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Abstract

During crisis events, people often use social
media platforms such as Twitter to dissemi-
nate information about the situation, warnings,
advice, and support. Emergency relief organi-
zations leverage such information to acquire
timely crisis circumstances and expedite rescue
operations. While existing works utilize such
information to build models for crisis event
analysis, fully-supervised approaches require
annotating vast amounts of data and are im-
practical due to limited response time. On the
other hand, semi-supervised models can be bi-
ased, performing moderately well for certain
classes while performing extremely poorly for
others, resulting in substantially negative ef-
fects on disaster monitoring and rescue. In this
paper, we first study two recent debiasing meth-
ods on semi-supervised crisis tweet classifica-
tion. Then we propose a simple but effective
debiasing method, DeCrisisMB, that utilizes a
Memory Bank to store and perform equal sam-
pling for generated pseudo-labels from each
class at each training iteration. Extensive ex-
periments are conducted to compare different
debiasing methods’ performance and general-
ization ability in both in-distribution and out-
of-distribution settings. The results demon-
strate the superior performance of our pro-
posed method. Our code is available at https:
//github.com/HenryPengZou/DeCrisisMB.

1 Introduction

During natural disasters, real-time sharing of cri-
sis situations, warnings, advice and support on so-
cial media platforms is critical in aiding response
organizations and volunteers to enhance their sit-
uational awareness and rescue operations (Varga
et al., 2013; Vieweg et al., 2014). Although exist-
ing works utilize such information to build models
for crisis event analysis, standard supervised ap-
proaches require annotating vast amounts of data
during disasters, which is impractical due to lim-
ited response time (Li et al., 2015; Caragea et al.,

2016; Li et al., 2017, 2018; Neppalli et al., 2018;
Ray Chowdhury et al., 2020; Sosea et al., 2021).
On the other hand, current semi-supervised mod-
els can be biased, performing moderately well for
certain classes while extremely worse for others,
resulting in a detrimentally negative effect on dis-
aster monitoring and analysis (Alam et al., 2018;
Ghosh and Desarkar, 2020; Sirbu et al., 2022; Zou
et al., 2023; Wang et al., 2023a). For instance, ne-
glecting life-essential classes, such as requests or
urgent needs, displaced people & evacuations and
injured or dead people, can have severely adverse
consequences for relief efforts. Therefore, it is cru-
cial to mitigate bias in semi-supervised approaches
for crisis event analysis.

In this paper, we investigate and observe that bias
in semi-supervised learning can be related to inter-
class imbalances in terms of numbers and accura-
cies of pseudo-labels produced during training. We
do this analysis using a representative work in semi-
supervised learning, Pseudo-Labeling (PSL) (Lee
et al., 2013; Xie et al., 2020a; Sohn et al., 2020).
We then study two different debiasing methods for
semi-supervised learning on the task of crisis tweet
classification. These two state-of-the-art semi-
supervised debiasing approaches are: Debiasing
via Logits Adjustment (LogitAdjust) (Wang et al.,
2022) and Debiasing via Self-Adaptive Threshold-
ing (SAT) (Wang et al., 2023b). Our analysis show
that although these methods have effects in debi-
asing and balancing pseudo labels across classes,
their debiasing performance is still unsatisfying
and there are drawbacks that need to be addressed.
LogitAdjust debiases the pseudo-labeling process
by explicitly adjusting predicted logits based on
the average probability distribution over all unla-
beled data. However, we observe that this explicit
adjustment makes it difficult for models to fit data,
leading to unstable training, and their classwise
pseudo-labels are still highly imbalanced. SAT
proposes to dynamically adjust global and local
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thresholds of pseudo-labeling to enforce poorly-
learned categories generating more pseudo-labels.
This approach does help produce more balanced
pseudo-labels but comes at the cost of sacrificing
the accuracy of the pseudo-labels (in-depth anal-
ysis and visualized comparisons are provided in
Section 6.)

To address these issues, we propose a simple
but effective debiasing method, DeCrisisMB, that
utilizes a memory bank to store generated pseudo-
labels. We then use this memory bank to sample
an equal number of pseudo-labels from each class
per training iteration for debiasing semi-supervised
learning. Extensive experiments are conducted
to compare the three debiasing methods for semi-
supervised crisis tweet classification. Additionally,
we evaluate and compare their generalization abil-
ity in out-of-distribution datasets and visualize their
performance in debiasing semi-supervised models.
Our results and analyses demonstrate the substan-
tially superior performance of our debiasing meth-
ods.

The contributions of this work are summarized
as follows:

• We provide an analysis which shows that im-
balanced pseudo-label quantity and quality
can cause bias in semi-supervised learning.
We investigate their influence by demonstrat-
ing the model improvement after equal sam-
pling and removing erroneous pseudo-labels.

• We study two recent semi-supervised debias-
ing methods on crisis tweet classification and
propose DeCrisisMB, a simple but effective
debiasing method based on memory bank and
equal sampling.

• We conduct extensive experiments to compare
different debiasing methods and provide out-
of-distribution results and analysis of their de-
biasing performance. Experimental results
demonstrate our superior performance com-
pared to other methods.

2 Related Work

2.1 Disaster Tweet Classification

Analyzing social media information shared during
natural disasters and crises is crucial for enhanc-
ing emergency response operations and mitigat-
ing the adverse effects of such events, leading to
more resilient and sustainable communities. In
recent years, crisis tweet classification has made

significant progress in improving disaster relief ef-
forts (Imran et al., 2013; Li et al., 2015; Imran
et al., 2015; Li et al., 2017, 2018; Neppalli et al.,
2018; Mazloom et al., 2018; Ray Chowdhury et al.,
2020; Sosea et al., 2021). For example, Imran
et al. (2013, 2015) propose to classify crisis-related
tweets to obtain useful information for better disas-
ter understanding and rescue operations. Caragea
et al. (2016) and Nguyen et al. (2017) use Convolu-
tional Neural Networks (CNNs) for classifying and
extracting informative disaster-related tweets. Li
et al. (2021) combines self-training with BERT pre-
trained language models to boost the performance
of classifying disaster tweets when only unlabeled
data is available. Alam et al. (2018); Ghosh and De-
sarkar (2020); Sirbu et al. (2022); Zou et al. (2023)
leverage both labeled and unlabeled data to develop
more effective crisis tweet classifiers. However,
while these studies are effective in incorporating
information from unlabeled data, they do not ac-
count for the fact that the trained semi-supervised
models can be biased and neglect certain difficult-
to-learn classes, which can have severely negative
consequences for disaster relief efforts.

2.2 Semi-Supervised Learning and Debiasing

Semi-supervised learning aims to reduce the re-
liance on labeled data in machine learning mod-
els by utilizing unlabeled data to improve their
performance (Lee et al., 2013; Berthelot et al.,
2019; Xie et al., 2020b; Zhang et al., 2021). Self-
training involves using the model’s prediction prob-
ability as a soft label for unlabeled data (Scud-
der, 1965; McLachlan, 1975; Lee et al., 2013; Xie
et al., 2020b). Pseudo-labeling is a modification
of self-training that reduces confirmation bias by
using hard labels and confidence thresholding to
select high-quality pseudo-labels (Lee et al., 2013;
Zhang et al., 2021). Mean Teacher (Tarvainen
and Valpola, 2017) proposes to use the exponential
moving average of model weights for predictions.
MixMatch (Berthelot et al., 2019) employs sharp-
ening to promote low-entropy prediction on unla-
beled data and utilizes MixUp (Zhang et al., 2018)
to mix and combine labeled and unlabeled data.
MixText (Chen et al., 2020) introduces MixUp
to text domains by performing interpolation on
hidden representations of texts. Recently, Wang
et al. (2022) observe that pseudo-labels generated
by semi-supervised models are naturally imbal-
anced even if their training datasets are balanced.



(a) classwise accuracy (b) pseudo-label quantity (c) pseudo-label quality

Figure 1: Classwise model accuracy (a), pseudo-label quantity and quality (b,c) of the representative semi-supervised
method Pseudo-Labeling (Lee et al., 2013; Berthelot et al., 2019; Xie et al., 2020b) on Hurricane dataset. Semi-
supervised models can be highly biased and ignore some classes. We assume this is because the model generates
biased pseudo-labels, and training with these biased pseudo-labels can further exacerbate model bias.

The authors first introduce logit adjustment from
long-tail learning (Menon et al., 2021) to debias
semi-supervised learning. The recent state-of-the-
art approach in semi-supervised classification by
Wang et al. (2023b) designs a self-adaptive thresh-
olding strategy to lower confidence thresholds of
pseudo-labeling for poorly-learned classes. Both
of them are helpful in creating more pseudo-labels
for difficult classes and debiasing semi-supervised
models, but are at the expense of sacrificing pseudo-
labels accuracy and causing the training process to
be unstable. To this end, we investigate their de-
biasing effect on the semi-supervised crisis tweet
classification task. Then we propose a neat debias-
ing method that utilizes a memory bank for equal
sampling, and analyze its effectiveness compared
with other debiasing methods.

3 Analysis of Inter-class Bias

Even with balanced datasets, semi-supervised
learning may exhibit bias towards certain classes
while ignoring others. In this section, we demon-
strate that such bias can be related to inter-class
imbalances, including the numbers and accuracies
of pseudo-labels generated during training. This
motivates us to debias semi-supervised learning by
balancing pseudo-labels during training.

3.1 Dataset

In this work, we use two crisis tweet datasets: Hur-
ricane and ThreeCrises, both sampled from Hu-
mAID (Alam et al., 2021). The Hurricane dataset
contains 12,800 human-labeled tweets collected
during hurricane disasters that happened between
2016 and 2019. The ThreeCrises dataset consists
of 7,120 annotated tweets collected during floods,

Dataset Classes Statistics

[0] rescue_volunteering_or_donation_effort Hurricane ThreeCrises

[1] infrastructure_and_utility_damage Total: 12800 Total: 7120
[2] sympathy_and_support Train: 1280 Train: 712
[3] caution_and_advice Test: 160 Test: 89
[4] not_humanitarian Validation: 160 Validation: 89
[5] injured_or_dead_people

[6] displaced_people_and_evacuations Data per Class

[7] requests_or_urgent_needs 1600 890

Table 1: Dataset statistics for Hurricane and ThreeCrises
dataset.

wildfires and earthquake disasters that occurred be-
tween 2016 and 2019. As shown in Table 1, both
datasets include the same 8 crisis-related classes,
and the number of their total labels is balanced.
Our train, test, and validation sets are split in a
ratio of 0.8:0.1:0.1.

3.2 Inter-Class Biases and Pseudo-Label
Imbalances

We conduct a pilot experiment on the crisis datasets
to demonstrate the bias in semi-supervised mod-
els and their pseudo-labels. Here we use Pseudo-
Labeling (Lee et al., 2013; Xie et al., 2020a;
Sohn et al., 2020), a representative work in semi-
supervised learning, for analysis. Figure 1(a) illus-
trates the model validation accuracy for different
classes during training on the Hurricane dataset.
It can be observed that the model favors certain
classes while other classes’ performance worsens
as training proceeds. We assume this is because the
model generates biased pseudo-labels, and train-
ing with these biased pseudo-labels will further
increase the model’s bias.

Consistent with our assumption, Figure 1(b)
shows the total number of generated pseudo-labels



Preliminary Experiment Investigation All Correct PL Balanced PL Accuracy Macro-F1

Dataset: Hurricane

(a) Baseline - No No 66.7 ± 4.7 63.1 ± 5.7
(b) Delete Incorrect Accuracy Yes No 73.7 ± 1.5 70.2 ± 1.2
(c) Equal Sampling Number No Yes 73.4 ± 1.0 70.2 ± 1.2
(d) Delete Incorrect+Equal Sampling Both Yes Yes 79.6 ± 0.4 77.4 ± 1.1

Dataset: ThreeCrises

(a) Baseline - No No 64.5 ± 4.9 60.4 ± 5.3
(b) Delete Incorrect Accuracy Yes No 74.7 ± 1.0 71.9 ± 0.7
(c) Equal Sampling Number No Yes 68.6 ± 1.9 64.2 ± 2.2
(d) Delete Incorrect+Equal Sampling Both Yes Yes 78.3 ± 1.6 74.7 ± 1.8

Table 2: Investigation on the influence of pseudo-label accuracy and number on Hurricane and ThreeCrises Dataset.
In both datasets, we observe that the bias can be mitigated by balancing pseudo-label quality and quantity, and the
relative quantity of pseudo-labels is equally important as the quality of pseudo-labels. All results are averaged over
3 runs.

in each category as the training progresses. We can
see that the number of pseudo-labels is highly im-
balanced across different categories and becomes
increasingly biased toward leading classes. Fig-
ure 1(c) shows the class-wise accuracy of pseudo-
labels. We can observe that the accuracy of pseudo-
labels also varies between classes. One interesting
finding is that some classes with higher pseudo
label accuracy but lower pseudo label numbers per-
form worse in Figure 1(a) than classes with lower
pseudo label accuracy but higher pseudo label num-
bers. This implies that the quantity or diversity of
pseudo labels in one class might play an equally
crucial role as the quality of pseudo labels in the
learning process.

3.3 Effect of Equal-Sampling and Erroneous
Label Removal

Another perspective for examining how inter-class
pseudo-label numbers and accuracies can impact
semi-supervised learning performance is to investi-
gate model improvement after equal sampling and
deleting incorrect pseudo-labels. To this end, we
conduct the following experiments:

(a) Baseline: Pseudo-Labeling that utilizes high-
confidence model predictions of unlabeled data as
pseudo-labels for iterative training; (b) Delete In-
correct: Delete all incorrect pseudo-labels and use
only correct ones for training; (c) Equal Sampling:
Sample and use an equal number of pseudo-labels
from each class for each training iteration. Note
that the pseudo-labels are not guaranteed to be cor-
rect. We implement this through equal sampling
in a memory bank, which is described in detail in
the next section; (d) Delete Incorrect+Equal Sam-
pling: Remove incorrect pseudo-labels and then

use the memory bank to sample an equal number
of pseudo-labels from each class for training.

Table 2 shows accuracy and macro-F1 results
for different settings. Trivally, deleting incorrect
pseudo labels boosts model performance. However,
it is intriguing that sampling the same number of
pseudo-labels per iteration for training also signifi-
cantly increases model performance, although the
sampled pseudo-labels are not necessarily correct
with no oracle information provided. This further
indicates that the relevant number of pseudo-labels
has equal importance with pseudo-label accuracy
for training unbiased semi-supervised models. Fi-
nally, deleting incorrect pseudo labels and then per-
forming equal sampling can further increase model
performance and achieve the best result. This moti-
vates us to alleviate the bias in terms of inter-class
pseudo-label numbers and accuracies.

4 Debiasing Methods

In this section, we first introduce our baseline
Pseudo-Labeling (PSL) (Lee et al., 2013; Xie et al.,
2020a; Sohn et al., 2020), a representative semi-
supervised method. We then present and discuss
two state-of-the-art semi-supervised debiasing ap-
proaches: Debiasing via Logits Adjustment (Log-
itAdjust) in Wang et al. (2022) and Debiasing
via Self-Adaptive Thresholding (SAT) in Wang
et al. (2023b). Finally, we introduce our debias-
ing method DeCrisisMB.

4.1 Pseudo-Labeling

Semi-supervised learning aims to reduce the re-
liance on labeled data by allowing models to lever-
age unlabeled data effectively for training bet-



ter models. Suppose we have a labeled batch
X = {(xb, yb) : b ∈ (1, 2, . . . , B)} and an unla-
beled batch U = {ub : b ∈ (1, 2, . . . , µB)}, where
µ is the ratio of unlabeled data to labeled data, B
is the batch size of labeled data. The objective
of semi-supervised learning often consists of two
terms: a supervised loss for labeled data and an un-
supervised loss for unlabeled data. The supervised
loss Ls is computed by cross-entropy between pre-
dictions and ground truth labels of labeled data
xb:

Ls =
1

B

B∑
b=1

H(yb, p(y|xb)) (1)

where p denotes the model’s probability predic-
tion. Pseudo-labeling (PSL) (Lee et al., 2013; Xie
et al., 2020a; Sohn et al., 2020) takes advantage
of unlabeled data by using the model’s prediction
of unlabeled data as pseudo-labels to optimize the
unsupervised loss:

Lu =
1

µB

µB∑
b=1

1(max(pb) > τ)L(q̂b, pb) (2)

where pb is the model prediction of unlabeled
data ub, τ is the confidence threshold to generate
pseudo-labels and q̂b is the hard/one-hot pseudo-
label of ub, L is L2 loss or cross-entropy loss func-
tion. Note that only confident predictions are used
to generate pseudo-labels and compute the unsu-
pervised loss.

4.2 Debiasing via Logits Adjustment
The first debiasing method for semi-supervised
learning we investigate here is Debiasing via Logits
Adjustment (LogitAdjust) in Wang et al. (2022).
It is claimed that the average probability distribu-
tion on unlabeled data can be utilized to reflect
the model and pseudo-label bias: the higher the
average probability one class receives, the more
pseudo-labels are usually generated in this class.
LogitAdjust proposes to debias pseudo-labeling by
adjusting logits based on estimated averaged prob-
ability distributions. Since computing the average
probability distribution of all unlabeled samples at
every iteration is very time-consuming, LogitAd-
just uses its exponential moving average (EMA) as
an approximation. These can be formulated as:

z̄b = zb − λ log p̄ (3)

p̄← mp̄+ (1−m)
1

µB

µB∑
b=1

pb (4)

where z̄b, zb refers to the logits of the unlabeled
data ub after and before adjustment, p̄ is the approx-
imated average probability distribution on unla-
beled data, m ∈ (0, 1) is the momentum parameter
of EMA, pb is the model prediction on an unlabeled
sample, λ is the debias factor, which controls the
strength of the debias effect. The logits adjustment
in Eq. 3 alleviate the bias by making false majority
classes harder to generate pseudo labels, while false
minority classes easier to produce pseudo labels.

4.3 Debiasing via Self-Adaptive Thresholding
Another recent method to debias imbalanced
pseudo labels is Self-Adaptive Thresholding
(SAT) (Wang et al., 2023b). It adaptively adjusts
each class’s global and local confidence threshold
based on the model’s overall and class-wise learn-
ing status. The model’s overall learning status is
estimated by the EMA of confidence on unlabeled
data, and the classwise learning status is estimated
by the EMA of the probability distribution of un-
labeled data, similarly to Eq. 4. Formally, at time
step t, the self-adaptive global threshold τt and self-
adaptive local threshold τt(c) for class c are defined
as:

τt = mτt−1 + (1−m)
1

µB

µB∑
b=1

max(pb) (5)

τt(c) =
p̄t(c)

max{p̄t(c) : c ∈ [C]}
· τt (6)

where p̄t(c) is the EMA of probability prediction
for class c on all unlabeled data, as in Eq. 4. The
insight is that the global threshold τt is low at the
beginning of training to utilize more unlabeled data,
and grows progressively to eliminate possibly in-
correct pseudo-labels as the model becomes more
confident during the training process. Meanwhile,
the self-adaptive local threshold adjusts classwise
local thresholds based on the learning status of
each class. This self-adaptive thresholding strat-
egy helps debias the semi-supervised model by
enforcing the model to create more pseudo-labels
for poorly-behaved classes, but is at the expense
of lowering their pseudo-label quality, as shown in
Section 6.

4.4 Proposed Approach: Debiasing via
Memory Bank

Motivated by our analysis in Section 3, we pro-
pose DeCrisisMB, an equal-sampling strategy via
memory bank to debias semi-supervised models.



Dataset: Hurricane

Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

#Labels/Class 3 5 10 20 50

PSL 39.3 ± 1.6 34.7 ± 1.1 55.0 ± 6.8 49.8 ± 7.2 66.7 ± 4.7 63.1 ± 5.7 73.2 ± 1.5 69.6 ± 1.4 78.4 ± 0.2 76.0 ± 0.5
MixMatch 47.4 ± 4.6 42.5 ± 5.5 57.3 ± 1.8 52.8 ± 1.9 67.6 ± 2.6 64.3 ± 2.7 74.1 ± 1.5 70.7 ± 1.6 78.5 ± 0.6 75.4 ± 1.1
FlexMatch 44.8 ± 7.0 38.6 ± 7.9 57.9 ± 3.6 53.2 ± 3.0 70.5 ± 3.0 68.2 ± 3.3 73.4 ± 1.3 70.3 ± 0.9 78.8 ± 0.4 76.0 ± 0.4
LogitAdjust 44.4 ± 2.8 38.4 ± 1.4 58.0 ± 5.2 53.5 ± 5.7 68.6 ± 4.4 65.1 ± 5.7 73.9 ± 1.6 70.1 ± 1.9 78.2 ± 0.4 74.7 ± 0.4
SAT 46.1 ± 0.9 40.5 ± 2.7 60.0 ± 4.5 56.0 ± 5.2 71.4 ± 1.1 68.5 ± 1.0 74.7 ± 0.7 71.3 ± 0.4 79.4 ± 0.4 77.0 ± 0.6
DeCrisisMB 58.1 ± 3.8 54.2 ± 3.5 65.6 ± 7.2 62.5 ± 7.9 73.4 ± 1.0 70.2 ± 1.2 77.0 ± 1.6 74.1 ± 1.5 78.9 ± 1.0 75.7 ± 1.3

Dataset: ThreeCrises

#Labels/Class 3 5 10 20 50

PSL 41.9 ± 1.0 37.4 ± 0.7 50.0 ± 1.1 44.3 ± 1.3 64.5 ± 4.9 60.4 ± 5.3 71.9 ± 2.2 67.3 ± 3.2 75.4 ± 2.0 72.8 ± 2.0
MixMatch 43.8 ± 0.7 37.9 ± 0.4 53.5 ± 3.4 48.3 ± 4.3 64.9 ± 1.0 61.1 ± 0.6 72.6 ± 1.2 69.3 ± 1.1 76.8 ± 0.8 73.5 ± 0.7
FlexMatch 44.9 ± 1.6 39.2 ± 1.4 53.8 ± 5.5 49.4 ± 5.8 64.5 ± 5.4 61.3 ± 5.3 71.8 ± 0.9 67.4 ± 0.6 76.2 ± 0.7 73.2 ± 1.5
LogitAdjust 43.9 ± 3.4 37.6 ± 4.1 52.8 ± 2.8 47.2 ± 3.0 65.9 ± 3.5 61.1 ± 3.6 72.0 ± 1.1 67.7 ± 1.2 77.3 ± 1.3 74.7 ± 1.4
SAT 43.5 ± 0.7 37.8 ± 0.6 55.8 ± 4.4 50.4 ± 5.1 68.6 ± 1.4 65.0 ± 1.5 72.5 ± 1.4 68.4 ± 2.2 76.9 ± 1.1 73.4 ± 2.4
DeCrisisMB 52.5 ± 2.5 48.6 ± 2.5 59.8 ± 4.0 56.0 ± 4.1 68.6 ± 1.9 64.2 ± 2.2 73.8 ± 2.0 70.9 ± 2.0 77.0 ± 2.2 74.3 ± 2.5

Table 3: Accuracy and Macro-F1 results of different debiasing methods on Hurricane and ThreeCrises datasets. All
results are averaged over 3 runs. Best results are shown in bold.

① Update  ② Sample

Model

Pseudo-label

Prediction

Memory Bank

Unlabeled data

Figure 2: Illustration of debiasing via Memory Bank.

As illustrated in Figure 2, the memory bank con-
sists of C independent queues, where C is the
number of classes. For a batch of unlabeled data,
the data that receive high-confidence model pre-
diction will be assigned pseudo-labels. Since each
class may receive a highly imbalanced number of
pseudo-labels, we first push these pseudo-labeled
data to the corresponding queue in the memory
bank. At each training iteration, we randomly sam-
ple an equal number of pseudo-labeled data from
the memory bank for each class. Those rebalanced
samples and pseudo-labels are then passed to the
model and used for training. We repeat these steps
until the model converges. The key is using the
memory bank to store and rebalance pseudo-labels
for each training iteration without sacrificing their

quality. In such a manner, the bias from the dif-
ferent numbers of pseudo-labels produced in each
class can be significantly alleviated or removed.

Note that our method is very different from the
standard under-sampling approach: For different
training iterations, the generated pseudo-labels can
be extremely skewed. In many cases/iterations,
there are no pseudo-labels generated for some
classes, especially hard classes. The standard
under-sampling approach cannot promote learn-
ing for these ignored classes during these iterations
and will lead the model to increasingly ignore them;
The standard over-sampling approach also cannot
handle these cases because there are no pseudo-
labels to be oversampled. In contrast, our method
stores previously generated high-quality pseudo-
labels for each class in a memory bank and then we
can sample equal numbers of pseudo-labels in each
class per training iterations. Results and analysis
show that this simple approach is very powerful
in debiasing since we effectively balance pseudo-
labels in each training iteration while maintaining
the high quality of pseudo-labels.

5 Experiments

5.1 Experimental Setup

Following Chen et al. (2020); Li et al. (2021);
Chen et al. (2022), we use the BERT-based-uncased
model as our backbone model and the Hugging-
Face Transformers (Wolf et al., 2020) library for
the implementation. We provide a complete list of
our hyper-parameters in Appendix A. Our code is
released.



Source: ThreeCrises, Target: Hurricane

Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

#Labels/Class 3 5 10 20

PSL 37.3 ± 1.7 32.7 ± 2.5 45.8 ± 1.3 40.6 ± 1.4 61.6 ± 4.4 56.9 ± 4.8 69.7 ± 1.6 65.9 ± 2.5
LogitAdjust 42.7 ± 6.2 35.9 ± 6.4 49.7 ± 1.5 44.3 ± 1.3 63.3 ± 2.4 59.8 ± 1.8 69.0 ± 0.5 65.4 ± 0.5
SAT 42.1 ± 0.8 36.0 ± 1.2 51.1 ± 5.7 45.7 ± 6.8 66.0 ± 1.8 61.9 ± 1.5 69.7 ± 2.1 66.3 ± 2.5
DeCrisisMB 49.3 ± 3.1 45.2 ± 3.6 58.2 ± 6.2 53.9 ± 7.2 68.3 ± 1.0 64.6 ± 2.2 72.7 ± 1.3 70.0 ± 1.4

Source: Hurricane, Target: ThreeCrises

#Labels/Class 3 5 10 20

PSL 38.3 ± 3.5 33.4 ± 3.9 52.9 ± 5.8 47.2 ± 6.9 63.4 ± 3.1 58.6 ± 3.1 68.5 ± 2.2 63.6 ± 2.7
LogitAdjust 36.0 ± 4.5 30.7 ± 3.1 55.1 ± 3.6 50.2 ± 4.6 63.6 ± 3.0 59.1 ± 4.4 68.3 ± 1.5 64.2 ± 2.2
SAT 34.9 ± 5.2 28.2 ± 5.0 57.5 ± 3.2 53.4 ± 2.8 67.1 ± 3.6 62.9 ± 3.8 71.1 ± 1.7 66.4 ± 2.3
DeCrisisMB 52.0 ± 3.3 47.4 ± 2.8 64.9 ± 2.3 61.8 ± 3.4 67.6 ± 2.6 64.3 ± 1.7 71.3 ± 1.1 67.6 ± 1.3

Table 4: Out-of-distribution results. Average over 3 runs.

Dataset AG News Yahoo! Answers Hurricane ThreeCrises Average

Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 -

PSL 67.96 66.04 49.34 42.43 55.00 49.80 50.00 37.40 52.25
LogitAdjust 75.54 74.40 52.10 43.93 58.00 53.50 52.80 37.60 55.98
SAT 77.13 75.94 56.43 51.03 60.00 56.00 55.80 37.80 58.77
DeCrisisMB 80.55 79.50 59.25 54.09 65.60 62.50 59.80 48.60 63.74

Table 5: Generalizability results on different domains and diverse datasets in the 5-shot setting.

5.2 Main Results

The comprehensive evaluation results on Hurricane
and ThreeCrises are reported in Table 3. In addition
to the debiasing methods discussed in Section 4,
we also compare our method with two other prior
and competitive approaches in semi-supervised
learning and pseudo-label debiasing: MixMatch
(Berthelot et al., 2019) and FlexMatch (Zhang et al.,
2021). We can see that DeCrisisMB significantly
outperforms these approaches in most cases, indi-
cating its effectiveness in leveraging unlabeled data
and debiasing pseudo-labels. When there are 50
labels for each class, all the baseline models and
the DeCrisisMB produce very close results. With
the decreased number of labels, it is noteworthy
that the DeCrisisMB achieves the best performance
by yielding a larger accuracy margin in compari-
son with the other three baseline methods. Under
the extremely weakly-supervised setting (with 3
labels for each class), the debiasing process of De-
CrisisMB is surprisingly efficient, bringing 13.7%
and 10.8% Macro-F1 improvement than the second-
best method SAT. All these results imply the strong
debiasing capability of the proposed DeCrisisMB
and justify its superiority.

5.3 Out-of-Distribution Results

In Table 4, among all the competitors, our DeCri-
sisMB model achieves the best out-of-distribution
performance in all evaluation settings, particularly
exceeding the second-best SAT approach by the
accuracy of 10.45% and Macro-F1 of 11.6% on
average when the number of labels is limited to
3. All the above results prove the effectiveness of
the DeCrisisMB under distribution shift and also
further reveal its potential to be deployed into more
realistic and challenging application scenarios.

5.4 Generalizability Results

To demonstrate the generalizability of our method,
we further test our method on two standard semi-
supervised learning benchmark datasets: AG News
and Yahoo! Answers, both of which are in differ-
ent domains and provide larger test and validation
sets. A detailed breakdown and statistics of these
additional datasets are provided in Appendix B.
The performance comparisons on the 5-shot setting
are presented in Table 5. It can be observed that
DeCrisisMB consistently outperforms other meth-
ods across different domains and diverse datasets,
demonstrating its strong generalizability.



(a) PSL (b) LogitAdjust (c) SAT (d) DeCrisisMB

Figure 3: Comparison of classwise accuracy on the validation set of Hurricane dataset between different debiasing
methods. All three debiasing methods demonstrate some debiasing effects, i.e., improving the performance of
ignored classes in PSL. However, the training of LogitAdjust becomes unstable since its explicit logit adjustment
makes it difficult for the model to fit the training data. DeCrisisMB achieves the best debiasing effect and its training
is also more stable. A detailed analysis is provided in Section 6.

(a) PSL (b) LogitAdjust (c) SAT (d) DeCrisisMB

Figure 4: Comparison of total numbers of generated pseudo-labels for all classes between different debiasing
methods. All three methods have shown some effect in balancing pseudo-labels. Nevertheless, the generated
pseudo-labels from LogitAdjust are still highly imbalanced. SAT shows great performance in balancing classwise
pseudo-label numbers but is at the cost of sacrificing their accuracy. DeCrisisMB most effectively balances both the
quantity (Figure 4(d)) and quality (Figure 5) of pseudo-labels. A detailed analysis is provided in Section 6.

Figure 5: Pseudo-label quality of worst classes, demon-
strated by the average pseudo-label accuracy of the
worst 1, 4 and 8 classes. DeCrisisMB can significantly
improve the performance of the worst classes.

6 Analysis

To further understand each debiasing approach and
why the proposed method achieves the best debas-
ing results, we provide several visualizations on
Hurricane datasets. Figure 3 demonstrates quali-
tative comparisons of different debiasing methods.
Figure 4 shows the comparison on total numbers

of produced pseudo-labels. Figure 5 presents the
average pseudo-label accuracy over the worst 1, 4
and 8 classes. Overall, all three debiasing meth-
ods have some effects in debiasing and balancing
pseudo-label numbers across the class, as shown in
Figure 3, 4. However, there are some differences:

• LogitAdjust can be observed to be unstable
over the training process (Figure 3(b)) and its
generated pseudo-labels are still highly im-
balanced (Figure 4(b)). One potential reason
behind this is that explicit logit adjustments
make the model difficult to fit data and make
training unstable.

• SAT does improve the performance of hard-
to-learn classes but is still slightly unstable
in the training process (Figure 3(c)) and has
lower pseudo-labels accuracy than the PSL
baseline (Figure 5). Our assumption is that
although lowering thresholds helps generate
more pseudo-labels for the poorly-learned
classes (Figure 4(c)), this comes at the ex-
pense of reducing their pseudo-labels accu-
racy (Figure 5).



• Our proposed DeCrisisMB achieves the best
results and is powerful in debiasing the semi-
supervised models (Figure 3(d)) since we ef-
fectively balance pseudo-labels in each train-
ing iteration (Figure 4(d)) while maintaining
the high quality of pseudo-labels (Figure 5),
and thus the training is also more stable.

7 Conclusion

In this work, we demonstrate that semi-supervised
models and their pseudo-labels generated on so-
cial media data posted during crisis events can be
biased, and balancing pseudo-labels used in train-
ing can effectively debias semi-supervised mod-
els. We then study and compare two recent debi-
asing approaches in semi-supervised learning with
our proposed debiasing method for crisis tweet
classification. Experimental results show that our
method based on memory bank and equal sampling
achieves the best debiasing results quantitatively
on both in-distribution and out-of-distribution set-
tings. We believe our work can serve as a universal
and effective adds-on debiasing module for semi-
supervised learning in different domains.

Limitations

This work examines various debiasing methods,
primarily in the context of classification settings.
However, it should be worthwhile to investigate the
debiasing effects of these methods in other settings,
such as in generative tasks and large language mod-
els. Such exploration would help further demon-
strate the generality of these methods. We plan to
conduct such exploration in the future.

Broader Impact

For our crisis domain, the strongest contribution
of this paper is the debiasing strategy that helps
alleviate the negative effect of models being biased
towards the more frequent classes. Using Twitter
data, we reliably improve the performance of life-
essential classes such as requests or urgent needs,
displaced people and evacuations, and injured or
dead people. Currently, crisis responders can track
weather data to know where a hurricane hits an
affected population or what are potentially flooded
areas in rainy seasons, but they cannot know in
real time the effect that a disaster is having on the
population. They often ask, “How bad is it out
there?”. Traditionally, they rely on either eyewit-
ness accounts after the fact from survivors, or eye-

witness information offered in real-time by those
who are able to make phone calls. Our model can
be integrated into systems that can help response
organizations to have a real-time situational aware-
ness. In time, such systems could pinpoint the joy
of having survived a falling tree, the horror of a
bridge washing out or the fear of looters in action.
Responders might be able to use such a system
to provide real-time alerts of the situation on the
ground and the status of the affected population.
Thus, our research is aimed at having a positive
impact on sustainable cities and communities.
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A Hyperparameters

A complete list of hyperparameters of evaluated
methods is provided in Table 6. We use the same
hyperparameters and AdamW optimizer across all
datasets.

PSL LogitAdjust SAT DeCrisisMB

Learning Rate 1e-4

Batch Size 32

Unsuperivsed Loss Weight 20

EMA Momentum 0.9

Confidence Threshold 0.9

Unlabeled Data Ratio 1

Length of Queue in DeCrisisMB - - - 200

Equal Sampling Number - - - 5

Debias Strength λ - 0.4 - -

Table 6: A complete list of hyperparameters of all eval-
uated methods in this study.

B Statistics of Added Datasets

The detailed breakdown and statistics of the addi-
tional datasets, AG News (Zhang et al., 2015) and
Yahoo! Answers (Chang et al., 2008), are provided
in Table 7.

C Further Augment DeCrisisMB

As inspired by the two previous debiasing methods
discussed in Section 4, different classes have var-
ied learning statuses; thus, it might be beneficial
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Dataset # Total Data # Training # Validation # Test Domain # Classes Class Example

AG News 35,600 20,000 8,000 7,600 News Topic 4 Sci/Tech, World, Business
Yahoo! Answers 130,000 50,000 20,000 60,000 QA Topic 10 Sports, Health, Education

Table 7: Detailed breakdown and statistics of added datasets.

to sample more pseudo-labels for poorly-learned
classes and sample fewer pseudo-labels for leading
classes. To this end, we propose an adaptive sam-
pling strategy (AdSampling) to explore a way of
augmenting our DeCrisisMB method. Specifically,
the number of pseudo-labels to be sampled from
different classes depends on their learning status,
which is estimated by p̄t(c) as in Eq. 6 and Eq. 4.
Formally, the sampling number for class c at time t
is defined as:

Nt(c) =

1
|C|

p̄t(c)
∗N (7)

where C is the number of classes, and N is the
original sampling number for each class queue in
the memory bank. This helps in over-balancing
pseudo-labels used per iteration for poorly-behaved
classes and speeding up the debiasing process.

Table 8 indicates the accuracy and Macro-F1
results of DeCrisisMB with and without AdSam-
pling on the Hurricane dataset. AdSampling, the
sampling strategy to prioritize the poorly-learned
classes, further boosts the DeCrisisMB perfor-
mance and achieves better debiasing results in most
cases. Note that adaptive sampling is just a simple
add-on and exploration inspired by the two baseline
methods and can be further optimized.

# Labeled Data Per Class

Accuracy 3 5 10 20 50

DeCrisisMB 58.1 ± 3.8 65.6 ± 7.2 73.4 ± 1.0 77.0 ± 1.6 78.9 ± 1.0
w/ AdSampling 58.2 ± 3.5 67.1 ± 9.1 73.9 ± 1.9 76.6 ± 1.2 79.6 ± 0.2

Macro-F1 3 5 10 20 50

DeCrisisMB 54.2 ± 3.5 62.5 ± 7.9 70.2 ± 1.2 74.1 ± 1.5 75.7 ± 1.3
w/ AdSampling 54.0 ± 2.9 64.0 ± 8.8 71.5 ± 2.0 73.1 ± 0.9 77.1 ± 0.3

Table 8: Accuracy and Macro-F1 results of DeCrisisMB
with and without adaptive sampling. Average over 3
runs.


