
Abstraction Augmented Markov Models

Cornelia Caragea
Computer Science

Iowa State University
cornelia@cs.iastate.edu

Adrian Silvescu
Computer Science

Iowa State University
silvescu@cs.iastate.edu

Doina Caragea
Computer and Information Sciences

Kansas State University
dcaragea@ksu.edu

Vasant Honavar
Computer Science

Iowa State University
honavar@cs.iastate.edu

Abstract—High accuracy sequence classification often re-
quires the use of higher order Markov models (MMs). However,
the number of MM parameters increases exponentially with
the range of direct dependencies between sequence elements,
thereby increasing the risk of overfitting when the data set
is limited in size. We present abstraction augmented Markov
models (AAMMs) that effectively reduce the number of nu-
meric parameters of kth order MMs by successively grouping
strings of length k (i.e., k-grams) into abstraction hierarchies.
We evaluate AAMMs on three protein subcellular localization
prediction tasks. The results of our experiments show that
abstraction makes it possible to construct predictive models
that use significantly smaller number of features (by one to
three orders of magnitude) as compared to MMs. AAMMs are
competitive with and, in some cases, significantly outperform
MMs. Moreover, the results show that AAMMs often perform
significantly better than variable order Markov models, such
as decomposed context tree weighting, prediction by partial
match, and probabilistic suffix trees.

Keywords-Markov models; abstraction; sequence classifica-
tion.

I. INTRODUCTION

Many real-world problems, e.g. protein function or protein
subcellular localization prediction, can be cast as sequence
classification problems (1). Markov models (MMs), which
capture dependencies between neighboring sequence ele-
ments, are among the most widely used generative models
of sequence data (2), (3). In a kth order MM, the sequence
elements satisfy the Markov property: each element is in-
dependent of the rest given k preceding elements (called
parents). MMs have been successfully applied in many
applications including natural language processing (3) and
molecular sequence classification (2). One of the main
disadvantages of MMs in practice is that the number of MM
parameters increases exponentially with the range k of direct
dependencies, thereby increasing the risk of overfitting when
the data set is limited in size.

Against this background, we present abstraction aug-
mented Markov models (AAMMs) aimed at addressing these
difficulties. AAMM’s advantages are as follows:
• AAMMs effectively reduce the number of numeric

parameters of MMs through abstraction. Specifically,
AAMMs learn an abstraction hierarchy over the set of
unique k-grams, i.e., substrings of length k, extracted

from the training data. An abstraction hierarchy over
such a set is a tree such that the leaf nodes correspond
to singleton sets containing individual k-grams, and the
internal nodes correspond to abstractions or groupings
of “similar” k-grams. The procedure for constructing
abstraction hierarchies is based on hierarchical agglom-
erative clustering. At each step, two abstractions are
merged together if they result in the least loss in mutual
information with respect to the next element in the
sequence. An m-cut or level of abstraction through
the resulting abstraction hierarchy is a set of m nodes
that form a partition of the set of k-grams. An m-cut
specifies an AAMM where the m abstractions are used
as “features” in the classification model (with m being
much smaller than the number of unique k-grams).

• Abstraction acts as a regularizer that helps minimize
overfitting (through parameter smoothing) when the
training set is limited in size. Hence, AAMMs can yield
more robust models as compared to MMs.

We evaluate AAMMs on three protein subcellular lo-
calization prediction tasks. The results of our experiments
show that AAMMs are able to use significantly smaller
number of features (by one to three orders of magnitude) as
compared to MMs. AAMMs often yield significantly more
accurate classifiers than MMs. Moreover, the results show
that AAMMs often perform significantly better than variable
order Markov models (VMMs) (4), such as decomposed
context tree weighting, prediction by partial match, and
probabilistic suffix trees.

The rest of the paper is organized as follows: Section 2
introduces AAMMs. Section 3 presents experimental design
and results and Section 4 concludes with a summary and
discussion.

II. FROM MARKOV MODELS TO ABSTRACTION
AUGMENTED MARKOV MODELS

Before introducing abstraction augmented Markov mod-
els, we briefly review Markov models.

A. Markov Models

Let x = x0 · · ·xn−1 be a sequence over a finite alphabet
X , x ∈ X ∗, and let Xi, for i = 0, · · · , n − 1, denote the
random variables corresponding to the sequence elements xi.
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Figure 1: (a) 2nd order Markov model; (b) 2nd order abstraction augmented Markov model

In a kth order Markov model (MM), the sequence elements
satisfy the Markov property:

Xi ⊥⊥ {X0, · · · , Xi−k−1} | {Xi−k, · · · , Xi−1}. (1)

That is, Xi is conditionally independent of X0, · · · , Xi−k−1

given Xi−k, · · · , Xi−1 for i = k, · · · , n−1. Xi−k, · · · , Xi−1

are called parents of Xi. Hence, under a kth order MM, the
joint probability of X = {X0, · · · , Xn−1} can be factorized
as follows:

p(X) = p(X0, · · · , Xk−1)
n−1∏
i=k

p(Xi|Xi−k, · · · , Xi−1). (2)

An MM can be represented as a directed graph where the
nodes represent the random variables Xi, and the edges
represent direct dependencies between neighboring elements
of x. Figure 1a shows the directed graph for a 2nd order MM
on a subset of nodes of x: {Xi−3, · · · , Xi+1}.

Let Si−1 denote the parents Xi−k · · ·Xi−1 of Xi in a
kth order MM. The values of Si−1 represent instantiations
of Xi−k · · ·Xi−1, which are substrings of length k (i.e.,
k-grams) over the alphabet X . Furthermore, let S denote
the set of k-grams over X , s denote a k-gram in S, and
σ a symbol in X . The set of parameters θ that define an
MM is: θ = {θσ|s : σ ∈ X , s ∈ S; θs : s ∈ S}, where
θσ|s = p(σ|s; θ), θs = p(s|θ).

The cardinality of S (i.e., |S|) is |X |k and is denoted by
N . Hence, the number of parameters of a kth order MM
is proportional to N , which grows exponentially with the
length k of direct dependencies.

B. Abstraction Augmented Markov Models

Abstraction augmented Markov models (AAMMs) ef-
fectively reduce the number of numeric parameters of a
kth order MM by grouping k-grams into an abstraction
hierarchy.

Definition 1 (Abstraction Hierarchy) An abstraction
hierarchy T over a set of k-grams S is a rooted tree such
that: (1) the root of T denotes S; (2) the leaves of T
correspond to singleton sets containing individual k-grams
in S; (3) the children of each node (say a) correspond to a

partition of the set of k-grams denoted by a. Thus, a denotes
an abstraction or grouping of “similar” k-grams.

Note that each internal node (or abstraction a) contains
the k-grams at the leaves of the subtree rooted at a.

Definition 2 (m-Cut) An m-cut γm through an abstrac-
tion hierarchy T is a subset of m nodes of T such that for
any leaf si ∈ S, either si ∈ γm or si is a descendant of
some node in γm. The set of abstractions A at any given
m-cut γm forms a partition of S.

Specifically, an m-cut γm partitions the set S of k-grams
into m (m ≤ N ) non-overlapping subsets A = {a1 :
S1, · · · , am : Sm}, where ai denotes the i-th abstraction and
Si denotes the subset of k-grams that are grouped together
into the i-th abstraction based on some similarity measure.
Note that S1∪· · ·∪Sm = S and ∀1 ≤ i, j ≤ m, Si∩Sj = ∅.

AAMMs extend the graphical structure of MMs by in-
troducing new variables Ai that represent abstractions over
the values of Si−1, for i = k, · · · , n− 1. In AAMMs, each
node Xi directly depends on Ai as opposed to Si−1 (as
in MMs). Figure 1b shows the directed graph for a 2nd

order AAMM on a subset of nodes: {Xi−3, · · · , Xi+1} ∪
{Ai−1, · · · , Ai+1}. Each variable Ai takes values in the set
of abstractions A = {a1, · · · , am} corresponding to an m-
cut, γm, which specifies an AAMM. We model the fact that
Ai is an abstraction of Si−1 by defining p(Ai = ai|Si−1 =
si−1) = 1 if si−1 ∈ ai, and 0 otherwise, where si−1 ∈ S and
ai ∈ A represent instantiations of Si−1 and Ai, respectively.

Under a kth order AAMM, the joint probability of the
entire set of variables X ∪A can be factorized as follows:

p(X,A) = p(Sk−1) ·
n−1∏
i=k

p(Xi|Ai) · p(Ai|Si−1). (3)

The set of parameters θ of an AAMM is: θ = {θσ|a : σ ∈
X , a ∈ A; θa|s : a ∈ A, s ∈ S; θs : s ∈ S}, where θσ|a =
p(σ|a; θ), θa|s = p(a|s; θ), and θs = p(s|θ).

1) Learning AAMMs: In what follows we show how
to learn AAMMs from data. This involves: learning an
abstraction hierarchy; and learning model parameters using
the resulting abstraction hierarchy.

Learning an Abstraction Hierarchy: The procedure for
learning an abstraction hierarchy (AH) over the set S of k-



Algorithm 1 Abstraction Hierarchy Learning

Input: A set of k-grams S = {s1, · · · , sN}; a set of
sequences D ={xl}l=1,···,|D|, xl ∈ X ∗
Output: An abstraction hierarchy T over S
Initialize A = {a1 :{s1}, · · · , aN :{sN}}, and
T = {a1 :{s1}, · · · , aN :{sN}}

for w = N + 1 to 2N − 1 do
(umin, vmin) = arg minu,v∈AdD(au, av)
aw = aumin ∪ avmin
A = A\{aumin , avmin} ∪ {aw}
T = T ∪{aw} s.t. Pa(aumin) = Pa(avmin) = aw

end for

grams is shown in Algorithm 1. The input consists of the
set S of k-grams and a set D of sequences over the alphabet
X , D = {xl}l=1,···,|D|. The output is an AH T over S.

The algorithm starts by initializing the set of abstractions
A such that each abstraction ai ∈ A corresponds to a k-
gram si ∈ S, i = 1, · · · , N (the leaves of T are initialized
with elements of S). The algorithm recursively merges pairs
of abstractions that are most “similar” to each other and
terminates with an AH T after N − 1 steps. We store T
in a last-in-first-out (LIFO) stack. For a given choice of the
size m of an m-cut through T , we can extract the set of
abstractions that specifies an AAMM, by discarding the top
m− 1 elements from the stack.

Next we introduce a measure of similarity between a pair
of abstractions. We consider two abstractions to be “similar”
if they occur within similar contexts.

Context of an abstraction. We define the context of a
k-gram s ∈ S to be the conditional probability distribution
p(Xi|s) of the sequence element Xi that “follows” the k-
gram s. The estimate p̂(Xi|s) of p(Xi|s) can be obtained
from the data set D of sequences as follows:

p̂(Xi|s) =

[
1 +

∑|D|
l=1 #[sσ,xl]

|X |+
∑
σ′∈X

∑|D|
l=1 #[sσ′ ,xl]

]
σ∈X

(4)

where #[sσ,xl] represents the number of times the symbol
σ “follows” the k-gram s in the sequence xl.

The context of an abstraction a (i.e., a set of k-grams
a = {s1, · · · , s|a|}) is obtained using a weighted aggregation
of the contexts of its constituent k-grams. The weights
are chosen to ensure that such aggregation yields a proper
probability distribution. That is,

p̂(Xi|a) =
|a|∑
t=1

#st∑|a|
t=1 #st

· p̂(Xi|st), (5)

where #st = 1 +
∑|D|
l=1 #[st,xl].

From the preceding definitions it follows that p(Xi = σ|a)
corresponds to the conditional probability that the symbol σ,
σ ∈ X , “follows” some k-gram st ∈ a.

Distance between abstractions. We proceed to define a
distance between a pair of abstractions au and av , denoted
by dD(au, av). As we shall see below, the definition of
d ensures that, at each step, Algorithm 1 selects a pair
of abstractions to merge such that the loss of information
resulting from the merger is minimized.

The reduction, due to a single step of Algorithm 1, in
mutual information between a node Xi and its parent Ai in
an AAMM (see Figure 1b) can be calculated as follows: Let
γm be an m-cut through the AH T and γm−1 be the (m−1)-
cut through T that results after the merger of au and av into
aw, i.e., {au, av} → aw. Let Am and Am−1 denote the sets
of abstractions corresponding to γm and γm−1, respectively.
Furthermore, let πu and πv denote the prior probabilities of

au and av in the merger aw, i.e., πu = p(au)
p(au)+p(av)

and

πv = p(av)
p(au)+p(av)

1.

Proposition 1: The reduction in the mutual information
between each variable Xi and its parent Ai, due to the
merger of au and av into aw is given by δI({au, av} , aw) =
(p(au) + p(av)) · JSπu,πv (p(Xi|au), p(Xi|av)) ≥ 0,
where JSπu,πv (p(Xi|au), p(Xi|av)) represents the weighted
Jensen-Shannon divergence (5) between two probability dis-
tributions p(Xi|au) and p(Xi|av) with weights πu and πv ,
respectively.

We define the distance between two abstractions au and
av in D as follows:

dD(au, av) = δI({au, av} , aw) where aw = {au ∪ av}.

The effect of one merge of Algorithm 1 on the log likelihood
of the data is given by the following proposition.

Proposition 2: The reduction in the log likelihood of the
data D given an AAMM based on the merger {au, av} → aw
is given by δLL({au, av} , aw) = M · (p(au) + p(av)) ·
JSπu,πv (p(Xi|au), p(Xi|av)) ≥ 0, where M is the cardi-
nality of the multiset of (k+1)-grams in D. (See Appendix
B for the proof sketch of Propositions 1 and 2).

Algorithm Analysis: Recall that S = {s1, · · · , sN} is
the set of unique k-grams in D, N = |S|, and that
A = {a1, · · · , am} is the set of constructed abstractions,
m = |A|. At each step, the algorithm searches for a pair
of abstractions that are most “similar” to each other. The
computation of dD(au, av) takes O(|X |) time. Furthermore,
at each step, for each Aw = {a1 : S1, · · · , aw : Sw},

1The probability p(a) represents the prior probability of an abstraction
a. The estimate p̂(a) of p(a) can be obtained from D as follows:

p̂(a) =
1 +
∑|D|

l=1
#[a,xl]

|A|+
∑

a
′∈A

∑|D|
l=1

#[a′ ,xl]
,

where #[a,xl] is the number of times a occurs in xl (Note that a =
{s1, · · · , s|a|}. If we “abstract out” the difference between all the k-grams
s1, · · · , s|a| in a and replace each of their occurrences in data D by a,

then #a =
∑|a|

t=1
#st).



a0:{ra} a1:{ca} a2:{da} a3:{ab}

a3:[.14,.14,.44,.14,.14]

a4:{br} a5:{ac} a6:{ad}
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Figure 2: (a) An abstraction hierarchy T on a set S = {ra, ca, da, ab, br, ac, ad} of 2-grams over the alphabet X =
{a, b, c, d, r}. T is learned from the training sequence abracadabra. The subset of nodes A = {a10, a3, a8} represents a
3-cut γ3 through T ; (b) The computation of p(x = x0, · · · , xn−1) given the abstraction hierarchy T and the cut γ3.

w = N, · · · ,m + 1, there are w(w−1)
2 possible pairs of

abstractions to consider. However, the computational time
can be reduced by a factor of N by precomputing the
distances dD(au, av) between each pair of (trivial) au and
av in AN , and then, at each step, updating only the distances
between pairs containing aumin and avmin . Thus, the time
complexity of Algorithm 1 is O(N2|X |).

Next we show how to learn AAMM parameters from data
using the resulting abstraction hierarchy T .

Learning AAMM Parameters: AAMMs are completely
observable graphical models (i.e. there are no hidden vari-
ables). Given a training set D = {xl}l=1,···,|D|, and a set of
abstractions A corresponding to an m-cut, γm, through the
resulting AH T , learning an AAMM reduces to estimating
the set of parameters θ from D, denoted by θ̂, using
maximum likelihood estimation (6). This can be done as
follows: use Equation (4) to obtain the estimates

[
θ̂σ|s

]
σ∈X

of
[
θσ|s

]
σ∈X for any k-gram s ∈ S (note that these estimates

correspond to the estimates
[
θ̂σ|a

]
σ∈X

when a = {s},

i.e., the leaf level in the AH T ). The estimates
[
θ̂σ|a

]
σ∈X

of
[
θσ|a

]
σ∈X , when a = {s1, · · · , s|a|}, are a weighted

aggregation of the estimates of a’s constituent k-grams, i.e.,

θ̂σ|a =
|a|∑
t=1

#st∑|a|
t=1 #st

· θ̂σ|st , (6)

where #st are defined as before. The estimate θ̂s of θs is
obtained from D as follows:

θ̂s =
1 +

∑|D|
l=1 #[s,xl]

|S|+
∑
s′∈S

∑|D|
l=1 #[s′ ,xl]

, (7)

where #[s,xl] is the number of times s occurs in xl. We
used Laplace correction to obtain smoothed estimates of
probabilities.

Given an AH and a choice of the size m of an m-cut,
an array of indices of size N (corresponding to the number
of unique k-grams extracted from D2) is used to specify
the membership of k-grams in the abstractions on the m-
cut. Hence, the space complexity for storing this array is N .
However, the number of parameters of the corresponding
AAMM is m|X |, as opposed to N |X | in the case of MMs
(m� N ).

Figure 2a shows an example of an AH T learned
from a training set, which consists of a single se-
quence s = abracadabra over the set of 2-grams S =
{ra, ca, da, ab, br, ac, ad} extracted from s, where the al-
phabet X is {a, b, c, d, r}. In the figure, the subset of
nodes {a10, a3, a8} represents a 3-cut γ3 through T . The
nodes of γ3 are annotated with the AAMM parameters
learned from the same training set of a single sequence
abracadabra. Thus, the probabilities that the letters a, b,
c, d, and r “follow” the abstraction a10 : {ra, ca, da}, i.e.,[
θ̂σ|a10

]
σ∈X

, are .17, .22, .17, .22, and .22, respectively.
(Note that, in practice, T is learned from a training set
consisting of a large number of sequences).

2) Using AAMMs for Classification: Given a new se-
quence x = x0, · · · , xn−1 and an AAMM (corresponding
to an m-cut γm), p(x|θ̂) is obtained as follows: initialize
p(x|θ̂) by θ̂x0,···,xk−1 . For each k-gram xi−k, · · · , xi−1 find
the abstraction aj ∈ γm it belongs to and retrieve the
parameters associated with aj . Successively multiply θ̂xi|aj
for i = k, · · · , n− 1 to obtain p(x|θ̂).

Figure 2b shows how to compute p(x) given the resulting
abstraction hierarchy over the set of 2-grams and the cut

2The number of unique k-grams is exponential in k. However, for large
values of k, many of the k-grams may not appear in the data. Note that the
number of unique k-grams is bounded by the size of D, i.e., the number
of (non-unique) k-grams in D.



γ3. For example, p(abracadabra|θ̂), where θ̂ represents the
AAMM corresponding to the cut {a10, a3, a8} in Figure 2a,
is obtained as follows:

p(abracadabra) = p(ab)p(r|a3)p(a|a8)p(c|a10)p(a|a8)
p(d|a10)p(a|a8)p(b|a10)p(r|a3)p(a|a8)

= 0.18 · 0.14 · 0.36 · 0.17 · 0.36
0.22 · 0.36 · 0.22 · 0.14 · 0.36

AAMMs can be used for classification by learning a
model for each class and selecting the model with the highest
posterior probability when classifying new data. Specifically,
classification of a sequence x requires computation of con-
ditional probability p(cj |x; θ̂), for each class cj ∈ C, where
C is the set of possible classes. By applying Bayes rule, we
obtain:

p(cj |x; θ̂) ∝ p(x|cj ; θ̂)p(cj |θ̂). (8)

The class with the highest posterior probability,
arg maxj p(cj |x; θ̂) is assigned to x.

III. EXPERIMENTS AND RESULTS

A. Experimental Design

Our experiments are designed to explore the following
questions: (i) How does the performance of AAMMs com-
pare with that of MMs and Naı̈ve Bayes (NB) classifiers,
given that AAMMs effectively reduce the number of nu-
meric parameters of MMs through abstraction? (ii) What
is the effect of the algorithms for learning AHs on the
quality of the predictions made by AAMMs? (iii) How does
the performance of AAMMs compare with that of variable
order Markov models (VMMs) that use more compact
representations of the abstraction hierarchies compared to
AAMMs?

To answer the first question, we trained AAMMs for
values of m that range from 1 to N , where m is the
cardinality of the set of abstractions Am used as “features”
in the classification model, and N is the number of unique
k-grams, and compared the performance of AAMM with
that of MM and NB over the entire range from 1 to N .

To answer the second question, we compared our AAMM
clustering algorithm with agglomerative information bot-
tleneck (AIB) introduced by Slonim and Tishby (7). The
primary difference between our AAMM clustering algorithm
and AIB is in the criterion used to cluster the k-grams,
i.e., in AAMM, the k-grams are clustered based on the
similarity between the conditional distributions of Xi given
the k-grams, where Xi takes values in X ; in AIB, the k-
grams are clustered based on the similarity between the
conditional distributions of the class variable C given the
k-grams, where C takes values in C.

We learned AHs from training sequences as follows: (i)
a class-specific AH for each class using our AAMM clus-
tering algorithm (from sequences belonging to that class);

(ii) a class-independent AH using our AAMM clustering
algorithm (from all training sequences, independent of the
class variable); and (iii) an AH using the AIB clustering
algorithm (from all sequences). In each case, we learned
AAMM parameters for each class (from sequences in that
class). We compared the performance of AAMMs (using
different clustering algorithms) over the entire range from 1
to N .

To answer the third question, we trained AAMMs for
values of m ranging from 1 to N and compared their
performance with that of VMM-type learning algorithms
(4), including Lempel-Ziv 78 (LZ78); an improved ver-
sion of LZ78, namely LZ-MS; decomposed context tree
weighting (DE-CTW); prediction by partial match (PPM-
C); and probabilistic suffix tree (PST). In our experiments,
the AAMM order is k = 3. We set the parameters of the
VMM-type algorithms as follows: input shifting S = 2,
back-shift parsing M = 1 for LZ-MS; the upper bound k
on the Markov order for DE-CTW, PPM-C, and PST is set
to 3. In addition, for PST, the other parameters are set as
in (4), namely pmin = 0.001, α = 0, γ = 0.0001, and
r = 1.05. (see Appendix A for a brief description of these
five learning algorithms and an explanation of parameters).
For the VMM-type learning algorithms, we have used the
VMM implementation of Begleiter et al., 2004 (4).

We present results of experiments on three protein sub-
cellular localization data sets: psortNeg3 introduced in (8),
plant, and non-plant4 introduced in (9). The psortNeg
data set is extracted from PSORTdb v.2.0 Gram-negative
sequences, which contains experimentally verified localiza-
tion sites. Our data set consists of all proteins that belong
to exactly one of the following five classes: cytoplasm
(278), cytoplasmic membrane (309), periplasm (276), outer
membrane (391) and extracellular (190). The total number
of examples (proteins) in this data set is 1444. The plant data
set contains 940 examples belonging to one of the following
four classes: chloroplast (141), mitochondrial (368), secre-
tory pathway/signal peptide (269) and other (consisting of
54 examples with label nuclear and 108 examples with label
cytosolic). The non-plant data set contains 2738 examples,
each in one of the following three classes: mitochondrial
(361), secretory pathway/signal peptide (715) and other
(consisting of 1224 examples labeled nuclear and 438 ex-
amples labeled cytosolic).

For all of the experiments, we report the average classifi-
cation accuracy obtained in a 5-fold cross-validation experi-
ment. We define the relative reduction in classification error
between two classifiers to be the difference in error divided
by the larger of the two error rates. To test the statistical
significance of our results, we used the 5-fold cross-validated
paired t test for the difference in two classification accuracies

3www.psort.org/dataset/datasetv2.html
4www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
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Figure 3: Comparison of abstraction augmented Markov model (AAMM) with Markov model (MM) and Naı̈ve Bayes (NB)
on (a) psortNeg, (b) plant, and (c) non-plant data sets, respectively. The x axis shows the number of abstractions m, used
as “features” in the classification model, on a logarithmic scale.

(10). The null hypothesis (i.e., two learning algorithms M1

andM2 have the same accuracy on the same test set) can be
rejected if |t(M1,M2)| > t4,0.975 = 2.776. We abbreviate
|t(M1,M2)| by |t| in what follows.

B. Results

We trained AAMMs and MMs using 3-grams extracted
from the data. For psortNeg, plant, and non-plant data
sets, the numbers of 3-grams are 7970, 7965, and 7999
respectively.

Comparison of AAMMs with MMs and NB. Figure 3
shows results of the comparison of AAMMs with MMs on
all three data sets considered in this study. As can be seen
in the figure, AAMM matches the performance of MM with
substantially smaller number of abstractions. Specifically,
the performance of MM trained using approximately 8000
3-grams is matched by that of AAMM trained using only
79, 19 and 855 abstractions on the psortNeg, plant, and
non-plant data sets, respectively. On the psortNeg and non-
plant data sets, AAMM has performance similar to that of
MM over a broad range of choices of m. On the plant data
set, AAMM significantly outperforms MM for many choices
of m. For example, with only 168 abstractions, AAMM
achieves its highest accuracy of 71.59% as compared to
MM which achieves an accuracy of 68.19% with N = 7965
(|t| = 3.03). This represents 13% reduction in classification
error. Not surprisingly, when m = N , the performance of
AAMMs is the same as that of MMs (AAMM trained using
N abstractions and MM are exactly the same models).

We conclude that AAMMs can match and, in some
cases, exceed the performance of MMs using significantly
smaller number of abstractions (by one to three orders of
magnitude). AAMMs could provide more robust estimates
of model parameters than MMs, and hence, help minimize
overfitting.

Figure 3 also shows the comparison of AAMM with NB
trained using a “bag of letters” feature representation. As can
be seen, except for a few values of m (m < 18, m < 5, and
m < 2 on psortNeg, plant, and non-plant, respectively),
AAMM significantly outperforms NB (for any other choices
of m). MM is superior in performance to NB on all data sets.

Comparison of AAMM clustering algorithm with Ag-
glomerative Information Bottleneck. Figure 4 shows, on
all three data sets, results of the comparison of AAMMs
trained based on (i) class-specific AHs, with one AH for
each class, (ii) a single class-independent AH, and (iii) an
AH produced using AIB (7). As can be seen in the figure,
AAMMs trained based on class-specific AHs generated by
the clustering algorithm proposed here significantly outper-
form AAMMs trained based on an AH generated by AIB,
over a broad range of values of m (from 1 to 1000). For
example, on the plant data set, with m = 100, the accuracy
of AAMM based on our clustering algorithm is 69.57%,
whereas that of AIB-clustering based AAMM is 48.29%
(|t| = 11.31). This represents 42% reduction in classification
error. As expected, AAMMs trained using class-specific
AHs significantly outperform AAMMs trained using a class-
independent AH on all three data sets.

We conclude that organizing k-grams in an AH based
on the conditional distribution of the next element in the
sequence rather than the conditional distribution of the class
given the k-grams produces AHs that are better suited for
AAMMs, and hence, result in better performing AAMMs.

Comparison of AAMMs with VMM-type learning
algorithms. Table I summarizes, on all three data sets, the
results of the comparison of AAMMs with five VMM-type
learning algorithms: Lempel-Ziv 78 (LZ78); an improved
version of LZ78, namely LZ-MS; decomposed context tree
weighting (DE-CTW); prediction by partial match (PPM-C);
and probabilistic suffix tree (PST). For AAMMs, we show
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Figure 4: Comparison of the AAMM clustering algorithm with the Agglomerative Information Bottleneck on (a) psortNeg,
(b) plant, and (c) non-plant data sets, respectively. The x axis shows the number of abstractions m on a logarithmic scale.

Data sets LZ78 LZ-MS DE-CTW PPM-C PST AAMM
psortNeg 0.67±0.012 0.69±0.014 0.74±0.008 0.75±0.006 0.76±0.006 0.77±0.007
plant 0.62±0.017 0.68±0.019 0.55±0.032 0.72±0.019 0.66±0.016 0.72±0.015
non-plant 0.67±0.006 0.70±0.005 0.68±0.018 0.73±0.009 0.79±0.007 0.75±0.006

Table I: Classification accuracy ± SEM of AAMMs and VMM-type learning algorithms on psortNeg, plant, and non-plant
data sets (SEM = standard error of the means).

the best classification accuracy over the entire range of val-
ues of m, on each data set. The values of m where AAMM
reaches the best classification accuracy are: 438, 168, 7070
on psortNeg, plant, non-plant data sets, respectively.

As can be seen in the table, AAMM significantly out-
performs LZ78, LZ-MS, and DE-CTW on all three data
sets (p < 0.05). AAMM significantly outperforms PPM-
C on psortNeg (|t| = 4.973), and non-plant (|t| = 3.099),
and has the same performance as PPM-C on plant. Fur-
thermore, AAMM significantly outperforms PST on plant
(|t| = 4.163), and is comparable in performance with PST
on psortNeg (the null hypothesis is not rejected). On non-
plant, PST significantly outperforms AAMM (|t| = 4.433).

We conclude that AAMMs are competitive with, and often
significantly outperform, VMM-type learning algorithms on
the protein subcellular localization prediction task.

IV. SUMMARY AND DISCUSSION

A. Summary

We have presented abstraction augmented Markov models
that simplify the data representation used by the standard
Markov models. The results of our experiments on three
protein subcellular localization data sets (psortNeg, plant,
and non-plant) have shown that:
• Organizing the set of k-grams in a hierarchy using

abstraction makes it possible to construct predictive
models that use significantly smaller number of features
(by one to three orders of magnitude) as compared to
MMs (which is exponential in k);

• While abstraction helps reduce the number of MM
parameters, the performance of AAMMs is similar, and
in some cases, significantly better than that of MMs;

• AAMMs are competitive with, and in many cases,
significantly outperform variable order Markov models.

These conclusions are supported by results of additional
experiments on three other data sets compiled from the
Structural Classification of Proteins (SCOP) database: E, F,
and G SCOP classes that have been used by other authors
(4) (data not shown due to space limitation).

B. Related Work
Several authors have used abstraction hierarchies over

classes to improve the performance of classifiers (e.g.,
(11; 12). Others have explored the use of abstraction hier-
archies to learn compact predictive models (13; 14). Slonim
and Tishby (7), Baker and McCallum (15), and Silvescu
et al. (16) have generated abstraction hierarchies over fea-
tures or k-grams based on the similarity of the probability
distributions of the classes conditioned on the features or k-
grams (respectively) and used the resulting abstract features
to train classifiers (15; 16). In contrast, the focus of this
paper is on abstraction hierarchies that group k-grams (or
more generally their abstractions) based on the similarity of
the probability distributions of each letter of the alphabet
conditioned on the abstractions, and the use of the resulting
abstraction hierarchies over k-grams to construct generative
models from sequence data.

Begleiter et al. (4) (and papers cited therein) have ex-
amined and compared several methods for prediction using



variable order MMs (VMMs), including probabilistic suffix
trees (PSTs) (17). PSTs can be viewed as a variant of
AAMMs wherein the abstractions are constrained to share
suffixes. Hence, the clustering of k-grams in PSTs can be
represented more compactly compared to that of AAMMs,
which require storing an array of indices of size N to
specify the membership of k-grams in the abstractions (or
clusters). The results of our experiments show that AAMMs
are competitive with VMM-type learning algorithms. Inter-
polated MMs (18), which recursively combine several fixed-
order MMs, capture important sequence patterns that would
otherwise be ignored by a single fixed-order MM.

C. Discussion

Abstraction helps reduce the model input size and, at the
same time, could potentially improve the statistical estimates
of complex models by reducing the number of parameters
that need to be estimated from data (hence reducing the risk
of overfitting). However, one limitation of our abstraction-
based approach is that, while it provides simpler models, the
simplicity is achieved at the risk of some information loss
due to abstraction. To trade off the complexity of the model
against its predictive accuracy, it would be useful to augment
the algorithm so that it can choose an optimal cut in an AH.
This can be achieved by designing a scoring function (based
on a conditional MDL score), similar to Zhang et al. (13)
in the case of Naı̈ve Bayes, to guide a top-down search for
an optimal cut.

It is worth noting that the AHs can be learned using any
top-down or bottom-up clustering procedure. However, in
this study, we have used a bottom-up approach because it
is simple, fast, and allows iterating through all cardinalities,
from 1 to N .

Connection between AAMMs and HMMs. An AAMM
can be simulated by an appropriately constructed HMM
where the number of hidden states is equal to the number of
abstractions in the AAMM. However, as a state corresponds
to an abstraction over the observable variables, the state is
not really “hidden”. It can be derived in a feed-forward man-
ner, thus not requiring a Backward Reasoning/Expectation
step. This allows a “one pass through the data” learning
procedure based on MAP learning (19) once the set of
abstractions is chosen. Unlike the learning procedure of
HMMs (which involves the Expectation Maximization (EM)
algorithm), the AAMM learning procedure is not prone
to local maxima, has lower variance as no uncertainty is
inherited from the inference performed in the E step, and
requires less time.

The overall time complexity of AAMM is O(N2 ·|X |+N ·
|D|), where N is the number of unique k-grams, |X | is the
alphabet size, and |D| is the data set size, i.e., the number of
(non-unique) k-grams in D. The time complexity of HMM
EM learning procedure for a fixed number of hidden states
is O(T · |D| ·(|H|2 + |H| · |X |)), where |H| is the number of

hidden states and T is the number of EM iterations. Running
this procedure for all numbers of hidden states (from 1 to
N ) requires an overall time of O(N2(N + |X |) · T · |D|).
Because N � |D|, our algorithm requires at least a factor
of N ·T less time than HMM. While algorithms that attempt
to automatically determine the number of hidden states in
HMMs can be used (e.g., based on the Chinese Restaurant
Process (20)), they incur additional costs relative to standard
HMM, and are prone to the difficulties encountered by
hidden variable models. Hence, although less expressive than
HMMs, AAMMs are easier to learn.

D. Future directions

Some directions for further research include: (i) design
of AA Interpolated MMs (AAIMMs) that extend Interpo-
lated MMs in the same way AAMMs extend MMs; (ii)
applications of AAMMs to settings where data have a much
richer structure (e.g., images and text); (iii) exploration of
alternative clustering algorithms for generating abstraction
hierarchies for use with AAMMs; (iv) incorporation of
MDL-like criteria for finding an optimal level of abstraction.
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APPENDIX A

In what follows, we briefly describe five algorithms for
learning variable order Markov models (VMMs) from a set
of training sequences D over an alphabet X . See (4) for
more details and citations therein.

Lempel-Ziv 78 (LZ78): The LZ78 learning algorithm (21),
(22) extracts a set Ŝ of non-overlapping adjacent phrases
from sequences in D as follows: Ŝ initially contains only the
empty phrase ε; at each step, a new phrase, which extends
an existing phrase from Ŝ by a symbol in X , is added to Ŝ.

The algorithm then constructs a phrase tree T over X
such that the degree of each internal node is exactly |X |.
Initially, T contains the root and |X | leaves (i.e., one leaf
for each symbol in X ). For any phrase s ∈ Ŝ, start at the
root and traverse T according to s. When a leaf is reached,
it is made an internal node by expanding it into |X | leaf
nodes. Each node stores a counter such that the counter of
a leaf node is one, and that of an internal node is the sum
of the counters stored at the child nodes.

Improved Lempel-Ziv 78 Algorithm (LZ-MS): Two major
disadvantages of the LZ78 learning algorithm are: (i) unre-
liable estimation of model parameters when subsequences s
of a sequence x are not parsed, and hence, they are not part
of T ; (ii) unreliable computation of p̂(σ|s) when the algo-
rithm ends in a leaf node while traversing T along the path
corresponding to s starting from the root. LZ-MS learning
algorithm (23) aims at addressing these disadvantages by
introducing two parameters: input shifting, denoted by S,



and back-shift parsing, denoted by M . The S parameter
ensures that more phrases are extracted during learning,
whereas the M parameter ensures the existence of a suffix
of s when computing p̂(σ|s).

Decomposed Context Tree Weighting (DE-CTW): The
CTW learning algorithm (24) combines exponentially many
VMMs of k-bounded order in an efficient way. The CTW
algorithm over binary alphabets X constructs a perfect
binary tree T of height k from sequences in D. Each node is
labeled with the string s corresponding to the path from this
node to the root, and stores two counters, which represent
the number of times each symbol in X (0 or 1) occurs after
s in D.

CTW algorithm can be extended to work with multi-
alphabets. One approach, called decomposed CTW (DE-
CTW), uses a tree-based hierarchical decomposition of the
multi-valued prediction problem into binary problems.

Prediction by Partial Match (PPM-C): The PPM learning
algorithm (25) requires an upper bound k on the Markov
order of the VMM it learns. It constructs a tree T of maximal
depth k+1 from sequences in D as follows: it starts with the
root node which corresponds to the empty string ε and parses
sequences in D, one element at a time; each element xi in
a sequence x and its k preceding elements xi−k, · · · , xi−1

form a path of length k+1 in T . Each node in T is labeled
by a symbol σ and stores a counter. The counter of a node σ
on a path sσ from the root represents the frequency counts
of sσ in D, denoted by #sσ.

To obtain smoothed estimates of probabilities for any
string s, |s| ≤ k, PPM introduces a new variable, called
escape, for all symbols in the alphabet that do not ap-
pear after s in D and allocates a probability mass for
all these symbols, i.e., p(escape|s). 1 − p(escape|s) is
distributed among all other symbols that occur after s
in D. A successful PPM variant, namely PPM-C, per-
forms mass probability allocation for escape and mass
probability distribution over the other symbols as follows:
p̂(σ|s) = #sσ

|Xs|+
∑

σ′∈Xs
#sσ′

, if σ ∈ Xs, p̂(escape|s) =
|Xs|

|Xs|+
∑

σ′∈Xs
#sσ′

, where |Xs| denotes the set of symbols

in X that occur after s in D.
Probabilistic Suffix Tree (PST): The PST learning algo-

rithm (26) constructs a non empty tree T over an alphabet
X such that the degree of each node varies between 0 (for
the leaves) and |X | (for the internal nodes). Each edge e is
labeled by a single symbol in X , and each node v is labeled
by a sub-sequence s that is obtained by the concatenation
of edge labels on the path from v up to the root of T .

In the first stage, the PST learning algorithm identifies a
set Ŝ of candidate suffixes of length ≤ k from D (k is
the maximal length of a suffix), such that the empirical
probability of each suffix s ∈ Ŝ, p̂(s), is above some
threshold pmin. In the second stage, a candidate suffix s and
all its suffixes are added to T if s satisfies two conditions:

s is “meaningful” for some symbol σ (i.e., p̂(σ|s) is above
some user threshold (1+α)γmin), and s provides additional
information relative to its parent s′, where s′ is the string
obtained from s by deleting the leftmost letter (i.e., p̂(σ|s)

p̂(σ|s′)
is greater than a user threshold r or smaller than 1/r). In the
last stage, the probability distribution associated with each
node, p(σ|s) over X for each s, are smoothed.

APPENDIX B

Lemma 1: Let X and Z be two random variables such
that Z can take on k possible values. Let p (zi) be the prior
distribution of zi and p (x|zi) be the conditional distribution
of X given zi for i = 1, · · · , k. Then:

JSp(z1),···,p(zk) (p(x|z1), · · · , p(x|zk))

= H

(
k∑
i=1

p(zi)p(x|zi)

)
−

k∑
i=1

p(zi)H (p(x|zi)) = I(X;Z)

where H(·) is Shannon’s entropy (5).
Proof of Proposition 1: Without loss of generality,

let us assume that the merger is {a1, a2} → a. Let
δI({a1, a2} , a) = I(A(Am), Xi) − I(A(Am−1), Xi) denote
the reduction in the mutual information I(A;Xi), where
A(Am) represents the variable A that takes values in the
set Am = {a1, · · · , am}. We use the above lemma. Hence,
δI({a1, a2} , a)

= JSp(a1),p(a2),···,p(am) [p(xi|a1), p(xi|a2), · · · , p(xi|am)]
−JSp(a),···,p(am) [p(xi|a), · · · , p(xi|am)]

= H

 m∑
j=1

p(aj)p(xi|aj)

− m∑
j=1

p(aj)H (p(xi|aj))

−H

p(a)p(xi|a) +
m∑
j=3

p(aj)p(xi|aj)


+p(a)H (p(xi|a)) +

m∑
j=3

p(aj)H (p(xi|aj))

= p(a)H (p(xi|a))−
2∑
j=1

p(aj)H (p(xi|aj))

= p(a)H

 1
p(a)

2∑
j=1

p(xi, aj)

− 2∑
i=1

p(aj)H (p(xi|aj))

= p(a)

H
 2∑
j=1

p(aj)
p(a)

p(xi|aj)

− 2∑
j=1

p(aj)
p(a)

H (p(xi|aj))


= (p(a1) + p(a2)) · JSπ1,π2(p(Xi|a1), p(Xi|a2)).

Proof of Proposition 2: As in Proposition 1, let us
assume, without loss of generality, that the merge is
{a1, a2} → a. Hence, #a = #a1 + #a2. Furthermore, let

π1 = p(a1)
p(a1)+p(a2)

and π2 = p(a2)
p(a1)+p(a2)

.



δLL({a1, a2} , a) = LL(A(Am), Xi)−LL(A(Am−1), Xi)

=
∑

xi∈X ,aj∈Am

log p(xi|aj)#[aj ,xi]

−
∑

xi∈X ,aj∈Am−1

log p(xi|aj)#[aj ,xi]

=
∑
xi∈X

log p(xi|a1)#[a1,xi]

+
∑
xi∈X

log p(xi|a2)#[a2,xi] −
∑
xi∈X

log p(xi|a)#[a,xi]

=
∑
xi∈X

#[a1, xi] log p(xi|a1) +
∑
xi∈X

#[a2, xi] log p(xi|a2)

−
∑
xi∈X

(#[a1, xi] + #[a2, xi]) · log p(xi|a1 ∪ a2)

= −Mp(a)
∑
xi∈X

 2∑
j=1

πjp(xi|aj)

 log

 2∑
j=1

πjp(xi|aj)


+M · p(a)

∑
xi∈X

2∑
j=1

πjp(xi|aj) log p(xi|aj)


= Mp(a)

H
 2∑
j=1

πjp(xi|aj)

− 2∑
j=1

πjH (p(xi|aj))


= M · ((p(a1) + p(a2)) · JSπ1,π2(p(Xi|a1), p(Xi|a2))

where M is the cardinality of the multiset of (k + 1)-
grams. We have used that: p(xi|a1 ∪ a2) = π1p(xi|a1) +
π2p(xi|a2),when a1 ∩ a2 = φ. and #[aj , xi] = p(aj , xi) ·
M = p(xi|aj) · p(aj) ·M = p(xi|aj) · πj · p(a) ·M .
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