results of our experiments on three protein subcel-
lular localization data sets show that feature hashing is
an effective approach to dealing with prohibitively high-
dimensional variable length k-gram representations. Feature
hashing makes it possible to train SVM classifiers that
use substantially smaller number of features compared to
the approach which requires storing the vocabularies in
memory, i.e., the “bag of k-grams” approach, while resulting
in a small or no decrease in classification performance.
Moreover, feature hashing results in slightly more accurate
models compared to feature selection, for relatively large
hash sizes. As the hash size decreases, feature selection
significantly outperforms feature hashing. However, feature
hashing has two main advantages over the “bag of k-grams”
approach and feature selections, which are as follows: (i)
does not require storing the vocabularies in memory, and
(ii) allows for learning new, online features at runtime.

Because recent advances in sequencing technologies have
resulted in an exponential increase in the rate at which
DNA and protein sequence data are being acquired [8], the
application of feature hashing on biological sequence data
advances the current state of the art in terms of algorithms
that can efficiently process high-dimensional data into low-
dimensional feature vectors at runtime.

In the future, it would be interesting to investigate how the
performance of hash kernels compares to that of histogram-
based motif kernels for protein sequences, introduced by
Ong and Zien [31], and the mismatch string kernels for SVM
protein classification introduced by Lesli et al. [32]. Along
the lines of dimensionality reduction, it would be interesting
to compare the performance of feature hashing with that of
feature abstraction [19] on protein sequence classification
tasks. Furthermore, another direction is to apply feature
hashing to other types of biological sequence data, e.g., DNA
data, and other tasks, e.g., protein function prediction.
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lection techniques in bioinformatics,” Bioinformatics, vol. 23,
pp. 2507–2517, 2007.

[15] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman, “Indexing by latent semantic analysis,”
Journal of the American Society for Information Science,
vol. 41, no. 6, pp. 391–407, 1990.

[16] E. Airoldi, D. Blei, S. Fienberg, and E. Xing, “Mixed
membership stochastic block models for relational data with
application to protein-protein interactions,” in In Proc. of the
Intl. Biometrics Society-ENAR Annual Meeting, 2006.

[17] X.-Y. Pan, Y.-N. Zhang, and H.-B. Shen, “Large-scale pre-
diction of human proteinprotein interactions from amino acid
sequence based on latent topic features,” Journal of Proteome
Research, vol. 9, no. 10, pp. 4992–5001, 2010.

[18] D. Baker and A. McCallum, “Distributional clustering of
words for text classification.” in Proc. of SIGIR-98, 1998.

[19] A. Silvescu, C. Caragea, and V. Honavar, “Combining super-
structuring and abstraction on sequence classification,” in
ICDM, 2009, pp. 986–991.

[20] K. Ganchev and M. Dredze, “Small statistical models by
random feature mixing,” in Proceedings of the ACL-2008
Workshop on Mobile Language Processing. Association for
Computational Linguistics, 2008.

[21] J.-J. Wesselink, B. delaIglesia, S. A. James, J. L. Dicks, I. N.
Roberts, and V. Rayward-Smith, “Determining a unique defin-
ing dna sequence for yeast species using hashing techniques.”
Bioinformatics, vol. 18, no. 2, pp. 1004–10, 2002.

[22] J. Buhler and M. Tompa, “Finding motifs using random
projections,” in Proceedings of the fifth annual international
conference on Computational biology, ser. RECOMB ’01,
2001, pp. 69–76.

[23] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in Proceed-
ings of the thirtieth annual ACM symposium on Theory of
computing, ser. STOC ’98, 1998, pp. 604–613.

[24] J. Buhler, “Efficient large-scale sequence comparison by
locality-sensitive hashing,” Bioinformatics, vol. 17, no. 5, pp.
419–428, 2001.

[25] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biolog-
ical sequence analysis: Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press., 2004.

[26] R. Begleiter, R. El-Yaniv, and G. Yona, “On prediction
using variable order markov models,” Journal of Artificial
Intelligence Res., vol. 22, pp. 385–421, 2004.

[27] T. M. Cover and J. A. Thomas, Elements of Information
Theory. John Wiley, 1991.

[28] J. L. Gardy, C. Spencer, K. Wang, M. Ester, G. E. Tusnady,
I. Simon, S. Hua, K. deFays, C. Lambert, K. Nakai, and
F. S. Brinkman, “Psort-b: improving protein subcellular local-
ization prediction for gram-negative bacteria,” Nucleic Acids
Research, vol. 31, no. 13, pp. 3613–17, 2003.

[29] O. Emanuelsson, H. Nielsen, S. Brunak, and G. von Heijne,
“Predicting subcellular localization of proteins based on their
n-terminal amino acid sequence.” J. Mol. Biol., vol. 300, pp.
1005–1016, 2000.

[30] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin, “LIBLINEAR: A library for large linear classification,”
J. of Machine Learning Res., vol. 9, pp. 1871–1874, 2008.

[31] C. S. Ong and A. Zien, “An automated combination of kernels
for predicting protein subcellular localization.” in Proc. of
WABI, 2008, pp. 186–179.

[32] C. Leslie, E. Eskin, J. Weston, and W. S. Noble, “Mismatch
string kernels for svm protein classification,” in Advances in
Neural Information Processing Systems (NIPS 2002), 2002.


