
Cleaning Noisy and Heterogeneous Metadata for Record Linking Across
Scholarly Big Datasets

Athar Sefid1, Jian Wu3, Allen C. Ge2, Jing Zhao2, Lu Liu2,
Cornelia Caragea4, Prasenjit Mitra2, C. Lee Giles1,2

1Computer Science and Engineering, Pennsylvania State University, University Park, PA, 16801
2Information Sciences and Technology, Pennsylvania State University, University Park, PA, 16801

3Computer Science, Old Dominion University, Norfolk, VA, 23529
4Computer Science, University of Illinois at Chicago, Chicago, IL, 60607

azs5955@psu.edu, jwu@cs.odu.edu

Abstract

Automatically extracted metadata from scholarly documents
in PDF formats is usually noisy and heterogeneous, often
containing incomplete fields and erroneous values. One com-
mon way of cleaning metadata is to use a bibliographic ref-
erence dataset. The challenge is to match records between
corpora with high precision. The existing solution which is
based on information retrieval and string similarity on titles
works well only if the titles are cleaned. We introduce a sys-
tem designed to match scholarly document entities with noisy
metadata against a reference dataset. The blocking function
uses the classic BM25 algorithm to find the matching can-
didates from the reference data that has been indexed by
ElasticSearch. The core components use supervised methods
which combine features extracted from all available metadata
fields. The system also leverages available citation informa-
tion to match entities. The combination of metadata and ci-
tation achieves high accuracy that significantly outperforms
the baseline method on the same test dataset. We apply this
system to match the database of CiteSeerX against Web of
Science, PubMed, and DBLP. This method will be deployed
in the CiteSeerX system to clean metadata and link records to
other scholarly big datasets.

Introduction
Since the advent of Scholarly Big Data (SBD)(Giles 2013),
there has been a growing interest in topics related to this big
data instance, such as scholarly article discovery (Wesley-
Smith and West 2016), semantic analysis (Al-Zaidy and
Giles 2017), recommendation systems (Huang et al. 2015),
citation prediction (Liu et al. 2017), scalability improvement
(Kim, Sefid, and Giles 2017), and Science of Science (Chen
et al. 2018). Major SBD datasets include the Microsoft
Academic Graph (MAG), CiteSeerX (Giles, Bollacker, and
Lawrence 1998; Wu et al. 2014), DBLP, Web of Science
(WoS), and Medline, among which MAG and CiteSeerX are
the only two freely available large scale datasets which offer
citation graphs. Academic search engines such as Microsoft
Academic and CiteSeerX obtain raw PDF files by actively
crawling the Web. These PDF documents are then classified
into academic and non-academic documents. Metadata, ci-
tations, and other types of content are then extracted from

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these documents. Different from submission-based datasets
such as the WoS, a large fraction of documents crawled are
pre-prints and manuscripts, which do not necessarily contain
unique identifiers, e.g., DOIs. Metadata from these docu-
ments may also differ from their official published versions.
Also, errors may occur when text is extracted from PDFs,
and when metadata is parsed. As a result, metadata extracted
is likely to be incomplete and erroneous. This metadata is
also heterogeneous since the documents were written by au-
thors using different conventions and templates. This noisy
information can propagate through to data analytics and ag-
gregations that can then distort research, making cleaning it
a necessity. One common approach is to link document enti-
ties to corresponding entities in a cleaned dataset (reference
dataset) and then use its records to replace the automatically
extracted records.

The biggest challenge of this approach is to find the cor-
rect matching entity in the reference dataset. Though differ-
ent from traditional machine learning (ML) tasks in which
there is a trade-off between precision and recalls, the entity
matching task must be accomplished with high precision.
This is because when the dataset is large, a small fraction of
false positives may lead to a large number of “false correc-
tions”. The problem is even more challenging because there
is usually no prior knowledge of which fields are noisy.

Our contributions include: (1) developing a ML-based
paper entity matching framework which includes both
header and citation information of available scholarly docu-
ments; (2) applying the system on CiteSeerX, WoS, DBLP,
and PubMed to find overlap between these digital library
databases which is used to clean CiteSeerX data. Plus this
generates a more accurate citation graph data and links
records which can enrich the content of individual docu-
ment.

Related Work
There are in general three types of methods in entity match-
ing across bibliographic databases.

Information Retrieval-based: This method searches one
or multiple attributes of an entity in the target corpus against
the index of the reference corpus and rank the candidates
using a similarity metric. This approach matches CiteSeerX
with DBLP (Caragea et al. 2014). The reference dataset
(DBLP) was indexed by Apache Solr. Metadata from the

ar
X

iv
:1

90
6.

08
47

0v
1

 [
cs

.D
L

]
 2

0
Ju

n
20

19

noisy dataset (CiteSeerX) were used to query corresponding
fields. Candidates were selected based on similarity scores.
It was found that using 3-grams of titles and Jaccard similar-
ity with a threshold of 0.7 achieves the best F1-measure of
77%. Because of the relatively low precision, the approach
cannot be directly used in cleaning CiteSeerX data.

Machine Learning-based: These methods have been
used in entity matching of user entities in online social net-
works (Peled et al. 2013). The problem is to match user
profiles on Facebook and Xing. This work applies pairwise
comparison to whole dataset (≈ 15, 000 records) without
applying any blocking function to reduce search spaces, so
this method cannot be scaled up to large digital libraries con-
taining tens of millions of records.

Topical-based: This method is used to resolve and match
entities that are represented by free text, e.g., Wiki articles.
The challenge is that different sources may use different lan-
guages or terminologies to describe the same topic. A proba-
bilistic model was proposed to integrate the topic extraction
and matching into a unified model (Yang et al. 2015). As we
don’t have access to the full text of the reference datasets,
this method is not applicable to our problem.

Models
Entity Representation
Throughout below, we refer to a scholarly paper with full
information as a paper entity. We denote the target corpus
which contains noisy data as T . This contains n paper enti-
ties ti, 1 ≤ i ≤ n, and a reference corpus R which contains
reference data andm paper entities rj , 1 ≤ j ≤ m. Each en-
tity can be represented by a number of attributes. Our goal
is to find a set M ,

M = {(t, r); t = r, t ∈ T, r ∈ R} .

An officially published paper usually is assigned a unique
identifier, i.e. DOI. A journal article can also be identified
by the journal name, volume, issue number, and the start-
ing page number. However, for a large fraction of open ac-
cess scholarly papers crawled from the Web, such informa-
tion is usually not available. Empirically, a paper entity can
be uniquely identified by four header fields, (title, authors,
year, venue), in which the venue is a conference or a journal
name. A citation record parsed from a citation string usually
contains the above four fields. So, matching a single citation
record can be done in the same manner as matching a paper
entity. The abstract is usually a paragraph of text that may
contain non-ASCII characters with different encodings, but
normalizing abstracts and calculating simhash values takes
heavy overhead, so in this work, we use abstracts without
normalization. Due to a lack of general venue disambigua-
tor, venue information is not incorporated as matching fea-
tures. We will show that even without it, the application still
achieves high performance.

Paper entity linking can be formalized as a binary clas-
sification problem in which the classifier decides whether a
candidate pair is a real match or not. Because many digital
library datasets do not have citation information, we con-
sider two separate models, one with only header information

called Header Matching Model (HMM), and the other with
only citation information called Citation Matching Model
(CMM). The combination of them is called the Integrated
Matching Model (IMM). There is a separate model to eval-
uate title quality called Title Evaluation Model (TEM).

Header Matching Model (HMM)
HMM is a supervised machine learning model to classify
candidate pairs using information from the paper header. We
first index all document metadata in the reference corpus us-
ing an open source search platform. We use ElasticSearch
(ES) because of its relatively low setup overhead and scala-
bility. The default settings are applied for our experiments.
The indexed metadata contains header fields including titles,
authors, abstracts, and years. For each paper in the target
corpus, we query the title against the index, if it contains a
minimum of 20 characters. Otherwise, the first author’s last
name and publication year are used in queries. If the year is
not available, only the first author’s last name is used. For
each field, the query string is segmented into unigrams con-
nected by “OR”. The ranking scores are calculated using the
Okapi BM25 algorithm (Robertson, Zaragoza, and Taylor
2004). The query algorithm is shown in Algorithm 1.

For each target paper, the top 10 papers from the reference
set are retrieved and 10 candidates are formed as matching
pairs. The features of each pair include a list of similarities
calculated using the header metadata.

1. Title similarity represented by Levenshtein distance of
simhashes of normalized titles (Charikar 2002):

SimL(titlet, titler) = leva,b (|a|, |b|) (1)
a = Simhash16(Norm(titlet)) (2)
b = Simhash16(Norm(titler)) (3)

in which a simhash string contains 16 alphanumeric char-
acters. The titles are normalized so that (1) all letters are
lowercased; (2) diacritics are removed, e.g., “á” is con-
verted to “a”; (3) consecutive spaces are collapsed; (4)
punctuation marks are trimmed off; (5) single characters
“s” and “t” are removed because they are mostly resulted
from removing apostrophe from possessives or abbrevia-
tions such as “can’t”.

2. Abstract similarity SimL(abstractt, abstractr) represented
by Levenshtein distance of simhashes of abstracts, calcu-
lated in a similar way as Equations (1)–(3) without nor-
malization.

3. Jaccard similarities between normalized titles and original
abstracts. For example,

SimJ(titlet, titler) =
|Wt ∩Wr|
|Wt ∪Wr|

(4)

in which Wt and Wr represent the token set of the title of
the target and the reference paper, respectively.

4. The absolute difference of the years.
5. The first and the last author’s full name similarity. Au-

thor similarities are measured in multiple metrics. An au-
thor’s full name similarity is represented by a three digit

binary lmf , representing whether the last name, the mid-
dle initial, and the first initial matches, respectively. If a
certain name component is missing or it does not match,
the binary is set to 0. The decimal value of a binary
is used as the full name similarity index. Author names
are also normalized before comparison. Diacritics are re-
moved and letters are lowercased. Prefixes, e.g., Prof., and
suffixes, e.g., “II”, and their variants are removed. For ex-
ample, if first authors are “Jane C. Huck” and “J. Huck”,
the binary is 101, which equals to 5 in decimal.

6. The last name similarities of the first and the last au-
thor. The last name similarity is computed in this way

Sim(Nt,Nr) =

 0: Nt 6= NULL ∧ Nr 6= NULL ∧ Nt 6= Nr

1: Nt = NULL ∨ Nr = NULL
2: Nt 6= NULL ∧ Nr 6= NULL ∧ Nt = Nr

(5)
in which N stands for the last name and NULL means the
value is not available.

7. All authors’ last name Jaccard similarity

SimJ (Lt, Lr) =
|Lt ∩ Lr|
|Lt ∪ Lr|

(6)

in which Lt and Lr stands for the set of last names in the
target and the reference corpora, respectively.

The pseudocodes of the HMM is in Algorithm 2.

Algorithm 1 Query Builder
1: function QUERY(title, lastName, year)
2: if title 6= Null and title.length > 20 then
3: query← title
4: else if lastName 6= Null and year 6= Null then
5: query← lastName and year
6: else if lastName 6= Null then
7: query← lastName
8: end if
9: return query

10: end function

Algorithm 2 Header Matching Model
1: function HMM()
2: T← target corpus
3: R← reference corpus
4: indexR← index of reference corpus
5: matchList←Ø
6: for t ∈ T do
7: Q← Query(t.title, t.firstLastName, t.year)
8: Candidates← query Q to indexR
9: for c ∈ Candidates do

10: prediction←Model.predict(t,c)
11: if prediction=1 then
12: matchList.add (t, c)
13: break
14: end if
15: end for
16: end for
17: end function

Algorithm 3 Citation Matching Model
1: function CMM()
2: T← target corpus
3: R← reference corpus
4: matchList←Ø
5: CitationIndexR← citations index of reference corpus
6: for t ∈ T do
7: t citations← citations of t.
8: for tci ∈ t citations do
9: Q← Query (tci.title,tci.firstLastName, tci.year)

10: results← query Q to CitationIndexR
11: for rcj ∈ results do
12: prediction←Model.predict (tci, rcj)
13: if prediction=1 then . citations match
14: rk ← paper that cites rcj
15: r.title← Simhash (rk.title)
16: t.title← Simhash (t.title)
17: title dist = lev (t.title, r.title)
18: if title dist < θtitle then
19: matchList.add (t, rk)
20: break
21: end if
22: BoWr ← BoW (rk.referenceTitles)
23: BoWt← BoW (t.referenceTitles)
24: sim← Jaccard(BoWti , BoWri)
25: if sim > θref then
26: matchList.add (t, rk)
27: break
28: end if
29: end if
30: end for
31: end for
32: end for
33: end function

Citation Matching Model (CMM)
CMM matches paper entities by citations. The paper en-
tity matching problem can benefit from this model when the
header metadata is noisy but the references are available.
Similar to HMM, a prerequisite is to index all citations in
the reference corpus. On average, one paper contains about
20 citations , so the citation index is usually much larger than
the document index.

Given a target paper t, its citation records tci are retrieved
from the database. We attempt to find the matching record
rcj in the reference corpus using the query builder in Al-
gorithm 1. Retrieved citations and rci are matched by the
HMM (Algorithm 2). Citations do not contain abstracts so
relevant features are not used. Assuming such j = 1 exists
(if not, then no matching entity is found) and rc1 is cited by
r1, the next step is to compare r1 with t. The CMM uses both
the paper title and the citation titles (Algorithm 3). First, the
title similarities are calculated using Equations (1)–(3). If
this distance is less than a threshold of θtitle, r1 is believed to
be the matching entity of t. Otherwise, CMM extracts the to-
kens from all the reference titles of t, denoted byBoWt, and
tokens from all the reference titles of r1, denoted by BoWr.
The judgment is made by comparing the Jaccard similarity
between BoWt and BoWr. If the similarity is greater than a
threshold θref , then (t, r1) is determined as a matching pair.

Table 1: Features used to train TEM.

Character-level features
#ASCII characters #non-ASCII characters #white spaces
#punctuation marks #consecutive punctuation marks #digits
Type of the first/last character (punctuation, digit, or letter)
Word-level features
#max (DF(w)), w /∈ S1 #min (DF(w)), w /∈ S
#median(DF(w)), w /∈ S #words
#Appearance of one of the tokens in the controlled list2:
{Abstract, List, Acknowledgments, Notices, Content, Ac-
cepted, Authors, References, Acknowledgments, Null, Chapter,
Discussions, Summary}
1 DF: document frequency, calculated on all DBLP titles. S is a

set of stopwords adopted from Apache Solr.
2 The value is set to 1 if the string contains at least one exact

match to the controlled list.

Otherwise, the algorithm continues to examine the next pa-
per that shares citation rc1 with t. If no papers citing rc1 is
found to be a match for t, CMM continues and attempts to
find the matching record of tc2.

Title Evaluation Model (TEM)
TEM is a light-weight supervised learning model designed
to provide a quantitative evaluation of the title quality. The
input is a title string, and the output is a probability θ of how
likely the input string looks like a paper title. The title quality
is determined to be high if θ is greater than a threshold θtq .
The TEM exploits the features in Table 1 extracted from the
original title string. The TEM is trained on a sample of 8200
title strings containing 6270 high-quality titles and 1930 ti-
tles with low quality. Titles are labeled to be of low quality if
(1) They are NULL; (2) They have many non-ASCII charac-
ters; (3) They include evidently irrelevant information such
as authors; (4) They are not in English.

Four supervised models, including Logistic Regression
(LR), Support Vector Machine (SVM), Naı̈ve Bayes (NB),
and Random Forests (RF), are trained. The LR model
achieves the best 10-fold cross-validated F1-score of 0.999,
which we adopted.

IMM integrates HMM, CMM, and TEM (Figure 1). If
HMM is able to find the match of a paper entity, the process
continues to the next paper. Otherwise, the paper title quality
is evaluated by TEM. If the title quality is high (θ ≥ θtq),
it is likely that there is not a matching entity existing in the
reference corpus, otherwise (θ < θtq), the matching entity is
not found due to the poor title quality. In this situation, we
use citation information to match papers.

Experiments
Data
The target data is the CiteSeerX database with about 9 mil-
lion scholarly papers. The header metadata is extracted by
GROBID. References are extracted and parsed by ParsCit
(Councill, Giles, and Kan 2008). The reference corpora are
described below.

WoS is a digital library dataset spanning 230+ academic
disciplines with citation indexing. WoS indexing coverage

Figure 1: The pipeline of IMM.

is from 1900 to 2015 with over 20,000 journals, books, and
conference proceedings. There are about 45 million WoS pa-
pers and 906 million citation records in this corpus.

DBLP is a bibliographic dataset covering more than 5,000
conferences and 1,500 journals in computer science. We use
the version published in March, 2017 with about 4 million
documents. This dataset does not contain citations.

Medline is the premier bibliographic dataset released by
NCBI with about 24 million academic papers in the area of
biomedicine published since 1966. The dataset does not con-
tain citation information.

The IEEE corpus is a subset of the IEEE Xplore database,
containing about 2 million bibliographic records down-
loaded from IEEE FTP sites. It does not contain citations.

Ground Truth Labeling
The procedure for labeling process comprises three steps.
First, for each paper in the CiteSeerX sample set, a candidate
set of 10 papers is retrieved from the reference index using
the same manner described in Algorithm 1. Then, to deter-
mine the true matches out of candidate papers, other meta-
data of the papers including authors, abstract, year, venue,
keywords, and the number of pages were visually inspected
independently by two graduate students. Finally, if it was not
possible to decide based on papers profiles, actual PDF files
were used side by side to make final decisions. We generated
the following ground truth datasets:

CiteSeerX-IEEE This dataset, adopted from Wu et al.
(2017), is built based on 1000 CiteSeerX papers with 51 true
matching pairs found in the IEEE corpus.

CiteSeerX-DBLP This dataset, revised based on Caragea
et al. (2014), contains 292 matching pairs identified between
1000 CiteSeerX papers and the DBLP dataset.

CiteSeerX-WoS This dataset contains 345 matching pa-
pers found in WoS out of 533 CiteSeerX papers.

Combined Sample The positive sample contains 688
matching pairs. The negative samples are selected using
1845 candidate matching pairs, containing the most similar
but unmatched papers.

Experiment Setups
We trained binary classifiers that decide whether a pair of
documents from target and reference corpora is a true match-

Table 2: HMM model 10-fold CV results.

Model Precision Recall F1-measure
SVM 0.926 0.937 0.931
LR 0.794 0.968 0.872
RF 0.912 0.931 0.921

XGBoost 0.925 0.899 0.912

ing pair. Four machine learning models, SVM, LR, RF, and
XGBoost are trained on the Combined Sample. Grid search
is applied to tune and find the hyper parameters yielding the
best results. Precision, Recall, and F1-score values for 10-
fold CV are reported in Table 2.

Results and Discussion
In four models, SVM achieves the highest F1-measure. RF
has a comparable F1-measure but requires a significantly re-
duced test time (< 30%), so we employ RF for HMM. The
information gain (IG) is calculated for each feature indicat-
ing that the most informative features are related to titles and
the first authors.

To make an even comparison with the method proposed
by Caragea et al. (2014), we rerun their experiments on the
CiteSeerX-DBLP ground truth with the best parameter set-
tings in which n = 3 and the Jaccard similarity thresh-
old θJ = 0.7. We then compare the results with our RF
model trained on the combination of CiteSeerX-WoS and
CiteSeerX-IEEE datasets. The HMM outperforms the IR-
based model with 14% improvement in precision (100% vs.
86%) and a 3% improvement in the F1 score (91% vs. 88%).

We investigate how the reference Jaccard similarity
threshold θref and title Levenshtein distance θtitle affects
the performance of CMM (Table 3). A higher value of θref
indicates that two papers need more common citations to be
considered as a matching pair. The best F1 score is obtained
at θref = 0.5 and θtitle = 0.35.

Table 3: The CMM performance with different θref and θtitle.

θref θtitle Precision Recall F1

0.40

0.15 0.876 0.719 0.790
0.25 0.877 0.725 0.794
0.35 0.878 0.730 0.797
0.45 0.850 0.725 0.782

0.50

0.15 0.968 0.690 0.797
0.25 0.969 0.714 0.822
0.35 0.965 0.728 0.830
0.45 0.927 0.725 0.814

0.60

0.15 0.982 0.651 0.783
0.25 0.983 0.662 0.791
0.35 0.979 0.691 0.810
0.45 0.938 0.691 0.796

0.70

0.15 0.955 0.609 0.743
0.25 0.955 0.620 0.752
0.35 0.953 0.652 0.775
0.45 0. 912 0.658 0.764

Table 4 compares HMM, CMM, and IMM based on the
CiteSeerX-WoS dataset (because only this dataset contains
citations). In the first column, as the threshold θtq increases
from 0.01 to 0.2, the testing corpus encloses more papers

with higher quality titles, which results in a better perfor-
mance of HMM. The CMM alone is getting better with
remarkably high precision but poor recalls. The integrated
model achieves both high recall and precision. This indicates
that (1) CMM tend to be more useful when the title quality
is low; (2) The integrated model significantly increases the
overall performance, especially for papers with low quality
titles.

One result in Table 4 that is counter-intuitive is the HMM
consistently achieves high performance when the title qual-
ity is low. To answer this question, we trained a RF clas-
sifier on papers with low-quality titles only. IG of the new
model reveals that the most important features in the absence
of good titles are First author features, Jaccard similarity of
all authors’ last names, and Abstract features, implying that
when title quality is low, accurate author information can
also provide accurate matches.

Error Analysis
Although the combination of HMM and CMM achieve supe-
rior performance, the recall of CMM alone is poor (Table 4).
This could be due to two reasons: (1) Citation parsing errors.
For example, more than 1 million papers in CiteSeerX con-
tain less than 5 citations; (2) Null title citations. About 17%
of citation records in WoS and 8.4% of citations in Cite-
SeerX have null titles.

The citation-based model is slow because (1) the large
number of citations (906 million) slows down the search
process and (2) the candidate set for each CiteSeerX citation
could be huge for highly-cited papers. The integrated model
only applies citation model to papers with low-quality titles
to improve recall.

Application and Conclusion
We applied HMM on CiteSeerX documents against DBLP,
WoS, and Medline. The result indicates that the current
CiteSeerX dataset includes about 3 million WoS docu-
ments, 1.62 million Medline papers, and about 1.35 mil-
lion DBLP papers. The matching process by HMM is done
in 11 days on a machine with following specifications: 32
logical cores of Intel Xeon CPU E5-2630 v3 @ 2.40GH;
330 GB RAM. The result reveals that there is still a large
number of papers that CiteSeerX should index. The un-
matched document metadata can aid CiteSeerX crawler to
find relevant resources.

Previous studies (Caragea et al. 2014; Wu et al. 2017)
used only metadata in the header of scholarly articles for
paper entity linking. In reality, the quality of a header is
not always that good. Hence, we investigated leveraging
both header and citation information to match paper en-
tities between two digital library datasets when the tar-
get corpus contains noisy data. We proposed an approach
that integrates header and citation information for paper en-
tity matching. Compared with the IR-based method, header
matching model improves precision by at least 13% and F1
by about 3% for papers with low quality titles. The inte-
grated model with header and citation information achieves
an F1 as high as 0.992 and precision as high as 0.984. We
show that CiteSeerX has a huge overlap with WoS, DBLP,

Table 4: Comparisons of HMM, CMM, and IMM performances using the CiteSeerX-WoS dataset with different title quality
thresholds. T/s stands for testing time in seconds.

θ < θtq
Data HMM CMM IMM

Portion P R F1 T/s P R F1 T/s P R F1 T/s
θ < 0.01 16.1 % 0.971 0.872 0.919 10 1.0 0.513 0.678 12229 0.975 1.0 0.987 9082
θ < 0.02 17.8 % 0.973 0.857 0.911 12 1.0 0.524 0.688 12761 0.977 1.0 0.988 9791
θ < 0.10 21.20% 0.978 0.833 0.900 14 1.0 0.593 0.745 13732 0.982 1.0 0.991 10206
θ < 0.20 24.39% 0.981 0.869 0.922 14.5 1.0 0.59 0.742 14823 0.984 1.0 0.992 11490

and Medline, which can be used for metadata correction, and
that there are still a large number of scientific documents to
be crawled and indexed. The framework developed can be
used to match records between any bibliographic databases
with or without citations. The idea of combining ML and
IR is in general applicable to many information retrieval
and data linking problems. We will apply this framework to
clean the CiteSeerX metadata. This will generate high qual-
ity large-scale datasets that can enable development and im-
plementation of many graph-based AI applications.

The software implementation of this framework is avail-
able on GitHub at
https://github.com/SeerLabs/entity-matching.

Acknowledgements
We gratefully acknowledge partial support from the Na-
tional Science Foundation.

References
[Al-Zaidy and Giles 2017] Al-Zaidy, R. A., and Giles, C. L.
2017. A machine learning approach for semantic structuring
of scientific charts in scholarly documents. In AAAI, 4644–
4649.

[Caragea et al. 2014] Caragea, C.; Wu, J.; Ciobanu, A.;
Williams, K.; Fernández-Ramı́rez, J.; Chen, H.-H.; Wu, Z.;
and Giles, L. 2014. Citeseerx: A scholarly big dataset. In
Advances in Information Retrieval: 36th European Confer-
ence on IR Research, ECIR 2014, Amsterdam, The Nether-
lands, April 13-16, 2014. Proceedings, 311–322.

[Charikar 2002] Charikar, M. 2002. Similarity estimation
techniques from rounding algorithms. In Proceedings on
34th Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada, 380–388.

[Chen et al. 2018] Chen, C.; Wang, Z.; Li, W.; and Sun, X.
2018. Modeling scientific influence for research trend-
ing topic prediction. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA, February 2-7, 2018.

[Councill, Giles, and Kan 2008] Councill, I.; Giles, C. L.;
and Kan, M.-Y. 2008. Parscit: an open-source crf reference
string parsing package. In Proceedings of the Sixth Interna-
tional Conference on Language Resources and Evaluation
(LREC’08).

[Giles, Bollacker, and Lawrence 1998] Giles, C. L.; Bol-
lacker, K. D.; and Lawrence, S. 1998. Citeseer: An auto-
matic citation indexing system. In Proceedings of the 3rd
ACM International Conference on Digital Libraries, June
23-26, 1998, Pittsburgh, PA, USA, 89–98.

[Giles 2013] Giles, C. L. 2013. Scholarly big data: Informa-
tion extraction and data mining. In Proceedings of the 22Nd
ACM International Conference on Information & Knowl-
edge Management, CIKM ’13, 1–2. New York, NY, USA:
ACM.

[Huang et al. 2015] Huang, W.; Wu, Z.; Chen, L.; Mitra, P.;
and Giles, C. L. 2015. A neural probabilistic model for con-
text based citation recommendation. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., 2404–2410.

[Kim, Sefid, and Giles 2017] Kim, K.; Sefid, A.; and Giles,
C. L. 2017. Scaling author name disambiguation with cnf
blocking. arXiv preprint arXiv:1709.09657.

[Liu et al. 2017] Liu, X.; Yan, J.; Xiao, S.; Wang, X.; Zha,
H.; and Chu, S. M. 2017. On predictive patent valuation:
Forecasting patent citations and their types. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial In-
telligence, February 4-9, 2017, San Francisco, California,
USA., 1438–1444.

[Peled et al. 2013] Peled, O.; Fire, M.; Rokach, L.;
and Elovici, Y. 2013. Entity matching in on-
line social networks. In International Conference
on Social Computing, SocialCom 2013, Social-
Com/PASSAT/BigData/EconCom/BioMedCom 2013,
Washington, DC, USA, 8-14 September, 2013, 339–344.

[Robertson, Zaragoza, and Taylor 2004] Robertson, S.;
Zaragoza, H.; and Taylor, M. 2004. Simple bm25 extension
to multiple weighted fields. In Proceedings of the Thir-
teenth ACM International Conference on Information and
Knowledge Management, CIKM ’04, 42–49. New York,
NY, USA: ACM.

[Wesley-Smith and West 2016] Wesley-Smith, I., and West,
J. D. 2016. Babel: A platform for facilitating research
in scholarly article discovery. In Proceedings of the 25th
International Conference Companion on World Wide Web,
WWW ’16 Companion, 389–394. Republic and Canton of
Geneva, Switzerland: International World Wide Web Con-
ferences Steering Committee.

[Wu et al. 2014] Wu, J.; Williams, K.; Chen, H.; Khabsa, M.;
Caragea, C.; Ororbia, A.; Jordan, D.; and Giles, C. L. 2014.
Citeseerx: AI in a digital library search engine. In Proceed-
ings of the 28th AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., 2930–
2937.

[Wu et al. 2017] Wu, J.; Sefid, A.; Ge, A. C.; and Giles, C. L.
2017. A supervised learning approach to entity matching be-
tween scholarly big datasets. In Proceedings of the Knowl-

https://github.com/SeerLabs/entity-matching
http://arxiv.org/abs/1709.09657

edge Capture Conference, K-CAP 2017, 42:1–42:4. New
York, NY, USA.

[Yang et al. 2015] Yang, Y.; Sun, Y.; Tang, J.; Ma, B.; and Li,
J. 2015. Entity matching across heterogeneous sources. In
Cao, L.; Zhang, C.; Joachims, T.; Webb, G. I.; Margineantu,
D. D.; and Williams, G., eds., Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Sydney, NSW, Australia, August 10-13,
2015, 1395–1404. ACM.

	Introduction
	Related Work
	Models
	Entity Representation
	Header Matching Model (HMM)
	Citation Matching Model (CMM)
	Title Evaluation Model (TEM)

	Experiments
	Data
	Ground Truth Labeling
	Experiment Setups
	Results and Discussion
	Error Analysis
	Application and Conclusion
	Acknowledgements

