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Abstract

Meta-analysis is a principled statistical approach for
summarizing quantitative information reported across
studies within a research domain of interest. Although
the results of meta-analyses can be highly informative,
the process of collecting and coding the data for a meta-
analysis is often a labor-intensive effort fraught with the
potential for human error and idiosyncrasy. This is due
to the fact that researchers typically spend weeks poring
over published journal articles, technical reports, book
chapters and other materials in order to retrieve key data
elements that are then manually coded for subsequent
analyses (e.g., descriptive statistics, effect sizes, relia-
bility estimates, demographics, and study conditions).
In this paper, we propose a machine learning based sys-
tem developed to support automated extraction of data
pertinent to STEM education meta-analyses, including
educational and human resource initiatives aimed at im-
proving achievement, literacy and interest in the fields
of science, technology, engineering, and mathematics.

Introduction
As science advances, scientists around the world continue
to produce large numbers of research articles. Meta-analysis
is a statistical process for summarizing quantitative infor-
mation reported across such articles within a research do-
main of interest (Schmidt 2008; Schmidt and Hunter 1977;
Vacha-Haase 1988). In the last three decades, meta-analysis
has been used widely across scientific disciplines to an-
swer both theoretical and practical questions. In STEM ed-
ucation, meta-analysis, for example, has summarized the
body of literature examining gender differences in mathe-
matics performance (Lindberg, Hyde, and Petersen 2010;
Hyde et al. 2008; Lindberg, Hyde, and Hirsch 2008) and the
use of technology in postsecondary education (Schmid et al.
2014). After examining about 4,000 studies published be-
tween 1990 and 2007 and finding 242 studies with sufficient
statistical information to calculate effect sizes, Lindberg et
al. (2010) found virtually no gender differences in math-
ematics performance, confirming an earlier meta-analysis
conducted by Hyde, Fennema, and Lamon (1990). After
examining 1,105 full-text documents, Schmid et al. (2014)
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found 870 usable effect sizes derived from 674 studies that
when analyzed indicated that the use of technology in post-
secondary education classrooms yielded positive effects in
terms of scholastic achievement and attitude outcomes.

As illustrated by these examples, meta-analyses typically
require sifting through large document sets, e.g., about 4,000
documents in Lindberg et al. (2010), and about 1,100 doc-
uments in Schmid et al. (2014), to arrive at reliable conclu-
sions. Figure 1 shows an example of a small amount of text
manually coded for a meta-analysis. The fragment of text is
taken from an article by Luttman, Mittermaier, and Rebele
(2003). Although a team of researchers is helpful to code
the documents, it presents critical issues regarding the na-
ture and reliability of the coding process. Although psycho-
metric checks for inter-coder agreement are critical, imag-
ine the very real problem of critical pieces of information
that were not gathered or not gathered consistently across
research members. Furthermore, coders can share the same
blind spots or opinions of the data, where they may mis-
takenly agree on the wrong pieces of information that are
present or absent. In other words, statistical indices of agree-
ment will not capture all the inconsistencies or mistaken
consistencies in comparing codes. The process of manually
coding data elements from a corpus of articles into a spread-
sheet provides no support for: (a) resolving conflicts that
arise when assessing inter-rater reliability or (b) answering
questions that arise when cleaning the data, other than going
back to the original article.

Hence, due to the high cost and effort involved in cod-
ing the data for a meta-analysis fraught with the potential
for human error, there is a growing interest in automated
methods that can efficiently and effectively retrieve key data
elements that are used for subsequent analyses (e.g., descrip-
tive statistics, effect sizes, reliability estimates, demograph-
ics, and study conditions).

Machine learning offers a promising approach to the de-
sign of algorithms for training computer programs to accu-
rately extract relevant data from research articles. One of
the main challenges in learning from such data is to fil-
ter from the huge amount of information available in these
documents the small fraction of key data elements required
for meta-analyses. Thus, one question that can be raised is
the following: Can we design robust automated approaches
for the extraction of relevant data for meta-analyses, in or-



Figure 1: Example excerpt from an article with highlighted key data elements useful for Meta-Analysis.

der to minimize the human effort involved in coding large
amounts of data for successful meta-analyses? In this pa-
per, we specifically address this question with our research
agenda.

Contributions. We propose and develop a reusable in-
formation technology system called MetaSeer.STEM that
allows STEM education researchers to automatically ex-
tract key data elements from a corpus of articles, which
can subsequently be used in a meta-analysis task. More
precisely, MetaSeer.STEM allows the automatic extraction
and classification of variables of interest and their values
from research articles so that they can be easily accessed
and used by researchers for various meta-analysis tasks.
MetaSeer.STEM has the potential to make meta-analysis
available to a wide range of applied STEM education re-
searchers, much like tools such as SPSS1 and SAS2 have
made statistical analyses available to a broad range of re-
searchers. MetaSeer.STEM is designed so that it is ap-
plicable to other domains of research including manage-
ment, psychology, sociology, political science, statistics, and
health informatics. Although in a proof-of-concept stage, the
results of our experiments show that MetaSeer.STEM shows
great potential as a tool for meta-analysis tasks.

The rest of the paper is organized as follows. In the next
section, we review some of the related work. We present our
system and its main components in the “Information Extrac-
tion for Meta-Analyses” section. We then describe the sys-
tem evaluation and discussion of results before concluding
the paper.

Related Work
In a review of literature related to information extraction of
meta-data, we found data-mining tools that were specifically
designed for the medical science researchers, including clin-
ical trial researchers and neuroscientists. Restificar and Ana-
niadou (2012) designed a method for discovering and infer-
ring appropriate eligibility criteria in clinical trial applica-
tions without labeled data. Kakrontzelos et al. (2011) intro-
duced ASCOT that uses text mining and data mining meth-
ods to extract a pre-defined set of clinical trial parameters

1http://www-01.ibm.com/software/analytics/spss/
2http://www.sas.com/en us/home.html

(e.g., study type, study design, gender) from large clinical
trial collections. Similarly, ExACT (Kiritchenko et al. 2010)
automatically extracts 21 pre-defined clinical trial charac-
teristics from journal publications. Still other tools have
been developed to support data mining for neuroscientists.
Nielsen, Balslev, and Hansen (2005) designed a method to
mine neuroimage database to extract the main functional
modules within a brain image. Yarkoni et al. (2011) designed
software that enables neuroscientists to search online articles
for various keywords (e.g., pain) and automatically extract
brain coordinates from the articles’ tables. Despite these ad-
vances in the medical research field, no apparent advances
have been provided to support the meta-analysis of STEM
education research or other social science research. Wu et
al. (2014) presented an overview of AI technologies used in
the CiteSeerX digital library for several tasks such as docu-
ment classification, de-duplication, meta-data extraction, ci-
tation extraction, table/figure search and author disambigua-
tion. Our work is in line with the meta-data extraction task.
We particularly focus on the extraction of relevant numbers
from the whole text of a document for meta-analyses.

Information Extraction for Meta-Analyses
We propose MetaSeer, a system that allows automated data
extraction from a corpus of articles needed to conduct a
meta-analysis. We first describe the system architecture and
then present the details of the main components of MetaSeer.

System Architecture
The MetaSeer system architecture is shown in Figure 2 and
includes three main components: (1) MetaSeer Data Ex-
tractor, (2) MetaSeer Trainer, and (3) MetaSeer Classifica-
tion. The MetaSeer Data Extractor extracts the text from
the pdf documents, parses the text and returns all numbers.
The MetaSeer Trainer trains a classifier from a labeled set
of examples. The trained classifier is further used by the
MetaSeer Classification component to identify numbers of
interested from all numbers extracted from a document.

The typical use case for the MetaSeer system follows:

1. A meta-analysis document corpus is presented to the sys-
tem by a user (or a team of users) interested in a particular
meta-analysis task. The documents in the corpus can be



Figure 2: MetaSeer.STEM System Architecture.

either pdf or text documents. For pdf documents, a sup-
ported pdf to text conversion tool (e.g., PDFBox3) is first
used to extract the text from the pdf.

2. The system extracts all numbers from the text of the doc-
uments in the corpus and presents them to the user, who
manually annotates these numbers (or a fraction of them)
as numbers of interest vs. numbers of non-interest for the
task. For example, a user annotates numbers of interest
(i.e., the positive examples) by a variable name (e.g., sam-
ple size, response rate) and a variable type (e.g., mean,
standard deviation, count) and numbers of non-interest
(i.e., the negative examples) as everything else. Note that
the MetaSeer Data Extractor automatically archives the
data that is not needed for the meta-analysis without ac-
tion from the user (e.g., years that occur in the text of
the documents or page numbers). The result of this step
is a labeled dataset of examples, which are stored in the
MetaSeer database. Users can directly use the coded num-
bers for meta-analysis, or automated data extraction meth-
ods can be further developed.

3. The labeled dataset is pushed to the MetaSeer Trainer,
where a classifier is trained to discriminate between num-
bers of interest vs. numbers of non-interest. A subset of
the labeled dataset is used for training and an independent
subset is used for testing to evaluate the classifier.

4. If the user is satisfied with the performance of the trained
classifier, then the classifier can be used by the MetaSeer
Classification component to automatically annotate more
unlabeled data for better meta-analysis in order to min-
imize human effort. The relevant key data elements are
stored again in the MetaSeer database. If the classifier’s
performance is unacceptable, the user is asked to label
more data, and Step 3 above is repeated.

5. Finally, the relevant data are retrieved from the database
and presented to the user to perform a particular meta-
analysis task. Note that the database can store data from
various domains, e.g., mathematics or music.

3http://pdfbox.apache.org/

Next, we present details of the main MetaSeer components.

MetaSeer Data Extractor
This component takes as input a document corpus and ex-
tracts numbers represented as numerals as well as numbers
that are expressed as words from the text of the documents
in this corpus input by a user (i.e., a meta-analyst). The ex-
tracted numbers are presented to the user through a user in-
terface. A screenshot of this interface is shown in Figure
3. The left panel contains the list of documents to be an-
alyzed, whereas the right panel shows the current number
that is extracted along with its context, i.e., a window of n
characters on each side of the number as they appear in the
document’s text. The value of n is a user input parameter,
set to 250 (see Figure 3). The user manually annotates the
current number as relevant with the variable name and vari-
able type or as non-relevant and can choose to move to the
next extracted number or to stop. To minimize the quantity
of numbers that a user has to respond to, the application au-
tomatically skips over: (a) numbers that appear to be years in
citations, e.g., 2004 in (Schmidt & Hunter, 2004); (b) num-
bers that appear to be page numbers in citations, e.g., 530
in (Schmidt & Hunter, 2004, p. 530); (c) numbers that oc-
cur before the Method section (when indicated by the user);
and (d) numbers that occur after the References section. The
component also allows the user to complete the annotation
process for a given document by selecting the “Cancel” but-
ton. Any numbers that are not presented to the user are au-
tomatically saved and annotated in the labeled dataset as not
having been selected by the user due to the particular reason
(e.g., year, page number, before Method, in References).

The output of this component is a dataset of examples,
i.e., numbers along with their contexts. The examples can
be manually labeled by a user as relevant or non-relevant,
or can be unlabeled examples (coming from documents that
are not manually labeled by the user). Each example labeled
as relevant will reflect one of the variables to be coded in the
meta-analysis, such as response rate or percentage of males
in the sample. Each example labeled as non-relevant repre-
sents a number that is irrelevant for meta-analysis.



Figure 3: MetaSeer Data Extractor screenshot.

MetaSeer Trainer and Classification
The Trainer component takes as input the labeled dataset re-
turned by the Extractor. This dataset is used to train classi-
fiers in a supervised learning fashion in order to automate
the process of coding for meta-analysis.

The supervised learning problem (Bishop 2006; Mitchell
1997) can be formally defined as follows: Given an indepen-
dent and identically distributed (iid) data set D of labeled
examples (xi, yi)i=1,··· ,n, xi ∈ Rd and yi ∈ Y , where Y
denotes the set of all possible class labels; a hypothesis class
H representing the set of all possible hypotheses that can
be learned; and a performance criterion P (e.g., accuracy),
a learning algorithm L outputs a hypothesis h ∈ H (i.e., a
classifier) that optimizes P . The input xi can represent nat-
ural text over a finite vocabulary of words X , xi ∈ X ∗. Dur-
ing classification, the task of the classifier h is to accurately
assign a new example xtest to a class label y ∈ Y (see Fig-
ure 4). In our case, examples are numbers and their contexts
and the set of class labels is Y = {+1,−1}, corresponding
to relevant and irrelevant numbers, respectively.

The feature representation used to encode our data is the
“bag of words” representation, which is widely used by the
machine learning community for many classification tasks
(see, for instance, (McCallum and Nigam 1998)). Each ex-
ample is drawn from a multinomial distribution of words
from a vocabulary, and the number of independent trials is
equal to the length of the example.The “bag of words” ap-
proach first constructs a vocabulary of size d, which con-
tains all words in each context in the corpus of documents.
A context is represented as a vector x with as many entries
as the words in the vocabulary, where an entry k in x can

record the frequency (in the context) of the kth word in the
vocabulary, denoted by xk. Because only a small number of
words (compared to the vocabulary size) occurs in a con-
text, the representation of x is very sparse, i.e., only a small
number of entries of x is non-zero. In our implementation,
we used sparse representations of contexts. In experiments,
we trained Naı̈ve Bayes classifiers using the “bag of words”
representation.

The Naı̈ve Bayes classifier (Mitchell 1997) is one of the
simplest probabilistic approaches. It belongs to the class of
generative models, in which the probabilities p(x|y) and
p(y) of the input x and the class label y are estimated from
the data. In general, the input x is high-dimensional, repre-
sented as a tuple of attribute values, x = (x1,x2, · · · ,xn),
making it impossible to estimate p(x|y) for large values of
n. However, Naı̈ve Bayes classifier makes the strong inde-
pendence assumption that the attribute values are condition-
ally independent given the class. Therefore, training a Naı̈ve
Bayes classifier reduces to estimating probabilities p(xi|y),
i = 1, · · · , n, and p(y). During classification, Bayes Rule is
applied to compute p(y|xtest). The class label with the high-
est posterior probability is assigned to the new input xtest.

In the MetaSeer Trainer component, the trained classifiers
are evaluated using k-fold cross-validation. K-fold cross-
validation is an evaluation scheme considered by many au-
thors to be a good method of estimating the generalization
accuracy of a predictive algorithm (i.e., the accuracy with
which the predictive algorithm fits examples in the test set).
This evaluation scheme can be described as follows: the
original dataset D containing n instances is randomly par-
titioned into k disjoint subsets of approximately equal size,



Figure 4: Supervised Learning and Classification.

≈ n/k. The cross-validation procedure is then performed
k different times. During the ith run, i = 1, · · · , k, the ith

subset is used for testing and the remaining k−1 subsets are
used for training. Therefore, each instance in the dataset is
used exactly once in the test set and k− 1 times in the train-
ing set during the k cross-validation experiments. The re-
sults from the k different runs are then averaged. In general,
k-fold cross-validation can be repeated several times, each
time with a different seed for randomly splitting the dataset.
The more k-fold cross-validation is repeated, the lower the
variance of the estimates.

The MetaSeer system uses document-level k-fold cross-
validation, where documents are distributed into k disjoint
sets, and then contexts of numbers are extracted in each set.
This way, all examples belonging to the same document be-
long to the same set, training or test.

The average performance after k-fold cross-validation is
presented to the user. If the user is not satisfied with the clas-
sifier’s performance, then the user is asked to manually label
more unlabeled data for achieving better accuracy classifica-
tion. Otherwise, the resulting classifier is used to automati-
cally label large amounts of unlabeled data that are later pre-
sented to the user for meta-analysis. The MetaSeer Classifi-
cation component takes as input the classifier output by the
Trainer and an unlabeled dataset of contexts, and it outputs
predicted labels for each context corresponding to relevant
or non-relevant numbers for the meta-analysis performed by
a user.

System Evaluation and Discussion
Dataset
We used a corpus of documents that were compiled for a
reliability meta-analysis task, focused on the Organizational
Commitment Questionnaire (Porter et al. 1974). The num-
ber of documents in our corpus is 100, out of which we ig-
nored scanned documents or documents for which the text
was incorrectly extracted. The numbers in this document
corpus were manually coded with help from a graduate stu-
dent majoring in Learning Technologies. Because we are in
the proof-of-concept phase of development, we have lim-
ited our focus to a small, selected set of variables including

sample size, response rate, gender, Likert scale start, Lik-
ert scale points, and descriptive statistics associated with the
OCQ (mean and standard deviation). In particular, numbers
associated with these variables represent the positive exam-
ples in our labeled set. In future, we will not only use a larger
corpus size, but we will also use other variable types.

MetaSeer Data Extractor Evaluation
We tested the initial version of the MetaSeer Data Extrac-
tor (MetaSeerExtractor.1) using the above corpus. By man-
ual inspection of all 100 documents, we found that the ex-
traction process of the MetaSeer Data Extractor was highly
accurate. However, numbers expressed in words were not
coded originally in our implementation. Through error anal-
ysis, our initial testing revealed that such numbers rep-
resented as words (e.g., “one hundred and forty-four” as
shown in Figure 1) represent numbers of interest, relevant
for meta-analysis. We revised our implementation to ex-
tract not only numbers (e.g., “118” or “35%” from Fig-
ure 1) but also complex numbers expressed as words (e.g.,
“one hundred and forty-four” in Figure 1). In this version
of the MetaSeer Extractor, we ignore numbers from tables.
We found that the context of numbers from tables is typi-
cally insufficient for the user to comprehend what a number
represents. This is a limitation of our current implementa-
tion as many data elements that are necessary for a meta-
analysis may be documented in tables including but not lim-
ited to means, standard deviations, and reliability estimates.
We will address this limitation in future work.

In this step, the documents from which we were able to
extract the text, were manually coded using the user inter-
face presented in Figure 3. When needed, the annotator used
the original pdf documents to determine an accurate annota-
tion. However, we found the annotation process much faster
and less error-prone because our system presents to a user
only good candidate numbers and avoids the overwhelming
irrelevant amounts of information available in documents.

MetaSeer Trainer Evaluation
We tested the reliability of the automatic prediction (or la-
beling) process by comparing the labels predicted by the
trained classifier within the Trainer component with the la-
bels that were previously hand coded. We trained Naı̈ve
Bayes classifiers on the “bag of words” representation of
contexts (i.e., the contexts’ term frequency representations).
The results of our experiments are shown in Table 1. We ex-
perimented with two settings: one in which the negative ex-
amples are taken from the entire document text and another
one in which the negative examples are taken only from the
“Methods” section. All positive examples are used in both
settings.

We reported the following performance measures: ac-
curacy, precision, recall, and f-score. These measures
are given as follows: Accuracy = TP+TN

TP+FN+TN+FP

Precision = TP
TP+FP , Recall = TP

TP+FN , F -Measure =
2·Precision·Recall

Prec+Recall , where TP , FP , FN represent the true
positives, false positives, and false negatives, respectively.
Given the set of labeled contexts, we can easily compute



Accuracy Precision Recall F-score

With negative instances from the “Methods” section.
76.34% 0.863 0.763 0.799

With negative instances from the entire text.
78.69% 0.896 0.786 0.829

Table 1: Evaluation of MetaSeer Trainer in 5-fold cross-
validation experiments.

TP , FP , FN as follows: TP are numbers identified as rel-
evant, which are indeed relevant; FP are numbers identified
as relevant, which in fact are not relevant; FN are num-
bers that are relevant but are not identified by the algorithm
as relevant; and TN are numbers identified as non-relevant,
which are indeed non-relevant.

As can be seen from the table, our trained classifiers gen-
erally achieve high precision. However, the recall is not very
high, implying that the number of false negatives is large.
The performance is generally lower when negative examples
are used only from the “Methods” section.

Conclusion
In this paper, we presented an information technology sys-
tem called MetaSeer.STEM that can help improve meta-
analysis tasks in STEM education research. Our system au-
tomatically parses a collection of documents, extracts the
candidate elements for meta-analysis, and further classifies
them as relevant to a meta-analysis or as non-relevant. The
results of our experiments using a “bag of words” repre-
sentation, in conjunction with Naı̈ve Bayes classifiers, show
promising results. In future, it would be interesting to ex-
plore NLP techniques to design new features, e.g., based on
parse trees. It would also be interesting to evaluate our mod-
els on data from different domains. Furthermore, we would
like to examine the effect of the window length of contexts
around the numbers, especially to estimate how large the
context around a number needs to be in order to determine
that the number is relevant.
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