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Abstract

The task of scholarly keyphrase boundary clas-
sification aims at identifying keyphrases from
scientific papers and classifying them with their
types from a set of predefined classes (e.g., task,
process, or material). Despite the importance of
keyphrases and their types in many downstream
applications including indexing, searching, and
question answering over scientific documents,
scholarly keyphrase boundary classification is
still an under-explored task. In this work, we
propose a novel embedding constraint on multi-
task knowledge distillation which enforces the
teachers (single-task models) and the student
(multi-task model) similarity in the embedding
space. Specifically, we enforce that the student
model is trained not only to imitate the teachers’
output distribution over classes, but also to pro-
duce language representations that are similar
to those produced by the teachers. Our results
show that the proposed approach outperforms
previous works and strong baselines on three
datasets of scientific documents.

1 Introduction

Scholarly keyphrase boundary classification is the
task of identifying highly summative phrases from
scientific papers and classifying them into a set
of pre-defined classes (Augenstein et al., 2017;
Augenstein and Søgaard, 2017). In a scientific
domain, keyphrases and their classes, e.g., task,
process, or material, are critical for many down-
stream applications including effectively mining,
searching, and analyzing the scientific literature
(Augenstein et al., 2017); promoting an efficient
understanding of what methods, processes, tasks,
or resources are being used or proposed in a given
paper and how to track them over time (Uban
et al., 2021); scientific paper summarization (Abu-
Jbara and Radev, 2011; Qazvinian et al., 2010);
keyphrase-based question answering (Quarteroni
and Manandhar, 2006); machine comprehension
(Subramanian et al., 2018); scientific paper rec-

ommendation (Chen et al., 2015); topic classifica-
tion (Sadat and Caragea, 2022; Onan et al., 2016;
Caragea et al., 2015); and, more broadly, data aug-
mentation for NLP tasks (Li et al., 2023a,b).

The scholarly keyphrase boundary classification
(SKBC) task shares similarities with the named
entity recognition (NER) task. Specifically, NER
aims to identify entities’ boundaries and classify
them into pre-defined categories (e.g.,‘U.N.’ is an
‘organization’ entity) (Collobert et al., 2011). Sim-
ilarly, SKBC aims to identify the boundary of
keyphrases or entities in scientific text and clas-
sify them into a set of pre-defined classes (e.g.,
‘WebVision’ is a ‘dataset’ entity and ‘object detec-
tion’ is a ‘task’ entity). NER (Tjong Kim Sang and
De Meulder, 2003; Ratinov and Roth, 2009; Col-
lobert et al., 2011; Lample et al., 2016) is treated
as a fundamental task in NLP because the named
entities often convey the key information of a text.
Similar to NER, the key information of the scien-
tific discourse available in research papers revolves
around scientific entities (e.g., datasets, tasks, mod-
els). Despite that much research has been done on
NER (Bodapati et al., 2019; Yu et al., 2020; Chen
et al., 2020; Tabassum et al., 2020; Jia and Zhang,
2020; Li et al., 2020; Yan et al., 2021; Zhou et al.,
2022; Zhang et al., 2022; Liu and Ritter, 2023),
there are only very few works that exist on SKBC
(Augenstein and Søgaard, 2017; Luan et al., 2017,
2018; Park and Caragea, 2020; Jain et al., 2020),
and hence, this task of scholarly keyphrase bound-
ary classification is very much under-explored. One
potential reason for this under-exploration is the
lack of large annotated datasets for this task and
the difficulty of annotations which require human
experts in a scientific field.

In this paper, we propose a novel framework
for SKBC, called multi-task knowledge distilla-
tion with cosine embedding constraints. Clark
et al. (2019b) showed the effectiveness of the multi-
task knowledge distillation framework which dis-



tills knowledge from multiple teachers (single-task
models) to the student model (multi-task model).
However, in the process of learning from multiple
teachers corresponding to multiple related auxil-
iary tasks, the student model may become biased
towards a particular auxiliary task (or a subset of
these tasks) and may “erase” all the “good” infor-
mation (linguistic features that “matter”) from the
other remaining tasks. To overcome this, we pro-
pose a way of imposing similarity constraints in
the embedding space between the student and all
the teachers to ensure that the student’s final rep-
resentations are not biased towards some auxiliary
task(s), and hence, the student’s representations
do not diverge (too much) from those of any of
the teachers. Consequently, our proposed novel
embedding constraint lets the student model be
focused on the target task by optimally using the
knowledge learned from all auxiliary tasks. No-
tably, we achieve state-of-the-art performance on
three datasets with our proposed multi-task knowl-
edge distillation with embedding constraints. To
facilitate future research on scholarly keyphrase
classification, we release our code.1

Our contributions are summarized as follows:

• We propose a novel cosine embedding con-
straint added to multi-task knowledge distil-
lation for keyphrase boundary classification
that enforces teacher-student similarity in the
embedding space.

• We conduct comprehensive evaluation on
three datasets. Experiments show that our
proposed approach significantly outperforms
strong baselines and prior works and achieves
new state-of-the-art on this task.

• We provide a detailed analysis using entropy
to understand our proposed model’s behav-
ior (uncertainty) in predicting keyphrases, to-
gether with an error analysis.

2 Related Work

The task of automatically identifying and classi-
fying keyphrases from scientific papers has long
been under-explored but has recently started to gain
attention in the research community. For example,
QasemiZadeh and Schumann (2016) motivated the
importance of this task for many applications such
as knowledge acquisition and topic tracking, and

1https://github.com/seoyeon-p/MTL-KD-SKIC

were among the first to create a dataset annotated
for terminology extraction and classification from
ACL Anthology papers to stir research in this area.
Augenstein et al. (2017) proposed a shared task
on ScienceIE at SemEval 2017, which includes
keyphrase identification and keyphrase classifica-
tion as Subtask A and Subtask B, respectively. This
shared task attracted a large number of participat-
ing teams and achieved a highest F1-score of 56%
and 44% for Subtasks A and B, respectively, us-
ing an RNN with a CRF layer on top (Augenstein
et al., 2017). These low F1 scores proved the dif-
ficulty of the subtasks. Other works participating
in this shared task used hand-crafted features for
the keyphrase identification and classification. For
example, Liu et al. (2017) used combined features
of pretrained word embeddings and a set of linguis-
tic features with Support Vector Machines. Lee
et al. (2017) and Marsi et al. (2017) used CRF with
linguistically motivated features such as Part-of-
Speech tags and word lemmas.

One observation that was made apparent was
that the existing annotated datasets for this task are
small in size. In order to overcome the small data
size problem, Augenstein and Søgaard (2017) pro-
posed to transfer knowledge from data-rich tasks
through deep multi-task learning where keyphrase
boudary classification represents the main task and
several related tasks such as FrameNet, semantic
supersense tagging, chunking, and multiword ex-
pression identification serve as auxiliary tasks (one
at a time) to help guide the main task. Still, the
results of this approach are low (Augenstein and
Søgaard, 2017), e.g., yielding an F1 of 45.49%
on the SemEval 2017 dataset (Augenstein et al.,
2017), and an F1 of 58.95% on the ACL dataset
(QasemiZadeh and Schumann, 2016) for keyphrase
classification. Park and Caragea (2020) proposed
to use intermediate task transfer learning using
pre-trained language models (Pruksachatkun et al.,
2020) to overcome the data scarcity problem by us-
ing one intermediate task at a time. In another line
of research, Luan et al. (2017) aimed at address-
ing the same small data size problem and proposed
a graph-based semi-supervised algorithm with a
data selection strategy to leverage unannotated arti-
cles. Lai et al. (2020) introduced a semi-supervised
approach for scholarly keyphrase identification em-
ploying self-knowledge distillation. Ammar et al.
(2017) also used semi-supervised learning for en-
tity and relation extraction from scientific papers.

https://github.com/seoyeon-p/MTL-KD-SKIC
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Table 1: An example instance of scholarly keyphrase boundary classification with BIO schema.
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Figure 1: An overview of our proposed approach using plate notation. Plates (the grey boxes in the figure indexed by
K) refer to repetitions of knowledge distilling steps for K auxiliary tasks. The single task model is used as a teacher
model for our multi-task student model. “Trm Output” refers to the last layer of pre-trained language models.

Other works used supervised or semi-supervised
keyphrase extraction or generation (Kulkarni et al.,
2022; Patel and Caragea, 2021, 2019; Alzaidy et al.,
2019; Florescu and Caragea, 2017; Ye and Wang,
2018; Chowdhury et al., 2022; Garg et al., 2023,
2022; Ye et al., 2021; Huang et al., 2021; Wu et al.,
2023). Moreover, Ammar et al. (2018) focused
on building a literature (heterogeneous) graph to
organize published scientific literature for easy
manipulation and discovery. Luan et al. (2018)
created a new dataset annotated for three tasks,
sentence-level scientific entity recognition, rela-
tion extraction, and coreference resolution, and
used a multi-task learning framework (SciIE) to
jointly learn from all three tasks. Jain et al. (2020)
extended sentence-level information extraction to
document-level, creating a comprehensive dataset
for extracting information from scientific articles.
Pan et al. (2023) introduced a scholarly benchmark
for dataset mention detection to address the limita-
tions of existing corpora in terms of size, diversity
of dataset mentions, and entity linking informa-
tion. In contrast, we propose a cosine embedding
constraint added to multi-task knowledge distil-
lation that enforces teacher-student similarity in
the embedding space. Similar to our work, some
works (Sun et al., 2019; Aguilar et al., 2020) ex-
plored teacher-student similarity at the internal rep-
resentations. However, their focus is on model
compression (to approximate the teacher with a
smaller student model) while our work is focused
on teacher-student semantic space similarity that

ensures the student’s final representations do not
diverge (too much) from those of the teachers. Ac-
cordingly, we aim to preserve the beneficial in-
formation from the teachers that may not be re-
tained in the multi-task knowledge distillation due
to catastrophic forgetting (Kirkpatrick et al., 2016).
Along similar lines, Mahmoud and Hajj (2022) pre-
sented multi-objective learning which leveraged
knowledge distillation in a multi-task autoencoder
network to minimize catastrophic forgetting of pre-
trained tasks. Meshgi et al. (2022) introduced a
regularization term in multi-task learning, utilizing
task uncertainty to enhance model generalization
and mitigate the risk of catastrophic forgetting.

3 Target Task
Problem Definition The task objective is to iden-
tify and classify keyphrase boundaries from an in-
put text sequence. Let x = (x1, · · · , xn) be an in-
put sequence of size n, where xi, i = 1, · · · , n are
words from a vocabulary V , and let L be a set of la-
bels. The goal is to learn a function (or a classifier)
f : (xi) → yi that classifies each word xi from x
into one of the available labels yi ∈ L. We do this
by minimizing the cross-entropy loss. The set L fol-
lows the BIO schema for keyphrase identification,
where ‘B’ refers to the beginning of a keyphrase,
‘I’ to the inside of a keyphrase, ‘O’ is any word
that is not part of a keyphrase (we used a similar
labeling scheme for keyphrase classification, e.g.,
‘B-Task’, ‘I-Task’, ‘B-Process’, ‘I-Process’, ‘O’).
Table 1 shows an input-output sequence pair of
both keyphrase identification and classification.



4 Approach

In this section, we first describe our baseline multi-
task learning model (§4.1). We then present multi-
task learning that distills knowledge from multi-
ple related auxiliary single-tasks (teachers) into a
multi-task (student) model (§4.2). After that, we
describe our multi-task knowledge distillation with
embedding constraints (§4.3). Last, we describe
the auxiliary tasks (§4.4).

4.1 Multi-Task Learning

In multi-task learning (MTL) a target task is
learned by leveraging knowledge from multiple
related auxiliary tasks (Liu et al., 2019b).

Our baseline MTL model is similar to that of
Liu et al. (2019b) and is shown in Figure 1 (mid-
dle part). All our models are built on top of pre-
trained language models, namely BERT (Devlin
et al., 2019) and SciBERT (Beltagy et al., 2019).

As shown in the figure, the lower layers (corre-
sponding to a pre-trained language model M) are
shared across all tasks, whereas the top layers are
task-specific. The model jointly learns the target
task with different types of NLU tasks—natural
language inference tasks, single-sentence classifi-
cation, pairwise text classification, and sequence
tagging tasks. For the target task, the model
M yields a sequence of contextual embeddings,
one for each token xi in the input sequence x as
hi = M(xi) ∈ Rd (of dimension d). The ob-
tained representation of each token is then sent
through a fully connected layer with softmax for
classification, i.e., ŷi = softmax(Whi), where
W ∈ Rd×|L| is a weight matrix to be learned, and
hi is the contextual embedding of the ith token xi
in the input sequence x. For the NLU classification
tasks, we use the [CLS] token for classification. In
MTL, we train the model to minimize the sum of
cross-entropy loss for all tasks. Unlike previous
work (Augenstein and Søgaard, 2017), we use all
auxiliary tasks at once in our MTL model.

4.2 Multi-Task Learning with Knowledge
Distillation

In standard knowledge distillation (KD) (Hinton
et al., 2015), a student model is trained to imi-
tate a teacher model’s output distribution under the
assumption that this output distribution provides
better signal to the student than the gold label itself.
Clark et al. (2019b) showed that using knowledge
distillation with MTL when learning from multiple

related tasks can improve the performance of mod-
els that use MTL with only one related task. We
describe MTL+KD (Clark et al., 2019b) as follows:

Given a set of K + 1 tasks, i.e., a target task
and K auxiliary tasks (see Figure 1), each with
its own training set Dk, k = 1, · · · ,K + 1, we
train a single-task (teacher) model on each task,
denoted θk. Then we use the single-task models θk

to teach a multi-task shared (student) model with
parameters θ using cross-entropy loss LCE given
as follows:

LCE(θ) =

K+1∑
k=1

∑
(xk

i ,y
k
i )∈Dk

ℓ( fk(xki , θ
k) , fk(xki , θ) ) (1)

where fk(xki , ∗) denotes the output for task k pro-
duced by a neural model with parameters *. How-
ever, Clark et al. (2019b) pointed out that there
is a limitation that the student might not be able
to overcome the teacher model’s performance and
suggested to use teacher annealing KD, which com-
bines gold labels with predictions. Thus, the cross-
entropy loss with teacher annealing becomes:

LCE(θ) =

K+1∑
k=1

∑
(xk

i ,y
k
i )∈Dk

ℓ( λyki + (1− λ)fk(xki , θ
k) ,

fk(xki , θ) ) (2)

where λ is linearly increased from 0 to 1 through
training (see Figure 1).

4.3 Multi-Task Knowledge Distillation with
Embedding Constraints

We now present our multi-task knowledge distilla-
tion with embedding constraints framework which
enforces “teacher-student” similarity in the embed-
ding space in addition to the student imitating the
teachers’ output distribution. That is, we constrain
the multi-task student model to learn language rep-
resentations that are similar in the semantic space
with those of the teachers.

Despite that large pre-trained language models
(Devlin et al., 2019) fine-tuned on supervised tasks
perform remarkably well due to their capability
to capture the structure of language (Clark et al.,
2019a) and other linguistics patterns, e.g., aspects
of syntax (Shi et al., 2016; Blevins et al., 2018), in



Task Name |Train| |Dev| |Class| Task Type Domain

Supersense 8,006 1,186 3 Sequence tagging Newswire, Novel
MWEs 11,890 1,146 57 Sequence tagging Online review
FrameNet 9,334 4,000 92 Sequence tagging Open domain
Chunking 104,054 11,588 12 Sequence tagging Wall Street Journal
POS Tagging (POS) 334,180 54,138 15 Sequence tagging Wikipedia, Talks, Literature
NER 13.996 3,241 12 Sequence tagging Wall Street Journal
SciTail 23,596 1,304 2 Natural language inference Science exams
WNLI 634 146 2 Natural language inference Fiction books
RTE 2,490 277 2 Natural language inference News, Wikipedia
MRPC 3,688 1,725 2 Paraphrase News
CoLA 8,551 1,043 2 Acceptability Books, Journal articles

Table 2: The overview of auxiliary tasks in our experiments.

Task Name |Train| |Dev| |Test| |Class| |Avg KP per Doc| |Avg Doc Word Count| Domain

SemEval 2017 5,992 1,076 1,817 3 18 162 Computer Science, Physics,
and Material Science

ACL RD-TEC 2.0 1,930 214 1,088 7 12 107 Natural Language Processing
SciIE 5,712 641 1,677 6 17 120 Artificial Intelligence

Table 3: The statistics of target tasks in our experiments.

MTL+KD, some information from the pre-trained
teachers M may not be retained in the MTL model
possibly due to catastrophic forgetting (Kirkpatrick
et al., 2016). To preserve the “good” information
from the teachers, e.g., linguistic features that “mat-
ter,” we constrain the model to enforce the similar-
ity between the word embeddings produced by the
student with those produced by the teachers.

We calculate the similarity between the hidden
representations (i.e., the last transformer layer out-
puts) hθ

i produced by the student with those pro-
duced by the teachers hθk

i via cosine similarity.
Thus, we define an additional loss term to penalize
the student model from diverging from the hidden
representations of the teachers:

Lcos(θ) =
K+1∑
k=1

∑
(xk

i ,y
k
i )∈Dk

1− cos( hθk
i , hθ

i )

(3)
where hθk

i = M(xki ) ∈ Rd is the hidden repre-
sentation for sample xki of task k produced by the
corresponding teacher M (similarly for hθ

i ). Our
final loss consists of (i) cross-entropy loss from Eq.
2; and (ii) cosine embedding loss from Eq. 3 as:

L(θ) = LCE(θ) + αLcos(θ), (4)

where α is a hyper-parameter.

4.4 Auxiliary Tasks
Training on multiple tasks is known to help reg-
ularize multi-task models (Ruder, 2017). Here,
we select K = 11 auxiliary tasks across a range
of GLUE benchmarks (Wang et al., 2019), e.g.,

natural language inference, sequence tagging, para-
phrase detection, and grammatical acceptability
tasks. These tasks have proven beneficial in multi-
task learning (Liu et al., 2019b). We show the
statistics of our auxiliary tasks in Table 2. In de-
tail, we use the following tasks: Supersense (Jo-
hannsen et al., 2014), MWEs (Schneider and Woot-
ers, 2017), FrameNet (Das et al., 2014), Chunk-
ing (Tjong Kim Sang and Buchholz, 2000), POS
Tagging (McDonald et al., 2013), NER (Tjong
Kim Sang and De Meulder, 2003), SciTail (Khot
et al., 2018), WNLI (Wang et al., 2019), RTE
(Wang et al., 2019), MRPC (Dolan and Brockett,
2005), and CoLA (Warstadt et al., 2019). Further
details about these tasks are presented in Appendix
A.1.

5 Target Task Datasets

To evaluate models’ performance on our target task,
i.e., keyphrase boundary identification and classi-
fication, we use three datasets, as described below.
Table 3 shows the details of each dataset.

SemEval 2017 Task 10 SemEval 2017 (Augen-
stein et al., 2017) is a scientific keyphrase bound-
ary identification and classification dataset. The
dataset has three pre-defined classes (keyphrase
types) which are Process, Task, and Material.

ACL RD-TEC 2.0 ACL (QasemiZadeh and
Schumann, 2016) is a dataset for term and entity
categorization in scientific text. The ACL dataset
has seven pre-defined classes, which are Tool, Mea-
surement, Language Resources (LR), Language
Resources Product (Lr-prod), Model, Technology



(Tech), and OtherScientificTerm (Other). Note that
the class Other here is different from the class
Other (‘O’) in the BIO scheme that represents non-
keyphrases.

SciIE SciIE (Luan et al., 2018) is a dataset for the
detection of scientific entities, their relations, and
coreference clusters. The SciIE dataset has six pre-
defined classes, which are Material, Method, Task,
OtherScientificTerm (Other), Metric, and Generic.

6 Experiments

6.1 Baselines
We use the following baselines for comparison.

• BiLSTM (Augenstein and Søgaard, 2017):
Single target task learning of 3-layer BiLSTM
with pretrained SENNA embeddings.2

• BiLSTM + MTL + * (Augenstein and Sø-
gaard, 2017): Multitask learning of 3-layer
BiLSTMs with SENNA embeddings. Note
that * corresponds to one auxiliary task.

• BERT (Devlin et al., 2019) BERT fine-tuning
on the target task.

• BERT + ITTL (Park and Caragea, 2020):
BERT with intermediate task transfer learning
which fine-tunes BERT on a single auxiliary
task before fine-tuning on the target task.

• Self-Distill (Lai et al., 2020): A semi-
supervised learning that trains a single teacher
BERT model on labeled data and is used to
generate pseudo-labels on unlabeled data. Af-
terward, it combines the labeled and pseudo-
labeled data to train a single-task student
BERT model that is initialized by the teacher
BERT model.

• SciBERT (Beltagy et al., 2019): SciBERT
fine-tuning on the target task.

• SciBERT + ITTL (Park and Caragea, 2020):
SciBERT with intermediate task transfer learn-
ing which fine-tunes SciBERT on a single aux-
iliary task before fine-tuning SciBERT on the
target task.

• SciBERT-MKD (Liu et al., 2019a): A multi-
task knowledge distillation framework distill-
ing knowledge from a multi-task teacher SciB-
ERT to a multi-task student SciBERT, utiliz-
ing the same auxiliary tasks as our proposed
method for training both teacher and student
multi-task models.

2https://ronan.collobert.com/senna/

To compare our method with existing NER ap-
proaches, we consider the following two NER
methods that utilize a backbone of BiLSTM and
BERT, respectively.

• Biaffine NER (Yu et al., 2020): A framework
that has a biaffine model on top of a multi-
layer BiLSTM for a graph-based dependency
parsing to provide a global view on the input
for NER.

• Unified MRC for NER (Li et al., 2020): A
unified framework that has BERT as a back-
bone which treats the task of NER as a ma-
chine reading comprehension (MRC) task.

6.2 Implementation

For the SemEval 2017 and SciIE, we use the pub-
lished train, validation, and test splits. For the ACL
RD-TEC 2.0 dataset, we perform 60/10/30 split
to create the train, validation, and test splits, re-
spectively. We estimate hyper-parameters for each
deep neural model via a grid search over combina-
tions. The detailed information on the best hyper-
parameters setting is shown in Appendix A.2.

6.3 Main Results

We show the main experimental results in Table
4. We perform both keyphrase boundary identi-
fication (Identif ) and keyphrase boundary classi-
fication (Classif). We evaluate the performance
of models using phrase-level micro-averaged F1-
score and make the following observations.

First, we observe that the SciBERT-based mod-
els generally achieve higher performance com-
pared with the previous models based on BiL-
STM especially on keyphrase classification. Fur-
thermore, we observe that SciBERT-based models
perform better than BERT-based models. For ex-
ample, vanilla SciBERT achieves 66.70/48.21 F1
on SemEval keyphrase identification/classification,
whereas vanilla BERT achieves 60.40/46.82 F1.
We posit that the lower performance of BERT is in
part due to distributional shifts (i.e., domain differ-
ences from the general to the scientific domain).

Second, we observe that SciBERT can be im-
proved further by using multi-task knowledge dis-
tillation. Distilling knowledge from the teach-
ers to the student by training the student to
imitate the teachers’ output probability for all
tasks, i.e., the target and all auxiliary tasks (SciB-
ERT+MTL+KD+ALL) improves the F1 score
to 74.17/55.81 (∆ = 7.47/7.60 over SciBERT)



SemEval 2017 Task 10 ACL RD-TEC 2.0 SciIE

Identif Classif Identif Classif Identif Classif

Results on BiLSTM-based Models

BiLSTM (Augenstein and Søgaard, 2017) 67.70 38.01 81.85 58.51 72.33 58.05
BiLSTM + MTL + Supersense 63.93 43.54 81.36 58.95 72.65 54.33
BiLSTM + MTL + MWEs 72.42 45.49 80.69 56.87 72.92 55.21
BiLSTM + MTL + FrameNet 65.18 45.24 81.68 58.89 70.44 52.60
BiLSTM + MTL + Chunking 63.96 42.86 81.37 57.84 75.40 59.43
BiLSTM + MTL + ALL 67.06 43.75 77.89 55.10 80.51 63.80
Biaffine-NER (Yu et al., 2020) 68.76 47.56 82.04 59.49 80.58 63.76

Results on BERT-based Models

BERT (Devlin et al., 2019) 60.40 46.82 79.50 51.67 81.02 65.44
BERT + ITTL (Park and Caragea, 2020) 65.89 49.02 77.72 45.77 75.87 57.40
Self-Distill (Lai et al., 2020) 55.40 41.56 76.66 50.38 73.57 56.95
Unified MRC for NER (Li et al., 2020) 65.29 50.05 81.88 55.36 85.41 68.81

BERT + MTL + ALL 62.73 47.18 79.92 56.64 83.99 66.72
BERT + MTL + KD + Target 67.91 51.95 83.33 63.65 87.27 69.44
BERT + MTL + KD + Target + Cosine 66.21 51.17 78.60 57.52 87.17 68.68
BERT + MTL + KD + ALL 65.81 49.44 80.77 55.55 85.88 67.54
BERT + MTL + KD + ALL + Cosine 66.47 49.67 78.45 54.60 87.49 68.18

Results on SciBERT-based Models

SciBERT (Beltagy et al., 2019) 66.70 48.21 79.77 65.11 81.02 67.44
SciBERT + ITTL (Park and Caragea, 2020) 73.89 56.90 88.01 69.90 82.65 75.23
SciBERT-MKD (Liu et al., 2019a) 73.69 54.82 83.34 68.85 81.39 70.06

SciBERT + MTL + ALL 69.04 52.30 85.71 68.85 87.30 72.99
SciBERT + MTL + KD + Target 70.47 53.38 87.07 70.18 88.72 73.61
SciBERT + MTL + KD + Target + Cosine 70.91 54.60 85.69 69.72 90.49 76.23
SciBERT + MTL + KD + ALL 74.17 55.81 88.37 71.33 89.58 76.18
SciBERT + MTL + KD + ALL + Cosine 75.08 57.08 89.62 73.09 90.87 77.30

Table 4: F1-score results of proposed models based on BERT and SciBERT in comparison with the previous work.
For pre-trained language models with intermediate task transfer learning (ITTL), we use the best-reported results
from prior work. Underlined scores are best within each group and bold scores are best overall.

on SemEval. Remarkably, the best result is
achieved with our proposed model, which en-
forces teacher-student similarity in the embed-
ding space. Precisely, our proposed model (SciB-
ERT+MTL+KD+ALL+Cosine) improves the F1
score further to 75.08/57.08 (∆ = 8.38/8.87 over
SciBERT) on SemEval. While SciBERT with
intermediate task transfer learning (SciBERT +
ITTL) shows competitive performance compared
with vanilla SciBERT, our proposed model outper-
forms SciBERT + ITTL on all three datasets. Our
method also outperforms existing multi-task knowl-
edge distillation baseline methods (i.e., Self-Distill
and SciBERT-MKD) on all three datasets. For ex-
ample, our method achieves a better F1 score of
75.08/57.08 on SemEval, compared to SciBERT-
MKD which achieves an F1 score of 73.69/54.82
on keyphrase identification/classification. This
proves the effectiveness of our proposed method. In
addition, using knowledge distillation only on the
target task, KD+Target, we notice a performance
decrease from KD+ALL. Interestingly, in contrast

to SciBERT, BERT returns the best performance
when distilling knowledge by training the student
to imitate the teacher’s output applied only for the
target task. While BERT+MTL+KD+* models im-
prove over vanilla BERT, there is no improvement
when teacher-student similarity is enforced in the
embedding space for BERT. A potential explana-
tion is vocabulary shifts (i.e., domain differences
with our target task) between BERT and our sci-
entific domain datasets. Specifically, BERT vo-
cabulary is from a general domain whereas the
vocabulary of our target task is from a scientific
domain. In contrast to BERT, SciBERT vocabulary
is from a scientific domain. The token overlap be-
tween BERT vocabulary and SciBERT vocabulary
is only 42%, which implies that there is a substan-
tial difference in frequently used words between
scientific and general domain texts (Beltagy et al.,
2019). We conclude that SciBERT has more cover-
age in handling scholarly texts and results in better
language representations for scholarly keyphrase
classification than BERT.
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Identif Classif Identif Classif Identif Classif

SciBERT + MTL + Chunking 72.66 55.17 86.27 71.87 89.28 76.76
SciBERT + MTL + Chunking + KD + Both 72.50 53.88 85.36 71.27 87.49 75.58
SciBERT + MTL + Chunking + KD + Both + Cosine 72.12 54.93 87.92 70.23 86.93 71.46

SciBERT + MTL + NER 69.83 53.81 84.06 70.11 87.89 75.17
SciBERT + MTL + NER + KD + Both 66.42 50.46 86.37 71.58 89.76 75.94
SciBERT + MTL + NER + KD + Both + Cosine 65.42 48.53 87.03 69.87 90.43 76.39

SciBERT + MTL + MWEs 62.54 50.86 82.95 68.13 90.78 75.95
SciBERT + MTL + MWEs + KD + Both 65.51 52.63 83.49 64.32 90.56 76.22
SciBERT + MTL + MWEs + KD + Both + Cosine 66.93 52.95 82.98 65.57 90.84 76.89

SciBERT + MTL + SciTail 64.96 49.42 81.58 66.78 86.33 71.71
SciBERT + MTL + SciTail + KD + Both 67.18 51.35 88.09 69.79 90.77 75.25
SciBERT + MTL + SciTail + KD + Both + Cosine 69.94 54.87 87.04 69.09 89.95 76.03

SciBERT + MTL + ALL 69.04 52.30 85.71 68.85 87.30 72.99
SciBERT + MTL + KD + ALL + Cosine 75.08 57.08 89.62 73.09 90.87 77.30

Table 5: F1-score of SciBERT based multi-task models using one auxiliary task at a time in comparison with our
proposed model SciBERT+MTL+ALL+KD+Cosine. ‘Both’ refers to using an auxiliary task and the target task.

Figure 2: Entropy distribution per class between our proposed model (SciBERT+MTL+KD+ALL+Cosine) and
the baseline model (SciBERT). The x-axis shows the pre-defined classes in each dataset and the y-axis shows the
entropy value. The black lines indicate the median of each distribution.

We also evaluate the performance of MTL that
uses all auxiliary tasks at once versus using a single
auxiliary task at a time to understand the benefits
of using all auxiliary tasks at once. We report the
results in Table 5. We selected Chunking, NER,
MWEs and SciTail as representative auxiliary tasks
(to avoid clutter). We observe from Table 5 that
our proposed model that combines all 11 auxiliary
tasks at once performs better compared with the
models that use just one auxiliary task at a time.
To further investigate the performance gains on sin-
gle and multiple auxiliary tasks (i.e., even subsets
of the eleven auxiliary tasks), we provide the full
results of MTL with single or multiple auxiliary
tasks in Appendix A.3. We also find that MTL with
single or multiple auxiliary tasks (but less than 11)
yield lower performance compared with our pro-
posed model on all datasets. This suggests that all
auxiliary tasks are necessary to achieve the best per-
formance. We also investigate the role of auxiliary
tasks’ dataset sizes in our proposed model by per-
forming an experiment on varying the amounts of

data on all auxiliary tasks. We show these results in
Appendix A.4. We find that the larger the auxiliary
task dataset sizes, the better the performance.

6.4 Analysis

6.4.1 Entropy Analysis
To gain more insight into our proposed model’s
prediction behavior in identifying and classifying
scientific keyphrases, we investigate the entropy of
the prediction decisions made by our model SciB-
ERT+MTL+KD+ALL+Cosine and contrast it with
the vanilla SciBERT. Entropy is a standard mea-
surement to determine uncertainty of a probability
distribution. Given a random variables X with n
outcomes x1, x2, . . . , xn, the entropy of X is de-
fined as H(X) = −

∑n
i=1 P (xi)logP (xi) (Brown

et al., 1992). High entropy means high uncertainty.
We aim to understand how certain our models

are in classifying keyphrases, i.e., how different
behaviors emerge in models’ output distribution.
We do so by using entropy to explore prediction un-
certainty. Figure 2 shows a histogram of entropy of



Article from SemEval 2017 Task 10
In this paper a comparison between two popular feature extraction methods is presented. Scale-invariant feature transform
(or SIFT) is the first method. The Speeded up robust features (or SURF) is presented as second. These two methods are
tested on set of depth maps. Ten defined gestures of left hand are in these depth maps. The Microsoft Kinect camera is used
for capturing the images [1]. The Support vector machine (or SVM) is used as classification method. The results are accuracy
of SVM prediction on selected images.

Gold Keyphrases
(‘Scale-invariant feature transform’, ‘Process’) (‘SIFT’, ‘Process’) (‘Speeded up robust features’, ‘Process’)
(‘SURF’, ‘Process’) (‘depth maps’, ‘Material’) (‘Support vector machine’, ‘Process’) (‘SVM’, ‘Process’)
(‘comparison between two popular feature extraction methods’, ‘Task’) (‘Microsoft Kinect camera’, ‘Process’)
(‘classification method’, ‘Process’)

Keyphrase outputs of SciBERT+MTL+KD+ALL+Cosine
(‘Scale-invariant feature transform’, ‘Process’) (‘SIFT’, ‘Process’) (‘SURF’, ‘Process’) (‘depth maps’, ‘Material’),
(‘Support vector machine’, ‘Process’) (‘SVM prediction’, ‘Process’)
(‘comparison between two popular’, ‘Task’) (‘feature extraction methods’, ‘Process’)
(‘Microsoft Kinect camera’, ‘Process’), (‘defined gestures’, ‘Process’) (‘capturing’, ‘Process’), (‘images’, ‘Material’)
(‘classification method’, ‘Process’)

Table 6: The comparison between gold and predicted keyphrases of our model on a paper from SemEval 2017.
Underlined Texts mark error predictions.

each model’s output distribution shown per class in
each dataset. Most notably, our proposed model has
much lower entropy values in predicted keyphrases
across all the classes in each dataset. For exam-
ple, on SciIE, our proposed model’s entropies are
aligned in a similar range of low values, whereas
the baseline model produces a broader range of
high entropy values. We also observe similar pat-
terns in the other two datasets. This result suggests
that our proposed model is not only more accurate
than the baseline model but also it is more certain
in the predictions made.

6.4.2 Error Analysis

We manually investigate test errors to understand
potential drawbacks of our proposed model. Table
6 presents an example article from the SemEval
dataset and the comparison between gold labels
and our proposed model’s predicted keyphrases.
As shown in the table, our proposed model fails
to identify and classify the longest keyphrase in
the article, which is ‘comparison between two pop-
ular feature extraction’ annotated as Task. Our
proposed model returns two different keyphrases
which are ‘comparison between two popular’ as
Task and ‘feature extraction methods’ as Process.
It is reasonable to infer ‘feature extraction methods’
as Process. The model has also trouble predicting
whether the output is Task or Process because there
is a subjectivity between the two classes. Similar
types of errors can be observed in other documents
of the dataset and across the datasets. This type of
error is not necessarily a shortcoming of our model,
but rather of the subjectivity of human annotations.

7 Conclusion
In this paper, we addressed the task of keyphrase
boundary classification using multi-task knowledge
distillation. We further enhance this approach by
proposing a novel extension in which the student
model not only imitates teachers’ output distribu-
tion over classes but also produces similar language
representations. The results of experiments on
three datasets showed that our model achieves state-
of-the-art results. In the future, we plan to expand
our method to various settings such as few-shot
learning and semi-supervised settings.

8 Limitations
We proposed knowledge distillation with embed-
ding constraints for keyphrase boundary classifica-
tion in which the student (multi-task model) not
only learns from the teachers (single-task models)
output distributions but also learns hidden language
representations that do not diverge from those of
the teachers. While we achieved competitive perfor-
mance compared to strong baselines, there is one
limitation of our method in which our proposed
method struggles in classifying longer keyphrases.
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A Suuplementary Materials

A.1 Auxiliary Tasks
In this section, we provide details of our auxiliary
tasks by giving a specific example from each task.

Supersense Supersense tagging (Johannsen et al.,
2014) is the task of assigning high-level ontologi-
cal classes to open-class words using Semcor 3.0
corpus.3 In this work, we use the most common top
3 noun supersense classes which are Person, Loca-
tion and Group. For example, in a given sentence
‘Clara Harris, one of the guests in the box, stood
up and demanded water’, the supersense of ‘Clara
Harris’ is Person and the supersense of ‘guests’ is
Person.

MWEs Multiword Expressions Identification
and Classification (MWEs) is the task of detecting
and classifying the span of single and multiword
noun and verb expressions to high-level ontological
semantic classes using Streusle corpus4 (Schnei-
der and Wooters, 2017). In this task, we focus on
both noun and verb high-level semantic classes.
For example, in a given sentence ‘I offer compas-
sionate approachable and personalized counseling
services’, the high-level ontological semantic class
of ‘compassionate’ is verb.social, ‘personalized’ is
verb.social, and ‘counseling services’ is noun.act.

FrameNet FrameNet Target Identification (Das
et al., 2014) is the task of deciding which word
span evoke a semantic frame in a given sentence
of FrameNet 1.7 (Schneider and Wooters, 2017).
FrameNet is a corpus of lexical and predicate-
argument semantics in English. In this task, a
frame is a conceptual structure describing events,
relations, objects and the participants in it. For
example, the target ‘moist’ in a sentence evokes
frame Being state.

Chunking Text Chunking is the task of detecting
the chunks of words in CoNLL-2000 shared dataset
(Tjong Kim Sang and Buchholz, 2000). The chunk
tags include various grammatical classes such as
noun phrase, verb phrase, prepositional phrase and
these tags follow the BIO schema. For example,
a sentence ‘He reckons the current account deficit
will narrow to only #1.8 billion in September’ can

3https://web.eecs.umich.edu/ mihalcea/downloads.html
4https://github.com/nert-nlp/streusle
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be annotated as,‘[NP He] [VP reckons] [NP the
current account deficit] [VP will narrow] [PP to]
[NP only # 1.8 billion] [PP in] [NP September]’,
where NP refers to noun phrase, VP refers to verb
phrase, PP refers to prepositional phrase.

POS Tagging POS Tagging is the task of label-
ing each word in a sentence with its part of speech
tag. In this work, we employ the English POS tag-
ging annotation collection of universal dependency
parsing (McDonald et al., 2013). For example, the
following sentence, ‘Aesthetic appreciation and
spanish art.’, has the grammar class sequence as
[‘ADJ’, ‘NOUN’, ‘CCONJ’, ‘ADJ’, ‘NOUN’].

NER Named Entity Recognition is the task of
classifying named entities that are present in a text.
The entity tags include Person, Organization and
Place (Tjong Kim Sang and De Meulder, 2003).

SciTail SciTail (Khot et al., 2018) is the task of
recognizing the entailment of a hypothesis that
is constructed from a science question and its
corresponding answer by employing the premise.
The dataset is collected by crowd-sourcing and by
multiple-choice science questions from 4th-grade
and 8th-grade exams. For example, the relation
between the following two sentences, ‘Neurons re-
ceive information from dendrites which are then
passed to the soma cell body.’ and ‘Dendrites from
the cell body receives impulses from other neurons.’
is labeled as Entail.

WNLI The Winograd Schema Challenge
(Levesque et al., 2012) is the reading comprehen-
sion task where a system read a sentence with a
pronoun and select the proper pronoun referent
from a list of choices. Wang et al. (2019) transform
this challenge as a inference task that predicts
if the sentence with the pronoun substituted is
entailed by the original sentence.

RTE The Recognizing Textual Entailment (RTE)
is the task of recognizing entailment between two
sentences. The dataset is collected from a series of
annual textual entailment challenges (Wang et al.,
2019).

MRPC The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is the corpus aim-
ing to determine whether sentences in a pair are
semantically equivalent or paraphrasing one an-
other.

CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2019) is the corpus targeting to
confirm grammatical acceptability judgements in a
given sentence. The corpus are drawn from books
and journal articles on linguistic theory.

A.2 Training Details
Our implementation is based on the Huggingface
implementation of BERT (bert-base-uncased) and
SciBERT (scibert-scivocab-uncased). All the texts
are chopped to span no longer than 512 tokens. We
train all models using the SGD optimizer. We esti-
mate hyper-parameters for each deep neural model
via a grid search over combinations. We use the fol-
lowing range of values to determine the best hyper-
parameters: batch size {1,4,8,16,32,64}, learning
rate [0.01, 0.005], and momentum [0.0, 0.9]. The
information on the best hyper-parameters setting
is provided as follows. For all multi-task learn-
ing models including knowledge distillation based
models, and vanilla BERT, we use momentum as
0.0, whereas vanilla SciBERT uses momentum 0.9.
The training is stopped once convergence is deter-
mined on the validation dataset with 10 epochs. For
each target dataset, we use batch size 1. The aux-
iliary tasks of Supersense, MWEs, FrameNet use
batch size 4, whereas Chunking uses 32, POS Tag-
ging uses 64, NER uses 32, SciTail uses 16, WNLI
uses 16, RTE uses 1, MRPC uses 16, CoLA uses 16.
Aside from these details, we follow the SciBERT
paper for all other training hyper-parameters. We
set α = 1 to calculate a final training objective. All
experiments are done on an NVIDIA V100 GPU.

A.3 Effect of Auxiliary Tasks
To explore the effect of auxiliary tasks in our
method, we investigate our proposed model by us-
ing a single or a subset of auxiliary tasks (i.e., less
than eleven auxiliary tasks). Accordingly, we aim
to: (1) understand the performance gains on mod-
els varying the number of auxiliary tasks and (2)
explore the necessity of using all auxiliary tasks in
our proposed model.

We first employ auxiliary tasks one at a time
on SciBERT+MTL+ KD+*+Cosine (with * be-
ing a single auxiliary task) to find which auxil-
iary task contributes more to improve performance
and show the results in the left two columns of Ta-
ble 7 under the heading “Single Aux Task”. We
sort auxiliary tasks in decreasing order by clas-
sification tasks’ F1-score. Interestingly, we ob-
serve that Chunking improves the most in perfor-



Single Aux Task Adding Aux Task
Sequentially

SemEval 2017 Task 10
Identif Classif Identif Classif

Chunking 72.12 54.93 72.12 54.93
SciTail 69.94 54.87 68.77 52.09
Supersense 72.62 54.43 71.12 54.15
MRPC 66.36 53.64 60.91 48.65
MWEs 66.93 52.95 63.91 49.46
CoLA 68.08 52.23 69.28 53.72
FrameNet 67.30 52.12 68.39 53.02
WNLI 67.66 51.02 68.94 54.26
POS Tagging 66.75 50.92 72.11 55.79
NER 65.42 48.53 73.97 56.38
RTE 61.77 47.25 75.08 57.08

ACL RD-TEC 2.0
Identifi Classif Identifi Classif

Chunking 87.92 70.23 87.92 70.23
NER 87.03 69.87 87.43 72.38
CoLA 87.67 69.44 85.54 68.57
Supersense 88.85 69.17 85.04 67.42
SciTail 87.04 69.09 81.83 64.11
WNLI 88.72 68.18 86.49 67.72
RTE 87.58 67.47 85.38 65.37
POS Tagging 87.78 67.28 86.82 68.86
MRPC 86.35 66.57 87.47 70.44
MWEs 82.98 65.57 88.41 72.63
FrameNet 85.41 64.61 89.62 73.09

SciIE
Identifi Classifi Identifi Classifi

MWEs 90.84 76.89 90.84 76.89
NER 90.43 76.39 90.66 76.57
SciTail 89.95 76.03 88.80 74.65
WNLI 89.75 75.72 88.38 73.01
Supersense 90.53 75.37 90.63 76.35
CoLA 88.47 73.96 89.35 75.56
MRPC 87.96 73.32 89.72 74.95
RTE 88.20 72.87 86.89 72.33
POS Tagging 89.44 72.59 90.78 76.14
FrameNet 87.70 71.94 90.10 73.65
Chunking 86.93 71.46 90.87 77.30

Table 7: F1-score of SciBERT+MTL+KD+*+Cosine
models where * refers to a single auxiliary task or subset
of them.

mance on SemEval and ACL, whereas Chunking
improves the least in performance on SciIE. To fur-
ther investigate the impacts of the auxiliary tasks,
we sequentially add auxiliary tasks one at a time
on SciBERT+MTL+KD+*+Cosine model follow-
ing the order and show results in the right two
columns of Table 7 under the heading “Adding
Aux Task Sequentially”. We observe that the per-
formance generally increases in the initial and the
final phase of adding sorted auxiliary tasks on the
SciBERT+MTL+KD+*+Cosine (with * being a set
of auxiliary tasks) model. Hence, we additionally
run a set of experiments using only a few auxil-
iary tasks selected from the top and the end of
the ranked list. The results are reported in Table
8. We find that combining initial and final ranked

SemEval 2017 Task 10

Identifi Classifi

Chunking 72.12 54.93
Chunking + POS 72.38 56.23
Chunking + POS + NER 72.41 55.16
Chunking + POS + NER + RTE 73.45 56.77

ACL RD-TEC 2.0

Chunking 87.92 70.23
Chunking + NER 86.91 72.31
Chunking + NER + MRPC 86.42 71.02
Chunking + NER + MRPC + MWEs 86.54 71.53
Chunking + NER + MRPC + MWEs + FrameNet 88.11 72.54

SciIE

MWEs 90.84 76.89
MWEs + NER 89.05 76.31
MWEs + NER + Supersense 90.23 76.39
MWEs + NER + Supersense + POS 90.22 76.61
MWEs + NER + Supersense + POS + Chunking 90.58 76.87

Table 8: F1-score of SciBERT+MTL+KD+*+Cosine,
where * is a set of sorted auxiliary tasks that increase the
target task performance in the initial and the final phase
on multi-task learning of sequentially adding auxiliary
tasks.

Figure 3: F1-score on the impact of auxil-
iary tasks data size on the target task keyphrase
boundary identification(left)/classification(right) perfor-
mance in SciBERT+MTL+KD+ALL+Cosine. Dot-
ted lines refer to the best performance of SciB-
ERT+MTL+KD+ALL+Cosine model on each dataset.

auxiliary tasks generally achieve competitive per-
formance. However, none of the models achieve
performance as good as our proposed model which
uses all auxiliary tasks at once. This supports that
all auxiliary tasks are required to achieve competi-
tive performance for the keyphrase boundary clas-
sification task.

A.4 Effect of Auxiliary Tasks Dataset Size

We investigate the impact of dataset
size of the auxiliary tasks on our SciB-
ERT+MTL+KD+ALL+Cosine model’s per-
formance. Specifically, we conduct a set of
experiments on varying amounts of eleven
auxiliary tasks’ data size on the proposed model
and show the results in Figure 3. Interestingly,
we observe that our proposed model obtains the
largest performance improvements when using a
large amount of auxiliary tasks’ data size even
though we use a small amount of target task



Figure 4: The keyphrase classification results - confusion matrix visualization of each target dataset. The x-axis
refers to true classes and the y-axis refers to predicted classes in each target task. The numbers are normalized by
the count of predicted keyphrases

training samples.

A.5 Error Analysis
We visualize confusion matrices of our proposed
model output (SciBERT+MTL+ALL+KD+Cosine)
in Figure 4. In Figure 4, numbers of each cell rep-
resent how many classified keyphrases belong to
each true class. For example, on SemEval 2017
Task 10 dataset confusion matrix, the cell corre-
sponding to row Process and column Task refers
to the ratio of keyphrases predicted as Task but
which should be classified as Process to the total
number of keyphrases that are classified as Task.
Consequently, each row in every confusion matrix
sums up to 1. We also confirm the subjectivity of
pre-defined classes poses a challenge to keyphrase
boundary classification task. For the SemEval 2017
Task 10 dataset, we observe our proposed model
incorrectly classifies keyphrases between Task and
Process because there is subjectivity between these
two classes. For the ACL RD-TEC 2.0 dataset,
our proposed model mis-classifies keyphrases as
Tech. However, in contrast to the above two target
datasets, on the SciIE dataset, we observe that our
proposed model generally performs well.


