
Combining Super-structuring and Abstraction on Sequence Classification

Adrian Silvescu
Yahoo! Labs

Sunnyvale, CA
silvescu@yahoo-inc.com

Cornelia Caragea
Computer Science Department

Iowa State University
cornelia@cs.iastate.edu

Vasant Honavar
Computer Science Department

Iowa State University
honavar@cs.iastate.edu

Abstract—We present an approach to adapting the data rep-
resentation used by a learner on sequence classification tasks.
Our approach that exploits the complementary strengths of
super-structuring (constructing complex features by combining
existing features) and abstraction (grouping of similar features
to generate more abstract features), yields smaller and, at the
same time, accurate models. Super-structuring provides a way
to increase the predictive accuracy of the learned models by
enriching the data representation (and hence, increases the
complexity of the learned models) whereas abstraction helps
reduce the number of model parameters by simplifying the
data representation. The results of our experiments on two
data sets drawn from macromolecular sequence classification
applications show that adapting data representation by com-
bining super-structuring and abstraction, makes it possible
to construct predictive models that use significantly smaller
number of features (by one to three orders of magnitude) than
those that are obtained using super-structuring alone, without
sacrificing predictive accuracy. Our experiments also show that
simplifying data representation using abstraction yields better
performing models than those obtained using feature selection.

Keywords-super-structuring; abstraction; feature selection

I. INTRODUCTION

Sequence classification arises in many real-world prob-
lems. For example, in computational biology, predicting pro-
tein function or subcellular localization can be formulated as
sequence classification tasks, where the amino acid sequence
of the protein is used to classify the protein in functional and
localization classes.

Representational commitments, i.e., the choice of features
or attributes that are used to describe the sequence data
presented to a learner, and the level of detail at which
they describe the data, can have a major impact on the
difficulty of learning, and the accuracy, complexity, and
comprehensibility of the learned predictive model [1]. The
representation has to be rich enough to capture distinctions
that are relevant from the standpoint of learning, but not so
rich as to make the task of learning harder due to overfitting.

Sequence data contain intrinsic dependencies between
their constituent elements. Given a sequence x =
(x0, · · · , xt−1) over a finite alphabet X , x ∈ X ∗, the depen-
dencies between neighboring elements can be modeled using
super-structuring. Super-structuring involves generating all
the contiguous (potentially overlapping) sub-sequences of

a certain length k, (xi−k, · · · , xi−1), i = k, · · · , t, k > 1,
called super-structures, or k-grams (see e.g., [2] for more de-
tails). Super-structuring aims to increase the richness of the
representation [3]. While super-structuring provides a way
to improve predictive accuracy, the number of parameters of
the resulting models increases exponentially with k.

Traditional feature selection methods [3], [4] select a sub-
set of the available features based on some chosen criteria.
On a sequence classification task, selecting a subset of super-
structures by feature selection can substantially reduce the
number of model parameters. However, this approach of
combining super-structuring and feature selection may not
capture important sequence patterns (motifs, in the case of
biological sequences) that are removed during the selection
process.

Feature abstraction methods [5], [6], on the other hand,
group “similar”, existing features to generate more abstract
features. These methods aim to control the level of de-
tail in the data representation. We present an approach
to adapting the data representation used by a learner that
exploits the complementary strengths of super-structuring
and feature abstraction. Specifically, we propose an algo-
rithm to construct new features in a sequence classification
scenario by combining super-structuring and abstraction.
Super-structuring improves classification performance at the
expense of increasing the model size, and abstraction re-
duces the model size and improves the statistical estimates of
complex models (especially when data is sparse) by reducing
the number of parameters to be estimated from data.

We evaluate our approach on two protein subcellular
localization data sets. The problem of predicting subcellular
protein localization is important in cell biology, because
it can provide valuable information for predicting protein
function and protein-protein interactions, among others.

The results of our experiments show that adapting data
representation by combining super-structuring and abstrac-
tion makes it possible to construct predictive models that
use significantly smaller number of features (by one to
three orders of magnitude) than those that are obtained
using super-structuring independently without sacrificing
predictive accuracy. The results also show that, for the same
number of features used, models obtained using abstraction
outperform those obtained using feature selection.

Algorithm 1 Feature Construction

Input: D =(xl, yl)l=1,···,N , xl ∈ X ∗, yl ∈ Y; k = length
of super-structures; m = number of features to construct
Output: A transformed data set DS+A

S ← Generate-Super-structures(D)
DS ← Encode(D,S)
A ← Construct-Abstractions(DS ,m)
DS+A ← Encode(DS ,A)

II. COMBINING SUPER-STRUCTURING AND
ABSTRACTION

Let D = (xl, yl)l=1,···,N be a data set of sequences
xl over a finite alphabet X along with their associated
class labels yl from a finite set Y . Our approach to feature
construction that combines super-structuring and abstraction
is illustrated in Algorithm 1. The input of the algorithm
is: the data set D; the length k of the super-structures;
and a number m of features to construct. The output of
the algorithm is a transformed data set DS+A of instances
encoded with the newly constructed features.

The algorithm starts by generating a set S = {s1, · · · , sn}
of (complex) unique features (i.e., super-structures or k-
grams) from the sequences in D. Specifically, the k-grams
are substrings of length k over X that are generated by
sliding a window of length k over sequences in D. The
cardinality of S is |S| = n ≤ |X |k (note that if a k-gram
does not appear in D, it is not considered as a feature1).
In the next step of the algorithm the original data set D
is transformed into a data set DS as follows: each instance
(xl, yl) in D is encoded by ([s1 : #sl1], · · · , [sn : #sln], yl)
where [si : #sli], i = 1, · · · , n represents frequency counts
for the k-gram si in the sequence xl. This representation is
known as “bag of features (k-grams)” [7].

With the transformed data set DS where each instance
consists of a bag of k-grams over the set S and its associated
class label, the algorithm proceeds to reduce the feature
set S to the desired number of features m. The reduction
is accomplished by constructing new features or abstrac-
tions over the k-grams inside the procedure Construct-
Abstractions(DS ,m). Specifically, the set of k-grams
is partitioned into m non-overlapping sets A = {a1 :
S1, · · · , am : Sm} where ai denotes the i-th abstraction
and Si denotes the subset of k-grams that are grouped
together into this i-th abstraction. Thus, an abstraction is
identified with the collection of k-grams/features that are
grouped together. Note that S1 ∪ · · · ∪ Sm = S and
∀1 ≤ i, j ≤ m, Si ∩ Sj = ∅.

1The number of unique k-grams is exponential in k. However, for large
values of k, many of the k-grams may not appear in the data (and,
consequently, their frequency counts would be zero). Note that the number
of unique k-grams is bounded by the cardinality of the multiset of k-grams.

Algorithm 2 Construct-Abstractions

Input: DS = ([s1 : #sl1], · · · , [sn : #sln], yl), m =
number of abstractions to construct
Output: A set of abstractions A, such that |A| = m

Initialize A = {a1 :{s1}, · · · , an :{sn}}
for u = n+ 1 to 2n−m do

(imin, jmin) = arg mini,jdist(ai, aj)
au = aimin ∪ ajmin

A = A\{aimin
, ajmin

} ∪ {au}
end for

Finally, the algorithm transforms the data set DS into
another data set DS+A where each instance is now rep-
resented by m features (aside from the class label) as
follows: given the set of m abstractions A = {a1 :
S1, · · · , am : Sm}, where Si ⊆ S,∀1 ≤ i ≤ m, an instance
([s1 : #sl1], · · · , [sn : #sln], yl) from DS is transformed into
an instance ([a1 : #al1], · · · , [am : #alm]}, yl) in DS+A,
where:

#ali =
∑
sq∈Si

#slq, ∀1 ≤ i ≤ m

The advantage of this approach is that the resulting represen-
tation of sequences can be used with any learning algorithm.
In this study we used Naive Bayes Multinomial [8] and Sup-
port Vector Machines [9] with linear kernel. In the next sub-
section we present the Construct-Abstractions(DS ,m)
procedure of Algorithm 1.

A. Constructing Abstractions

The procedure for constructing abstractions is illustrated
in Algorithm 2. The input of the algorithm is a data set where
each instance consists of a bag of k-grams and a class label,
DS = ([s1 : #sl1], · · · , [sn : #sln], yl)l=1,···,N , and a number
m ≤ n that represents the reduced number of abstractions
that is desired. The output is a set of abstractions A over
the k-grams such that |A| = m.

The algorithm, that is a greedy agglomerative procedure,
starts by initializing the set of abstractions A such that each
abstraction ai corresponds to a k-gram si in S. Next, the
algorithm recursively groups pairs of abstractions until m
abstractions are obtained. More precisely, n −m times the
algorithm searches for the most “similar” two abstractions
aimin and ajmin , adds a new abstraction au to the set of
abstractions A by taking the union of their k-grams, and
removes aimin

and ajmin
from A. Finally, after n−m such

steps the algorithm returns m abstractions as the final result.
In order to complete the description of Algorithm 2,

we need to define the similarity between two abstractions.
Our general criterion for establishing similarity between
items and, thus, deriving useful abstractions is based on
the following observation: similar items occur within similar
contexts. In our case, we define the context of a k-gram as

the probability of the class variable given the corresponding
k-gram (see below). Since an abstraction is a set of k-
grams, the class context of an abstraction will be obtained
by aggregating the class contexts of its elements. Next, we
define a distance dist(ai, aj) between the class contexts of
two abstractions ai and aj and identify the most “similar”
abstractions as those that have the smallest distance between
their class contexts.

Class Context for Abstractions. Given a transformed
data set DS = ([s1 : #sl1], · · · , [sn : #sln], yl)l=1,···,N of D,
we define the class context of a k-gram si in S with respect
to D as follows:

CContextD(si) := [p(Y |si),#si]

=

[
#[si, yj]∑

yj∈Y #[si, yj]

]
yj∈Y

,
∑
yj∈Y

#[si, yj]


That is, the class context of a k-gram si is the conditional
distribution of the class variable Y given the k-gram si,
p(Y |si) estimated from D, along with the frequency counts
of the k-gram si in D, #si. The variable Y takes values
yj ∈ Y . The counts # [si, yj] can be computed from DS by
summing #sli over all instances that belong to yj ∈ Y .

More generally, we define the class context of an abstrac-
tion ai = {si1,...,siq} as follows:

CContextD({si1,···,siq}) :=

[
q∑
r=1

πrp(Y |sir),
q∑
r=1

#sir

]

where πr :=
#sir∑q
r=1 #sir

If we “abstract out” the difference between all the k-grams
{si1,···,siq} in the abstraction ai and replace each of their
occurrences in D by ai, then #ai =

∑q
r=1 #sir and

#[ai, yj] =
∑q
r=1 #[sir , yj]. Furthermore, for any yj ∈ Y:

p(yj |ai) =
#[ai, yj]

#ai
=

∑q
r=1 #[sir , yj]∑q
r=1 #sir

=
q∑
r=1

#sir∑q
r=1 #sir

#[sir , yj]
#sir

=
q∑
r=1

πrp(yj |sir)

Hence, we have shown that:

CContextD(ai) = [p(Y |ai),#ai]

=

[
q∑
r=1

πrp(Y |sir),
q∑
r=1

#sir

]
= CContextD({si1,···,siq})

This is a natural definition of an abstraction based on
“abstracting out” the difference between the k-grams
{si1,···,siq} and considering them as being a single feature
ai. Note that we have also shown that

∑q
r=1 πrp(Y |sir) is

actually a probability distribution over Y because it is the
same as p(Y |ai). Next, we define a distance between the

class contexts of two abstractions, motivated by ideas from
information theory [10].

Distance Between Abstractions. Our goal is to obtain
compact, yet accurate models. Hence, if we denote by A a
random variable that takes values in the set of abstractions
A = {a1, · · · , am}, our goal reduces to constructing the set
A of abstractions such that the dependency between A and
the class variable Y is preserved as much as possible. One
way to measure the dependency between two variables is to
use mutual information [10]. Hence, we want to construct A
such that the reduction in the mutual information between
A and the class variable Y , I(A, Y), is minimized at each
step of Algorithm 2.

The reduction in the mutual information between A and
Y due to a single merge of Algorithm 2 can be calculated as
follows: Let Am and Am−1 denote the sets of abstractions
corresponding to two consecutive steps of Algorithm 2. Let
{ai, aj} → au denote the merge that produced Am−1 from
Am. Furthermore, let πi and πj denote the prior probabilities

of ai and aj in the set au, i.e. πi = p(ai)
p(ai)+p(aj)

and πj =

p(aj)
p(ai)+p(aj)

.

Proposition 1: The reduction in the mutual
information between A and Y , due to the
above merge is given by δI({ai, aj} , au) =
(p(ai) + p(aj)) · JSπi,πj

(p(Y |ai), p(Y |aj)) ≥ 0, where
JSπi,πj (p(Y |ai), p(Y |aj)) represents the weighted Jensen-
Shannon divergence between two probability distributions
p(Y |ai) and p(Y |aj) with weights πi and πj , respectively.
(We omit the proof due to lack of space.)

The weighted Jensen-Shannon divergence between two
probability distributions pi and pj with weights πi and πj ,
is given by: JSπi,πj (pi, pj) = πiKL(pi||p̄) +πjKL(pj ||p̄),
where p̄ = πipi + πjpj , and KL(pi||p̄) represents
the Kullback-Leibler divergence between pi and p̄. The
weighted Jensen-Shannon divergence is a generalization of
the Jensen-Shannon divergence between two probability dis-
tributions that allows for an asymmetry in the consideration
of the two elements (in the case of standard Jensen-Shannon
divergence w1 = w2 = 1

2) [11].
Hence, we define the distance between two abstractions

ai and aj , denoted by dist(ai, aj), as follows:

dist(ai, aj) = δI({ai, aj} , au) where au = {ai ∪ aj}

= (p(ai) + p(aj)) · JS(CContextD(ai), CContextD(aj))

III. FEATURE SELECTION

In this section we discuss an alternative approach, i.e.,
feature selection, to reducing the feature set S of super-
structures to a desired number of features m. Feature selec-
tion is performed by selecting a subset F of features (super-
structures or k-grams) from the entire set S, F ⊆ S such that
|F| = m and m ≤ n. The features are ranked according to

a scoring function Score and the top m best ranked features
are selected.

We used mutual information [10] between the proba-
bility of the class variable p(Y) and the probability of
the feature si, which measures how dependent the two
variables are. More exactly, let DS = ([s1 : #sl1], ..., [sn :
#sln], yl)l=1,···,N be a transformed data set of D, let Y be
the class variable that takes values yj ∈ Y , and let si ∈ S be
a feature. We define a scoring function Score of the feature
si as follows:

ScoreD(si) = KL(p(si, Y)||p(si)p(Y))

where p(si, Y) is estimated from counts gathered from D
and p(si) and p(Y) are obtained by marginalization from
p(si, Y). As before, these counts can be computed from DS .
The ScoreD(si) is also known as information gain because
KL(p(si, Y)||p(si)p(Y)) = H(p(Y)) − H(p(Y |si)|p(Y))
where H(p(Y)) = −

∑
yj
p(yj) log p(yj) is the Shannon’s

entropy.
The data set DS is transformed into another data set

DS+F where each instance is represented by m features
(besides the label) as follows: given the selected set of fea-
tures F = {si1 , · · · , sim}, an instance ([s1 : #sl1], · · · , [sn :
#sln], yl) from DS is transformed into an instance ([si1 :
#sli1], ..., [sim : #slim], yl) in DS+F .

IV. EXPERIMENTS AND RESULTS

Our experiments compare Naı̈ve Bayes (NB) and Sup-
port Vector Machine (SVM) classifiers trained using the
combination of super-structuring and abstraction as the
feature representation with their corresponding counterparts
trained using a unigram representation of sequences, super-
structuring representation, and super-structuring followed by
feature selection representation (detailed below). We show
results of these comparisons on two protein subcellular
localization data sets: plant and non-plant2 introduced in
[12]. For both data sets we report the average classification
accuracy obtained in a 5-fold cross-validation experiment.

The feature representations used to train the NB and SVM
classifiers are as follows:
• unigram: a bag of letters representation of protein

sequences, no super-structuring, abstraction or feature
selection (UNIGRAM);

• super-structuring: a bag of k-grams (k = 3) represen-
tation of protein sequences (SS);

• super-structuring and feature selection: a bag of m k-
grams (k = 3) chosen using feature selection from
the bag of k-grams obtained by super-structuring (See
Section III for details) (SS+FSEL);

• super-structuring and abstraction: a bag of m abstrac-
tions over k-grams (k = 3) obtained using the combi-
nation of super-structuring and abstraction (See Section
II for details) (SS+ABS).

2Available at http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php

For plant and non-plant data sets the number of 3-grams
is 8293 and 8404, respectively. Note that these represent the
numbers of 3-grams that occur in the data. For both data
sets, the number of unigrams is 22 (|X | = 20 amino acids
plus two special characters inserted at the beginning and at
the end of each sequence).

Figures 1a and 1b show the results of the comparison of
SS+ABS with UNIGRAM, SS, and SS+FSEL on the plant
data set using NB and SVM with linear kernel, respectively.
Figures 1c and 1d show similar results on the non-plant
data set. The average classification accuracy is shown as a
function of the number of features used in the classification
model, ranging from 1 to n = |S| (the number of unique k-
grams). The x axis of Figure 1 shows the number of features
on a logarithmic scale.

Comparison of SS+ABS with UNIGRAM. Figure 1
shows that, for any choice of the number of features,
classifiers trained using SS+ABS outperform those trained
using UNIGRAM. For example, on the plant data set, with
22 features, NB and SVM achieve 74.36% and 70.74% accu-
racy (respectively) using SS+ABS, as compared to 59.46%
and 63.08% (respectively) obtained using UNIGRAM. Sim-
ilarly, on the non-plant data set, with 22 features, NB and
SVM achieve 77.24% and 77.61% accuracy (respectively)
using SS+ABS, whereas NB and SVM achieve 67.42% and
73.59% (respectively) using UNIGRAM.

Comparison of SS+ABS with SS. As can be seen in
Figure 1, SS+ABS matches the performance of SS with
substantially smaller number of features. Specifically, the
performance of SS-based NB and SVM classifiers trained
using more than 8000 3-grams is matched by SS+ABS-based
classifiers trained using only 22 and 8 features (respectively)
on the plant data set, and only 270 and 2 features (respec-
tively) on the non-plant data set. We conclude that SS+ABS
can match the performance of SS using substantially (by one
to three orders of magnitude) more compact classifiers.

The performance of SVM on SS is worse than that of NB
on SS on both data sets, and also worse than that of SVM
on UNIGRAM (Figure 1). This could be due to overfitting
(see [13] for a theoretical analysis of overfitting for the SVM
algorithm). It is interesting to note that, for many choices of
the number of features, SS+ABS substantially outperforms
SS in the case of SVM on both data sets (Figures 1b and
1d). Thus, SS+ABS can help avoid overfitting by providing
more robust estimates of model parameters.

Comparison of SS+ABS with SS+FSEL. As can be
seen from Figure 1, SS+ABS outperforms SS+FSEL over
a broad range of choices for the number of features. For
example, with only 10 features on the plant data set, NB
using SS+ABS achieves an accuracy of 71.06% as compared
to NB using SS+FSEL which achieves an accuracy of only
38.40%. On the same data set with only 10 features, SVM
using SS+ABS achieves an accuracy of 67.87% as compared
to 41.06% achieved by SVM using SS+FSEL.

0 0.5 1 1.5 2 2.5 3 3.5 4
35

40

45

50

55

60

65

70

75

80

log10(Number of Features)

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

UNIGRAM
SS
SS+ABS
SS+FSEL

(a) plant (NB)

0 0.5 1 1.5 2 2.5 3 3.5 4
35

40

45

50

55

60

65

70

75

80

log10(Number of Features)

UNIGRAM
SS
SS+ABS
SS+FSEL

(b) plant (SVM)

0 0.5 1 1.5 2 2.5 3 3.5 4
55

60

65

70

75

80

log10(Number of Features)

UNIGRAM
SS
SS+ABS
SS+FSEL

(c) non-plant (NB)

0 0.5 1 1.5 2 2.5 3 3.5 4
60

62

64

66

68

70

72

74

76

78

80

log10(Number of Features)

UNIGRAM
SS
SS+ABS
SS+FSEL

(d) non-plant (SVM)

Figure 1: Comparison of super-structuring and abstraction (SS+ABS) with super-structuring alone (SS), super-structuring
and feature selection (SS+FSEL) and UNIGRAM on the plant and non-plant data sets using Naı̈ve Bayes (NB), (a) and (c)
respectively, and Support Vector Machines (SVM) with linear kernel (b) and (d), respectively. The plots show the accuracy
as a function of the number of features used in the classification model, ranging from 1 to ≈ 8, 000 on both data sets. The
x axis shows the number of features on a logarithmic scale.

V. SUMMARY AND DISCUSSION

We have presented an approach to feature construction in
a sequence classification scenario to trade off the predic-
tive accuracy of the learned model against its complexity.
Our approach combines super-structuring with abstraction.
Super-structuring involves generating all the contiguous (po-
tentially overlapping) subsequences of a certain length k,
i.e. k-grams. Abstraction involves constructing more abstract
features by grouping “similar” features.

The results of our experiments on two protein subcellular
localization data sets show that adapting data representation
by combining super-structuring and abstraction makes it
possible to construct predictive models that use significantly
smaller number of features (by one to three orders of
magnitude) than those obtained using super-structuring alone
(whose size grows exponentially with k). Moreover, the
performance of such models is similar and, in some cases,
better compared to the performance of models that use only
super-structuring. In this case, abstraction can be seen as
a regularizer. The results also show that simplifying data
representation using abstraction yields better performing
models than those obtained by feature selection.

A. Related Work

Segal et al. [14] and McCallum et al. [15] have used
abstraction hierarchies over classes to improve classification
accuracy. Zhang et al. [5] have used abstraction hierar-
chies over nominal variables to build compact yet accurate
classifiers. In contrast to these methods, we have learned
abstraction hierarchies from sequence data, that is a type of
topologically constrained data. Our abstraction hierarchies
group “similar” k-grams based on the class conditional
distributions that they induce, p(Y |k-gram).

Our work is similar in spirit to the agglomerative in-
formation bottleneck (AIB) method of Slonim and Tishby
[16]. However, AIB requires an iterative process to estimate

parameters for the bottleneck variables, whereas our method
requires only a simple weighted aggregation of the existing
parameters.

Feature construction methods aim to increase the richness
of the data representation (see [3] for a survey). Super-
structuring corresponds to considering higher order moments
[17] in the particular case of multivariate statistics. Feature
selection (or extraction) methods that select a subset of
the available features based on some chosen criteria [18]
(see [19] for a survey) and abstraction methods that group
similar features to generate more abstract features [6], [16],
[20] aim to control the level of detail in the representation.
With the exception of Jonyer et al. [21] who have described
an algorithm for Context-Free Graph Grammar Induction
that combines in effect super-structuring and abstraction
(although not explicitly, and not aimed at predicting a class
variable), there has been relatively limited exploration of
techniques that combine super-structuring with abstraction
or feature selection in adapting the data representation
used for training predictive models to obtain accurate and
comprehensible classifiers.

B. Discussion

Although we have focused on super-structuring in the case
of sequence data to enrich the data representation, and hence
increase the performance of learned models, in general, any
topology that reflects the interactions between elements of
structured data can be used to guide super-structuring. For
example, in the case of image data, this involves generating
features from spatially contiguous elements of an image.

Feature selection and abstraction simplify the data repre-
sentation, and help maintain comprehensible models. While
feature selection does that by removing redundant or irrel-
evant features, abstraction assumes that all features contain
some information that is useful for making accurate predic-
tions, and hence, groups sets of features to generate more

1 2 3 4
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Class

P(
Cl

as
s|

Fe
at

ur
e)

VFV
SSS
PSF
Abstraction

(a) 10 abstractions

1 2 3 4
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Class

VFV
SSS
PSF
Abstraction

(b) 100 abstractions

Figure 2: Class distributions induced by one of the m
abstractions and by three 3-grams, namely “VFV”, “SSS”,
and “PSF”, on the plant data set, where (a) m = 10 and (b)
m = 100. The three 3-grams are initially sampled from the
abstraction when m = 100. The number of classes is 4.

abstract features, based on the class distributions that they
induce. Figure 2a shows the class distribution induced by one
of the 10 abstractions, namely a1, and the class distributions
induced by three 3-grams sampled from a1, namely “VFV”,
“SSS”, “PSF”, when abstraction is performed to reduce the
number of features from 8, 293 to 10 on the plant data set.
Note that the class distribution induced by the abstraction
a1 is very similar to those induced by the individual 3-
grams (the average number of 3-grams per abstraction is
829). Hence, the individual 3-grams can be replaced by their
abstraction a1 without significant reduction in the accuracy
of the resulting classifiers. In contrast, selecting a subset
of 10 features by feature selection decreases classification
performance (Figure 1b). When abstraction is performed
to reduce the number of features from 8, 293 to 100 on
the same data set, the class distributions induced by the
same three 3-grams are more similar to the class distribution
induced by their abstraction (Figure 2b) (the average number
of 3-grams per abstraction is 83). We conclude that SS+ABS
provides better estimates of the model parameters than
SS+FSEL.

Some possible directions for further research include
extensions of the methods developed here for sequence
classification to settings where the data have a much richer
structure (e.g., multi-modal data consisting of images and
text, and combination of audio and visual data).

ACKNOWLEDGMENT

This research was funded in part by National Science
Foundation grant number NSF 0711356 to Vasant Honavar.

REFERENCES

[1] L. Valiant, “A theory of the learnable.” Communications of
ACM, vol. 27, pp. 1134–1142, 1984.

[2] E. Charniak, Statistical Language Learning, Cambridge:
1993. MIT Press, 1993.

[3] H. Liu and H. Motoda, Feature Extraction, Construction and
Selection. Springer, 1998.

[4] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–
1182, 2003.

[5] J. Zhang, D.-K. Kang, A. Silvescu, and V. Honavar, “Learning
accurate and concise Naive Bayes classifiers from attribute
value taxonomies and data,” Knowledge and Information
Systems, vol. 9, no. 2, pp. 157–179, 2006.

[6] D.-K. Kang, A. Silvescu, J. Zhang, and V. Honavar, “Gen-
eration of attribute value taxonomies from data for accurate
and compact classifier construction.” in Proceedings of ICDM
2004, Brighton, UK, 2004.

[7] A. McCallum and K. Nigam, “A comparison of event models
for naive bayes text classification,” in AAAI-98 Workshop on
”Learning for Text Categorization”, 1998.

[8] T. M. Mitchell, Machine Learning. NY: McGraw-Hill, 1997.

[9] C. J. C. Burges, “A tutorial on support vector machines for
pattern recognition.” Data Mining and Knowledge Discovery,
vol. 2, no. 2, pp. 121–167, 1998.

[10] T. M. Cover and J. A. Thomas, Elements of Information
Theory. John Wiley, 1991.

[11] J. Lin, “Divergence measures based on the shannon entropy,”
IEEE Transactions on Information theory, vol. 37, pp. 145–
151, 1991.

[12] O. Emanuelsson, H. Nielsen, S. Brunak, and G. von Heijne,
“Predicting subcellular localization of proteins based on their
n-terminal amino acid sequence.” J. Mol. Biol., 2000.

[13] V. Vapnik, Statistical Learning Theory. John Wiley & Sons,
N.Y., 1998.

[14] E. Segal, D. Koller, and D. Ormoneit, “Probabilistic abstrac-
tion hierarchies,” in Proceedings of NIPS 2001, Vancouver,
Canada, 2001, pp. 913–920.

[15] A. K. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng,
“Improving text classification by shrinkage in a hierarchy of
classes,” in Proceedings of ICML-98, Madison, US, 1998.

[16] N. Slonim and N. Tishby, “Agglomerative Information Bot-
tleneck,” in Proceedings of NIPS 1999, pp. 617–623.

[17] K. V. Mardia, J. T. Kent, and J. Bibby, Multivariate Analysis.
Academic Press, 1979.

[18] L.-P. Liu, Y. Yu, Y. Jiang, and Z.-H. Zhou, “TEFE: A time-
efficient approach to feature extraction,” in Proceedings of
ICDM-08, 2008, pp. 423–432.

[19] H. Liu and H. Motoda, Feature Selection for Knowledge
Discovery and Data Mining. Springer, 1998.

[20] D. Baker and A. McCallum, “Distributional clustering of
words for text classification.” in Proc. of SIGIR-98, 1998.

[21] I. Jonyer, L. Holder, and D. Cook, “MDL-based context-
free graph grammar induction and applications,” International
Journal of AI Tools, vol. 13, pp. 45–64, 2004.

