
Analyzing images’ privacy for the modern Web

Anna Cinzia Squicciarini
College of Information

Sciences and Technology
Pennsylvania State University
asquicciarini@ist.psu.edu

University Park, PA
United States

Cornelia Caragea
Computer Science and

Engineering
University of North Texas
ccaragea@unt.edu

Denton, Tx
United States

Rahul Balakavi
Computer Science and

Engineering
Pennsylvania State University

rmb347@psu.edu
University Park, PA

United States

ABSTRACT
Images are now one of the most common forms of content
shared in online user-contributed sites and social Web 2.0
applications. In this paper, we present an extensive study
exploring privacy and sharing needs of users’ uploaded im-
ages. We develop learning models to estimate adequate pri-
vacy settings for newly uploaded images, based on carefully
selected image-specific features. We focus on a set of visual-
content features and on tags. We identify the smallest set
of features, that by themselves or combined together with
others, can perform well in properly predicting the degree
of sensitivity of users’ images. We consider both the case
of binary privacy settings (i.e. public, private), as well as
the case of more complex privacy options, characterized by
multiple sharing options. Our results show that with few
carefully selected features, one may achieve extremely high
accuracy, especially when high-quality tags are available.

1. INTRODUCTION
Images are now one of the most common forms of content

shared in online user-contributed sites and social Web 2.0
applications. Sharing takes place both among previously
established groups of known people or social circles (e.g.,
Google+, Flickr or Picasa), and also increasingly with peo-
ple outside the user’s social circles, for purposes of social dis-
covery [6]- to help them identify new peers and learn about
peers’ interests and social surroundings. For example, peo-
ple on Flickr or Pinterest can upload their images to find
social groups that share the same interests [6, 50]. How-
ever, semantically rich images may reveal content-sensitive
information [2, 38, 49]. Consider a photo of a student’s
2013 New Years’ public ceremony, for example. It could be
shared within a Google+ circle or Flickr group, or it could
be used to discover 2013 awardees. Here, the image content
may not only reveal the users’ location and personal habits,
but may unnecessarily expose the image owner’s friends and
acquaintances.

Sharing images within online content sharing sites, there-
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fore, may quickly lead to unwanted disclosure and privacy
violations [10, 2, 5]. Malicious attackers can take advantage
of these unnecessary leaks to launch context-aware attacks
or even impersonation attacks [22], as demonstrated by a
proliferating number of cases of privacy abuse and unwar-
ranted access.

To this date, online image privacy has not been thoroughly
studied, as most of recent work has been devoted to pro-
tecting generic textual users’ online personal data, with no
emphasis on the unique privacy challenges associated with
image sharing [25, 20]. Further, work on image analysis has
not considered issues of privacy, but focused on semantic
meaning of images or similarity analysis for retrieval and
classification (e.g. [11, 36, 29, 17, 16]). Only some recent
work has started to explore simple classification models of
image privacy [38, 49].

In this work, we carry out an extensive study aiming at
exploring the main privacy and sharing needs of users’ up-
loaded images. Our goal is to develop learning models to
estimate adequate privacy settings for newly uploaded im-
ages, based on carefully selected image-specific features. To
achieve this goal without introducing unneeded overhead
and data processing, we focus on two types of image features:
visual-content images and metadata. Within these feature
types, we aim to identify the smallest set of features, that by
themselves or combined together with others, can perform
well in properly predicting the degree of sensitivity of users’
images.

To achieve this goal, we develop and contrast various
learning models, that combine an increasingly large number
of features using both combined and ensemble classification
methods. Our analysis shows some interesting performance
variability among all the analyzed features, demonstrating
that while models for images’ privacy can be well captured
using a large amount of features, only some of them have a
high discriminative power.

We specifically identified SIFT (Scale-Invariant Feature
Transformation) and TAGS (image metadata) as the best
performing features in a variety of classification models. We
achieve a prediction accuracy of 90% and a Break Even Point
(BEP) of 0.89 using these features in combination.

Furthermore, we analyze privacy needs of images on a
multi-level scale, consistent with current privacy options of-
fered by most popular Web 2.0 sharing sites and applica-
tions. We adopt a five-level privacy model, where image
disclosure can range from open access to disclosure to the
owner only. In addition to the five-privacy levels, we also in-
troduce new degrees of disclosure for each image, to model



the different ways an image can be made available online.
These degrees of disclosure are View, Comment, Download.
According to this multi-level, multi-class privacy framework,
we build models to estimate adequate privacy settings, us-
ing the best combination of features obtained in our privacy
prediction models for binary classification. In these new
models, we account for the inter-relations between differ-
ent privacy classes. An example for such an inter-relation
is the following: an image can be downloadable only if it
can be viewed. To model these inherent inter-relations, we
used Chained classifier [33] models, where predicted class
labels are used to predict new class labels. Our experiments
confirm that these models, executed using features such as
Edge, SIFT, TAGS, and their assembled combinations, con-
sistently outperformed strong baseline models.

To the best of our knowledge, this is the first and most
comprehensive study carried out to date on large-scale image
privacy classification, that includes not only simple privacy
classification based on binary labels, but also models for
more complex, multi-facet privacy settings.

The rest of the paper is organized as follows. We discuss
prior research in Section 2. In Section 3 we elaborate our
problem statement, whereas in Section 4 we discuss different
image-based features that we explored. In Section 5 we ana-
lyze the patterns of visual and textual features in public and
private images. In Section 6, we introduce the multi-class
model. We finish our analysis in Section 7, where we discuss
pointers to future works and conclude the paper.

2. RELATED WORK
A number of recent studies have analyzed sharing pat-

terns and social discovery in image sharing sites like Flickr
[15, 4, 28, 50]. Among other interesting findings, scholars
have determined that images are often used for self and so-
cial disclosure. In particular, tags associated with images
are used to convey contextual or social information to those
viewing the photo [35, 30, 14, 4], motivating our hypothesis
of using metadata as one among other features for privacy
extraction.

Miller and Edwards [28] further confirm that people who
share their photos maintain social bonds through tagging
together with online messaging, commenting, etc. They
also identify two different types of users (normal and power
users), indicating the importance of interpersonal differences,
users may have different levels of privacy concerns depend-
ing on their individual level of privacy awareness and the
image content.

Ahern et al. [2] analyzed effectiveness of tags as well as
location information in predicting privacy settings of the
photos. Further, they conducted an early study to establish
whether content (as expressed by image descriptors) is rele-
vant to image’s privacy settings. Based on their user studies,
content is one of the discriminatory factors affecting image
privacy, especially for images depicting people. This sup-
ports the core idea underlying our work: that particular
categories of image content are pivotal in establishing users’
images sharing decisions. Jones and colleagues [23] later
reinforced the role of privacy-relevant image concepts. For
instance, they determined that people are more reluctant
to share photos capturing social relationships than photos
taken for functional purposes; certain settings such as work,
bars, concerts cause users to share less. These studies also
revealed significant individual differences within the same

type of image, based on some explanatory variables relating
to the identity of the contacts and the context of photo cap-
ture, providing insights into the need for customized, sub-
jective models for privacy patterns. Zerr and colleagues re-
cently developed PiCAlert [49], which carries out content
analysis for image private search and detection of private
images.

Along the same theme, Besner et al. [5] pointed out that
users want to regain control over their shared content but
meanwhile, they feel that configuring proper privacy settings
for each image is a burden. Similarly, related work suggests
sharing decisions may be governed by the difficulty of set-
ting and updating policies, reinforcing the idea that users
must be able to easily set up access control policies [3, 42,
13, 38, 20, 25]. Some notable recent efforts to tackle these
problems have been conducted in the context of tag-based
access control policies for images [46, 24, 42], showing some
initial success in tying tags with access control rules. How-
ever, the scarcity of tags for many online images [40], and
the workload associated with user-defined tags precludes ac-
curate analysis of the images’ sensitivity based on this di-
mension only. Other work [19, 13, 3, 8, 7, 20] has focused on
generic users’ profile elements, and typically leveraged social
context, rather users’ individual content-specific patterns.

A loosely related body of work is on recommendation of
tags for social discovery [35, 30, 47, 14] and for image clas-
sification [34, 48, 14] in photo sharing websites like Flickr.
In these works, the typical approach is for authors to firstly
collect adequate images and then classify images according
to visual and context-related features. After users upload
their images, the server extracts features, then classifies and
recommends relevant tags and groups.

Finally, there is a large body of work on image content
analysis, for classification and interpretation (e.g., [11, 36,
29, 41, 51, 43, 18]), retrieval ([17, 16, 21, 12] are just some
examples), and photo ranking [39, 45], also in the context of
online photo sharing sites, such as Flickr [34, 48, 14, 40, 31,
32, 15]. This previous work is useful in identifying mean-
ingful content-based features for effective image content ex-
traction, discussed in Section 4.

3. PROBLEM STATEMENT
The objective of our work is to explore the main char-

acteristics of users’ uploaded images, and leverage them to
automatically determine images adequate privacy settings.
Our goal is two-fold: (1) We aim to identify a variety of
features that can be informative in profiling images’ privacy
needs. (2) Among the identified features, wish to determine
the smallest set of features, that by themselves or combined
together with others, can perform well in properly defining
the degree of sensitivity of users’ images.

To meet these goals, we analyze images based on visual
content features and their associated metadata. The intu-
ition underlying content-based features is that, as demon-
strated in recent work (e.g. [5]) although privacy is a subjec-
tive decision, certain visual content is likely personal or too
sensitive to be disclosed to a public online audience. Hence,
we expect that certain visual elements of an image, like the
presence of edges, its color, its predominant elements, or the
presence of faces, may give some insights about its degree of
privacy. Metadata, typically defined in terms of keywords
extracted from tags or captions, can provide insights on the
image’s context, i.e. where it was taken, what it represents



to the labeler (e.g. the image owner) what feelings it evokes,
etc.

Additional dimensions are purposely not considered for
the purpose of this study. For instance, we do not consider
any of the additional social networking or personal informa-
tion about the photo owners and the site where the image is
originally posted, as we aim to leverage to the extent possible
the content carried by the image itself. Further, information
about a photo poster and his online social network activities
may not be available or easily accessible.

Our learning models try to address the stated goals using
a blend of visual and metadata features using two alterna-
tive privacy models. First is a binary model, and accounts
for the case of an image which is either to be disclosed or not
(public vs. private). The second privacy model accounts for
the more complex case of an image to be placed in a social
networking site, where users may have more sophisticated
options to choose from (i.e. should friend view the images?
should they be allowed to download it? should family mem-
bers be allowed to view and or comment on the image?).
In this case, privacy settings will be defined by multi-option
privacy privileges and various disclosure options.

4. IMAGE RELEVANT FEATURES
In this section, we discuss the image features considered

for our analysis.

4.1 Visual Features
We are interested in identifying few pivotal features that

can serve useful for image classification w.r.t. privacy. We
next describe our selected visual features, and provide some
observations from the use of the features for privacy models.

• SIFT or Scale Invariant Feature Transform [27]. As
images privacy level may be determined by the pres-
ence of one or more specific objects, rather than the
whole visual content itself (e.g. think about an im-
age with somebody carrying a gun and the same im-
age with the person holding flowers instead), features
able to detect interesting points of images are needed.
SIFT, being one of the most widely used features for
image analysis in computer vision, is such a feature. It
detects stable key point locations in scale space of an
image. In simple terms, the SIFT approach is to take
an image and transforms it into a “large collection of
local feature vectors” [26]. Each of these feature vec-
tors is invariant to any scaling, rotation or translation
of the image. We extract a image profile based on
the state-of-the-art model called Bag-of-visual-words
(BoW) [37, 44], which can effectively evaluate the im-
age similarity, and is widely used in image similarity
search, image retrieval and even content-based social
discovery [35]. The image BoW vector is first obtained
by extracting the features of preferred images, then
clustering them into the visual word vocabulary 4,
where each element is the distinct word occurrence.
Features are extracted for each image and each ele-
ment of the feature vector is mapped onto one of the
bag of words and once all the elements are checked,
we get a sequence of numbers whose length is equal
to the length of the Bag-of-visual-words . Each num-
ber represents the number of elements in the original
SIFT feature vector, which have been mapped onto

Figure 1: Facial recognition examples

the corresponding visual word. As a result, an image
profile is created S = {s1, . . . , sm}, where si reflects
the strength of image’s preference on word wi and m
is the size of 4.

• RGB or Red Green Blue. Images with a given color
and texture patterns can be mapped into certain classes,
based on what is learnt from the training set. For ex-
ample, instances with a pattern of green and blue may
be mapped to public images, being indicative of na-
ture. Accordingly, we include RGB feature to extract
these potentially useful patterns. RGB is a content-
based feature which detects six different components
from an image. These components are Red, Green,
Blue, Hue, Saturation and Brightness. Values corre-
sponding to each of the variables are extracted from
an image, and each feature is encoded into a 256 byte
length array. This array is serialized in sparse format
where each instance corresponds to the feature vector
of an image.

• Facial recognition Images revealing one’s identity are
more likely to be considered private [2], although this
is subjective to the specific event and situation wherein
the image was taken. Henceforth, to discriminate to
the extent possible between purely public events with
people and other images involving various individuals,
we detect the ratio that the area of faces take in the
image, to identify whether they are or not prevalent
elements in the image.

We extract facial keypoints using the FKEFaceDetec-
tor framework. Information about presence of faces
is encoded in two attributes for each image similar
to [49]. One attribute represents the number of faces
found in the image and the second attribute indicates
the amount of area occupied by faces in the image.

The framework detects faces which are straight-up and
clearly visible. In some images, though there are faces
visible, due to various factors the faces couldn’t be de-
tected. Images with faces not clearly visible, images in
dark background, images which show faces from acute



Figure 2: Example of a Flickr image and its tags

angles are few factors which can result in faces not be-
ing detected by the API. We show two sets of images
where facial recognition is successful and where it fails
in Figure 1.

• Edge Direction Coherence. As more and more users
enjoy the pervasiveness of cameras and smart devices
the number of online images that include some “artis-
tic” content (landscapes, sceneries etc) is also increas-
ing. Hence, we would like to include a feature that
can help with capturing similarities in landscape im-
ages. One such feature, that has shown useful for mod-
els on landscape images, is Edge Direction Coherence,
which uses Edge Direction Histograms to define the
texture in an image. The feature stores the number
of edge pixels that are coherent and non-coherent. A
division of coherence and non-coherence is established
by a threshold on the size of the connected component
edges. This feature uses 72 bins to represent coherent
pixels and one bin for non-coherent pixels. After sep-
arating out non-coherent pixels, we back track from
a random coherent pixel to another and check if its
within 5 degrees and then update the corresponding
coherent bins [41].

4.2 MetaData
Annotation of online images is now common practice, and

it is used to describe images, as well as to allow image clas-
sification and search by others. Users can tag an image by
adding descriptive keywords of the images content, for pur-
poses including organization, search, description, and com-
munication. For instance, each image in Flickr has asso-
ciated one or more user-added tags. We created a feature
vector for each image accordingly. We create a dictionary
of words from all images in the training set such that there
are no duplicates (in the dictionary). Once we have the dic-
tionary ready, each feature vector is represented in sparse
format, where an entry of the vector corresponds to a word.
Each unique word that is a tag for an image, has an entry in
the vector. This sparse representation allows compact fea-
ture vector for each instance, removing unnecessary informa-

tion about absence of keywords which are in the dictionary
and not in the image.

Accordingly, we try to correlate images by using the fea-
ture vector to capture usage of the same tags. We observe
that most of the images which show similar descriptive pat-
terns have extensive word usage which are similar. An ex-
ample of tags usage in Flickr is given in Figure 2. For this
image, the associated words are beach, water and ocean,
which all have a high degree of similarity. Similar findings
are reported for other images, where tags appear extremely
useful: As we further elaborate in Section 5.2.3, tags are a
predominant feature for privacy classification purposes, al-
though acceptable results are found even in absence of avail-
able metadata .

5. PRIVATE VERSUS PUBLIC IMAGES: EM-
PIRICAL ANALYSIS

Our analysis includes two key steps. First, we analyze
a large labeled dataset of images posted online, by means
of unsupervised methods, to identify the main distinctions
between private and public images. Second, we investigate
privacy images classification models, taking into account the
results of our clustering analysis and the features discussed
in the previous section.

We employ two datasets for our analysis. For the first
dataset, we took a sample of Flickr images from the PiCalert
dataset [49]. The PiCalert dataset includes randomly cho-
sen Flickr images on various subjects and different privacy
sensitivity. Each image in the dataset is labeled using pri-
vate and public labels by randomly selected users. We focus
on about 6000 images randomly sampled from the original
dataset, to include actual online images (i.e. still on the
site) with associated keywords. The dataset includes public
and private images in the ratio of 2:3. The second dataset,
was sampled from the Visual Sentiment Ontology repository
[9]. The repository has a good blend of landscape images,
animals, artwork, people etc. About 4000 Flickr URLs were
randomly sampled from the dataset. The associated key-
words were extracted from the Flickr site directly.

Some of the privacy labels were already part of the first
dataset, whereas we use crowdsourcing methods (i.e. Ama-
zon Mechanical Turk) for labeling the additional datasets
and complement existing labels with more complex settings
(see Section 6).

Of course, similar to [49], the adopted privacy labels only
capture an aggregated community perception of privacy, rather
a highly subjective, personal representation. We argue that
the provided representation is is correlated to textual and vi-
sual features in a plausible way, and can be predicted using
carefully crafted classification models.

5.1 Characteristics of private and public im-
ages

To understand what makes images private or public, we
first explored some of the consistent characteristics among
each of these two classes, considering both visual and meta-
data elements.

5.1.1 Visual differences between public and private
Images

We first explored whether there are any consistent types of
images, or image content that can help define private versus
public images.



Figure 3: Public and private images

Our approach to identify these characteristics is to group
images by content similarity, to explore what are the vi-
sual similarities that define the clusters. To this end, we
used unsupervised learning methods. In particular, we ap-
plied Content Based Image Retrieval (CBIR) [1] method
to identify clusters among public and private images, re-
spectively. Content Based Image Retrieval uses wavelet-
based color histogram analysis and enhancements provided
by Haar wavelet transformation. With Color histograms,
the image under consideration is divided into sub-areas and
color distribution histograms are calculated for each of the
divided areas. The wavelet transformation is used to cap-
ture texture patterns and local characteristics of an image.
A progressive image retrieval algorithm is used for image
retrieval based on similarity.

Upon running CBICR, we observed similarity patterns
among images in different sets that were clustered. Fig-
ure 3 shows an excerpt of the clustered results of images.
Public images are seen on the top and private images are
at the bottom. Most public images belong to one of three
categories. (1) Women and Children, (2) Symbols, abstract,
and black and white images, (3) Artwork. Private images
could be mainly grouped into (1) Women and children, (2)
Sketches.

As a first observation, we note that not all images of peo-
ple are private. Our clusters show that images indicative
of people’s life events, personal stories etc. are considered
equally confidential. Second, images with children or hu-
mans in general are equally classifiable as private or public,
depending on the specific visual representation in the im-
age. These observations confirm that simply considering the
presence of people as the only relevant feature may not be
sufficient (we provide additional results on this aspect in the
next Section), and that multiple features are needed, both
visually (to describe the content in the cluster classes) and
through text, to provide some contextual information.

5.1.2 Keywords patterns in public and private im-
ages

To further our understanding of the images and their pri-
vacy needs, we analyzed the keywords associated with each
image. Specifically, we enriched the dataset by adding an-
notations for each image in the dataset, and extracted these
annotations from the Flickr’s tagging systems. Each image
in Flickr has associated one or more user-added tag, which
we crawled directly from Flickr as it was not part of the
original dataset. To obtain keyword groups reflective of the
most generic topics used to tag and index the images, we
clustered images based on keyword similarity.

Precisely, we performed keyword hypernym analysis over
all of the keywords associated with the images [38], us-
ing Wordnet as reference dictionary. For each keyword ti,
we created a metadata vector listing the hypernyms asso-
ciated with the word. After extracting all the hypernyms
of all the keywords for an image, we identified a hyper-
nym per part of speech. We identified all the nouns, verbs
and adjectives in the metadata and store them as metadata
vectors τnoun = {t1, t2, . . . , ti}, τverb = {t1, t2, . . . , tj} and
τadj = {t1, t2, . . . , tk}, where i, j and k are the total number
of nouns, verbs and adjectives respectively. This selection
was done by choosing the hypernym which appeared most
frequently. In case of ties, we choose the word which is clos-
est to the root or baseline.

We repeated the same procedure over different parts of
speech, i.e Noun, Verb and Adjective. For example, consider
a metadata vector τ = {“cousin”,“first steps”, “baby boy”}.
We find that “cousin” and “baby boy” have the same hy-
pernym “kid”, and “first steps” has a hypernym “initiative”.
Correspondingly, we obtain the hypernym list η = {(kid, 2),
(initiative, 1)}. In this list, we select the hypernym with the
highest frequency to be the representative hypernym, e.g.,
“kid”. In case that there are more than one hypernyms with
the same frequency, we consider the hypernym closest to the
most relevant baseline class to be the representative hyper-
nym. For example, if we have a hypernym list η = {(kid,



Table 1: Prominent keywords in private images

Cluster No Keywords
garment, adornment, class, pattern,

1
appearance, representation
letter, passage, message, picture,

2
scripture, wittiness, recording, sig-
naling
freedom, religion, event, movement,

3
clergyman, activity, ceremonial,
gathering, spirit, group, energy
region, appearance, segment,

4
ground, line, metal, passage, water,
structure, material
body, reproduction, people, hap-
pening, soul,

5
organism, school,class, period, res-
piration

2), (cousin, 2), (initiative, 1)}, we will select “kid” to be the
representative hypernym since it is closest to the baseline
class “kids”. Once we computed the representative hyper-
nyms for each instance, the next step was to cluster the
instances based on the hypernyms. This was achieved by
calculating the edit distance of each existing cluster center
with a new instance and the weighted average distance is
compared to a threshold value. The new instance is added
to a cluster, once the edit distance between the correspond-
ing cluster center and the instance is below the threshold. If
the distance from none of the cluster centers falls below the
threshold, then the new instance is added as a part of a new
cluster and the instance is made the cluster center. In ad-
dition, existing clusters keep updating their cluster centers
as new instances are added. A cluster center represents a
noun, verb and an adjective. These parts of speech are cho-
sen as they are the words with highest frequency amongst
the instances of the cluster.

Using the above methodology, we clustered about 6000
keywords. Keywords clustering resulted in four clusters for
keywords bound with private images and five clusters for
keywords related to public images. On average we observed
that there were around 15 hypernyms per cluster.

Table 1 shows the prominent keywords in the clusters ob-
tained by grouping keywords of private images. Each of the
five clusters being identified projects a particular aspect or
a concept (clusters are numbered for convenience only).

Cluster 1 represents adornment patterns and physical fea-
tures. Cluster 2 mainly includes words about writing and
communication. Cluster 3 hints at religion or a religion
event. Cluster 4 indicates physical structures and perceiv-
able entities. Keywords in the final group gravitate around
children and also people at large. These results are con-
sistent with the three image types identified by clustering
images per visual content. Specifically, two of the keywords
clusters (labeled for convenience as 2 and 3) are consistent
with the image cluster inclusive of abstract images and im-
ages about sketches, whereas the keyword cluster with key-
words surrounding children is consistent with the ”women
and children” cluster previously identified.

Different patterns were observed for keywords of public
images. As shown in Table 2, after the clusters were formed,
we observed that cluster 1 mainly grouped words related

Table 2: Prominent keywords in public images

Cluster No Keywords
season, hour, period, decade, leisure,

1
beginning, drib.
phenomenon, happening, relation,

2
passage, electricity
covering, vesture, case, peo-
ple,appearance,

3
adornment, lacquerware, piece, attire,
beach.
curio, artifact, art, crockery,

4
lceremonial, pattern, covering

to a time scale or an event that happened in the past or
that is set to happen in the future. Cluster 2 has words
related to a phenomenon or something that involved move-
ment. Cluster 3 has words which described dressing style
or appearance patterns. Cluster 4 described art work or ob-
jects with patterns. These patterns shed light on the themes
around private and public images. Some of these patterns
(e.g. artwork) were already observed while clustering the
images based on visual content using Content Based Image
Representation. In addition, clustering the images based
on hypernyms of the associated keywords uncovered some
additional descriptive patterns, like appearance related or
movement related images, that were not observed through
our analysis based on content-based similarity.

5.2 Image classification models
We investigate privacy images classification models with

three objectives. First, we aim to compare visual features
versus metadata, to understand which class of features is
more informative for privacy considerations. Second, we
evaluate the performance of all the individual features used
to gain an understanding of which features can be more effec-
tive in discriminating private versus public images. Finally,
we aim to identify the smallest combination of features that
can successfully lead to highly accurate classification.

We adopt supervised learning, based on labeled images (or
items) for each category. Both training and test items are
represented as multi dimensional feature vectors. Labeled
images are used to train classification models. We use linear
support vector machines (SVMs) classifiers. SVMs construct
a hyperplane that separates the set of positive training ex-
amples (photos tagged as “private”) from a set of negative
examples (photos tagged as “public”) with maximum mar-
gin.

5.2.1 Individual Features analysis
We begin by studying the performance of individual fea-

tures. We specifically evaluated the performance of classi-
fiers trained on 4000 labeled images and evaluated them on a
test set of 500 images, using one feature per model. Results
are reported in Table 3. As can be seen, TAGS is by far
the best performing feature. Content-based features have
lower accuracy, with the worst observed for Edge Direction
feature, for which accuracy is only 54.2%.

These results provide initial evidence that users’ descrip-
tion of images’ content through tags is fairly reflective of its
content. Differently, visual features by themselves appear
not to be sufficient for privacy classification, most likely due



Features Accuracy Precision Recall F meas.
Tags 78.2 0.791 0.782 0.784
RGB 56.6 0.576 0.548 0.553
SIFT 59 0.613 0.59 0.594

Facial Feat. 61.2 0.584 0.612 0.514
Edge Dir. Coh. 54.2 0.588 0.542 0.542

s

Table 3: Individual features’ classification models over 4500
images

to the heterogeneous content of the images being analyzed
(e.g. facial features are inaccurate on images with landscape
or food only, whereas Edge Direction does not perform well
on images with faces). We also observed that most pictures
that had people or faces were difficult to classify. This can
be attributed to the fact that, just detecting a person on the
image is not sufficient to provide an exact representation of
the image. For example, a beach photo with family might
be regarded as a private image. But, an image shot in a
similar setting and background with a celebrity or a holiday
advertisement might be regarded as public. This variation
is very difficult to capture accurately without the help of
user-defined keywords, which contribute to add contextual
information to the image.

Hence, a more sophisticated model combining some of
these features needs to be carefully designed.

5.2.2 Models combination
We explored various combinations of supervised learning

models for image privacy, using the features listed in Table
3. We were specifically interested in understanding whether
the accuracy of visual features, which was low for single-
feature models, could be improved by combining them into
a single classifier. The intuition is that given that these
visual features seem to work best on certain types of images,
we aimed to test whether when combined together, they
would complement one another, reaching a higher degree of
accuracy.

We tested combinations of models for a fixed set of images,
increasing the size of the training data, ranging from 1000
to 3700, keeping 500 as the size of test data. To combine
the models, we linearly combined the vectors of data of in-
dividual features into a single vector. Our results, reported
in Figure 4 for two-features combinations, show an overall
consistent increase in the accuracy of prediction across most
of the combinations with the increasing size of training data.
The exception to this pattern is for combinations which in-
volved Facial features, where the peak accuracy is observed
when the dataset size is in the 2500-3000 interval, followed
by a decrease in the prediction accuracy after the dataset
size exceeded 3000 instances landmark.

In Figure 5 and Fig. 6, we report the results for mod-
els combining three and four or more features, respectively.
Some interesting observations are as follows:

• All combinations, except the FACE,RGB,SIFT combo
(which is much lower) have an accuracy ranging from
65% to 74%, therefore achieving sub-optimal accuracy.

• When TAGS are in any combined classifier we obtain a
better model than the same model with no TAGS as a
feature, validating the role of metadata to complement
visual information extracted through content-specific

features. This observation is valid also for two-feature
models (see Figure 4), where the best accuracy is ob-
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tained with SIFT+TAGs on a labeled dataset of 3300
training instances, followed by Edge+TAGS.

• SIFT and TAGS appears to be strongest combination,
for both two features and three features models. In-
tuitively, SIFT captured all the visual key points of
the images, hence their core, discriminating visual pat-
terns. TAGS on the other hand, gave an indication of
the overall context of where the images were taken.

• When we disregard TAGS as a feature and use only
visual features for prediction we reach a performance
of of 70% over a dataset of size 4500 for SIFT, EDGE
and RGB combined together. The combined classifier
of SIFT, RGB and EDGE resulted in a BEP of 0.667.

• Finally, it appears evident that simply adding features
is not always a recipe for improved accuracy: combin-
ing the visual content with metadata leads to a de-
creased accuracy of the metadata classifier alone (see
Figure 6 for the performance of all features combina-
tion). For instance, SIFT+FACE+RGB overall per-
form worse than their individual features.

5.2.3 Tags and Visual models
In this feature study, we explore how TAGS may comple-

ment another visual feature to accurately determining ad-
equate image privacy. We adopt a different modeling ap-
proach in an attempt to improve the prediction accuracy,
and use an ensemble of classifiers, in which two classifiers
are individually used to predict the outcome for a particular
instance. Based on the prediction data and the confidence of
prediction, the ensemble outputs a final classification result
which is computed in consideration of both learning models.
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In particular, in our case, an ensemble of classifiers is
a collection of classifiers, each trained on a different fea-
ture type, e.g., SIFT and TAGS. The prediction of the en-
semble is computed from the predictions of the individual
classifiers. That is, during classification, for a new unla-
beled image xtest, each individual classifier returns a prob-
ability Pj(yi|xtest) that xtest belongs to a particular class
yi ∈ {private, public}, where j = 1, 2. The ensemble esti-
mated probability, Pens(yi|xtest) is obtained by:

Pens(yi|xtest) =
1

2

2∑
j=1

Pj(yi|xtest).

In experiments, we used the option buildLogisticModel

of Weka to turn the SVM output into probabilities.
Using an ensemble of classifiers, an image that cannot

be classified with good confidence by one classifier, can be
helped by another classifier in the ensemble which might be
more confident in classifying an image as public or private.
We identified that TAGS and all the visual features can be
these complementary classifiers: TAGS are collected from
the keywords that a user adds to represent the image. Visual
features extract the visual patterns from the image itself.

Performance metrics, obtained from a dataset of 4500 im-
ages (4000 training, 500 tests) reported in Table 4 confirm
this intuition. We particularly observe a peak in the perfor-
mance when SIFT and EDGE are combined together, along
with ensemble of SIFT and TAGS. The latter represents the
best performing combination, confirming and improving on
the trend and observations made in our combination models
(see Section 5.2.2). We note that (although not reported
in detail) other ensemble classifiers which did not include
TAGS do not reach interesting performance. We speculate
that this is due to the very nature of the features, that fail
to complement one another in the ensemble model.

In Figure 7 we show the precision vs recall graph for this
classifier of SIFT and TAGS. Accordingly, the BEP (Break
Even Point), the point where the value of precision is equal
to that of recall, stands at 0.89. Compared to the Picalert
framework [49] which presented a BEP of 0.80 after com-
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Figure 7: Precision Vs. Recall for SIFT & TAGS ensemble
models



Features Accuracy Precision Recall
Tags 82.4 0.859 0.824

Tags and RGB 60.4 0.605 0.604
Tags and SIFT 90.4 0.904 0.904
Tags and Facial 50.2 0.498 0.502
Tags and Edges 84.3 0.844 0.843

Table 4: Performance of ensemble models combining TAGS
with one content feature

bining textual and a larger number of visual features, the
ensembles classifier of SIFT and TAGS shows a stronger
performance. In short, these results demonstrate that the
ensemble of classifiers can capture different aspects of images
that are important for discriminating images as private vs.
public, with a small set of features. Note that these experi-
ments also confirm the poor performance of Facial features,
which achieve very low precision and recall, showing how the
choice of visual features is to be carefully made.

5.2.4 Secondary dataset experiments
To ensure that our models were not bound to a specific

dataset, we sampled a new set of images from the Visual Sen-
timent Ontology [9] repository. The sampling was done by
randomly selecting a URL form the complete list of about
45000 images. Using the sampled set, we tested our best
classifier, ensemble of SIFT and TAGS, to verify whether
its performance would be similar to the performance ob-
served on the tests carried out using the Picalert dataset.
In the experiment, we varied the size of the training dataset
from 1100 to 2500. Figure 8 shows the models’ prediction
accuracy, computed using TAGS and ensemble of TAGS and
SIFT, across both (Picalert and Visual Sentiment Ontology)
the datasets. We make the following observations:

• The obtained accuracy is comparable with the accu-
racy observed for the models against the PiCalert dataset.

• TAGS performed slightly better on the Picalert dataset,
whereas the ensembles combination of SIFT and TAGS
performed slightly better on the VSO dataset. This
is likely due to the larger availability of high quality
tags available in the first dataset. Nevertheless, we
note that the final prediction accuracies across differ-
ent sizes of dataset are within a range of 2-3% when
we compare the results from the two datasets.

• We also observed that the pattern of increase and de-
crease in predication accuracy with change in size of
the training set was consistent across both the datasets.

6. MULTI-OPTION PRIVACY SETTINGS
In many online sharing sites (Facebook, Flickr etc), users

create a web space wherein they can control the audience
visiting it, distinguishing among friends, family members or
other custom-social groups, and within these groups, distin-
guishing the possible access privileges. Accordingly, upon
analyzing image privacy using a binary classification model
for “public” or “private”, we investigate complex multi-label,
multi-class classification models, specifically after the op-
tions offered to Flickr users, who may distinguish among
multiple classes of users and sharing options (view, com-
ment, download).
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Figure 8: Comparison between performance for models on
Picalert and Visual Sentiment Ontology dataset

6.1 Learning models
Our current problem can be mapped into a multi-label,

multi-class problem. We have three classifications to per-
form, and each of them includes five possible labels, rang-
ing from “Only You” to “Everyone”. Precisely, the labels
are “Only You”, “Family”, “Friends”, “SocialNetwork” and
“Everyone”. Each classification is indicative of one sharing
privilege, and includes “view”, ”comment” and “Download”
access controls for each image.

Our model is based on supervised learning, and both train-
ing and test items, are represented as multi dimensional fea-
ture vectors. Labeled images, selected at random from the
dataset, are used to train classification models. As men-
tioned, we added three categories for each image, and each
category could be classified into one of the five privacy la-
bels above. We noticed that in most of the cases the privacy
levels set by users for the three categories are related. For
example, if a user wants to make an image comment-able
and download-able, it would be possible only if the image
is view-able to the users in the same level of privacy. To
account for these types of inter-relations of categories for
classifying unlabeled images, we apply Chained Classifiers
model [33]. Chained classifiers were developed to capture the
dependency between categories in a multi-category dataset.
The method enables the predictions that were made on a
previous iteration on a category to be utilized in the predic-
tion of the subsequent categories. Each classifier in the chain
is a Multiclass - SVM classifier for learning and prediction.

In our context, the Chained Classifiers model [33] involves
three transformations - one for each label. In a sense, chained
classifier simply uses SVM on each of the labels, but it dif-
fers from multi-class SVM in that the attribute space of each
label is extended by the predicted label of the previous clas-
sifiers. Given a chain of N classifiers, {c1, c2, ..., cN}, each
classifier ci in the chain learns and predicts the ith label in



the attribute space, augmented by all previous label predic-
tions c1 to ci−1. This chaining process passes information
about labels between the classifiers. Although increasing the
attribute space might be an overhead, if strong correlations
exist between the labels then these attributes immensely
help increasing the predictive accuracy. An example of a
correlation in our usecase - comment label has the predicted
value of view label in the attribute space. Intuitively, an
image can only be commented upon if it can be viewed.

6.2 Experimental Results
We again relied on the Picalert dataset for these experi-

ments. We sampled 4500 images, and used the same features
set as in our previous experiments. For labeling purposes,
we used Amazon Mechanical Turk (AMT). Quality of work-
ers’ was carefully monitored. For instance, we disregarded
work from users who assigned the same set of labels for 80%
of the images. We also manually checked URLs at random
to check for consistency of labels.

For these set of experiments, we used the three features
that performed best in our binary classification, namely SIFT,
Tags, Edges. We increased the size of the training data,
ranging from 2000 to 4000, keeping 500 as the size of test
data.

We compared the performance of chained classifiers against
a baseline classifier model. The baseline model involved run-
ning multi-class SVM on each of the three classes separately,
using the same set of attributes as opposed to chained classi-
fiers which appends the predicted class label to the attribute
list for the current prediction. The two classification models
(i.e. chained classifiers and baseline), were used for single-
feature analysis as well as for combinations of features. Re-
sults are reported in Figure 9.

A few interesting observations can be made. First, our
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Figure 9: Multi-option privacy settings

results show the accuracy of prediction across the combi-
nations with the increasing size of training data. Second,
we noted that TAGS, as established already in our previous
analysis, was the best performing single feature, with ex-
tremely high prediction accuracies (up to 94%). Ensemble
of features using TAGS & SIFT and TAGS & EDGE also
had high prediction accuracy, reaching up to 90%. Finally,
we observed that using chained classifiers increases overall
performance, regardless of the features used, in comparison
to the baseline accuracy achieved using multi-class SVM on
each class individually. This result confirms that chained
classifiers are useful in capturing the correlation between
the class labels and resulted in higher prediction accuracy.

7. CONCLUSION
In this paper, we presented an extensive study investigat-

ing privacy needs of online images. We studied the impor-
tance of images visual content and user-applied metadata
to identify adequate privacy settings. We considered both
the case of privacy settings being simple, as well as the case
of more complex privacy options, which users may choose
from. Our results show that with few carefully selected fea-
tures, one may achieve extremely high accuracy, especially
with the support of metadata.

In the future, we will extend this work along several di-
mensions. First, given the strong performance of TAGS, we
would like to incorporate additional textual metadata in the
models, to further the performance of this class of features.
Second, we would like to further explore the visual models
and their roles in the context of complex privacy settings.
Finally, we will implement a recommender system for users
to express privacy settings based on their privacy choices.

8. REFERENCES
[1] Java content based image retrieval, 2011.

https://code.google.com/p/jcbir/.

[2] S. Ahern, D. Eckles, N. S. Good, S. King, M. Naaman,
and R. Nair. Over-exposed?: privacy patterns and
considerations in online and mobile photo sharing. In
CHI ’07: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 357–366,
New York, NY, USA, 2007. ACM.

[3] E. A. Alessandra Mazzia, Kristen LeFevre, April 2011.
UM Tech Report #CSE-TR-570-11.

[4] M. Ames and M. Naaman. Why we tag: motivations
for annotation in mobile and online media. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’07, pages
971–980, 2007.

[5] A. Besmer and H. Lipford. Tagged photos: concerns,
perceptions, and protections. In CHI ’09: 27th
international conference extended abstracts on Human
factors in computing systems, pages 4585–4590, New
York, NY, USA, 2009. ACM.

[6] S. D. Blog. Pin or not to pin: An inside look, 2012.
http://blog.socialdiscovery.org/tag/statistics/.

[7] J. Bonneau, J. Anderson, and L. Church. Privacy
suites: shared privacy for social networks. In
Symposium on Usable Privacy and Security, 2009.

[8] J. Bonneau, J. Anderson, and G. Danezis. Prying data
out of a social network. In ASONAM: International



Conference on Advances in Social Network Analysis
and Mining, pages 249–254, 2009.

[9] D. Borth, R. Ji, T. Chen, T. Breuel, and S.-F. Chang.
Large-scale visual sentiment ontology and detectors
using adjective noun pairs, 2013.
http://www.ee.columbia.edu/ln/dvmm/vso/

download/sentibank.html.

[10] Bullguard. Privacy violations, the dark side of social
media. http://www.bullguard.com/bullguard-security-
center/internet-security/social-media-dangers/privacy-
violations-in-social-media.aspx.

[11] O. Chapelle, P. Haffner, and V. Vapnik. Support
vector machines for histogram-based image
classification. Neural Networks, IEEE Transactions
on, 10(5):1055–1064, 1999.

[12] S. Chatzichristofis, Y. Boutalis, and M. Lux.
Img(rummager): An interactive content based image
retrieval system. In Similarity Search and
Applications, 2009. SISAP ’09. Second International
Workshop on, pages 151 –153, aug. 2009.

[13] G. P. Cheek and M. Shehab. Policy-by-example for
online social networks. In 17th ACM Symposium on
Access Control Models and Technologies, SACMAT
’12, pages 23–32, New York, NY, USA, 2012. ACM.

[14] H.-M. Chen, M.-H. Chang, P.-C. Chang, M.-C. Tien,
W. H. Hsu, and J.-L. Wu. Sheepdog: group and tag
recommendation for flickr photos by automatic
search-based learning. In MM ’08: Proceeding of the
16th ACM international conference on Multimedia,
pages 737–740, New York, NY, USA, 2008. ACM.

[15] M. D. Choudhury, H. Sundaram, Y.-R. Lin, A. John,
and D. D. Seligmann. Connecting content to
community in social media via image content, user
tags and user communication. In Proceedings of the
2009 IEEE International Conference on Multimedia
and Expo, ICME 2009, pages 1238–1241. IEEE, 2009.

[16] R. da Silva Torres and A. Falcão. Content-based
image retrieval: Theory and applications. Revista de
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