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Abstract

We explore different ways to utilize position-
based cross-attention in seq2seq networks to en-
able length generalization in algorithmic tasks.
We show that a simple approach of interpolat-
ing the original and reversed encoded representa-
tions combined with relative attention allows near-
perfect length generalization for both forward and
reverse lookup tasks or copy tasks that had been
generally hard to tackle. We also devise harder
diagnostic tasks where the relative distance of the
ideal attention position varies with timestep. In
such settings, the simple interpolation trick with
relative attention is not sufficient. We introduce
novel variants of location attention building on
top of Dubois et al. (2020) to address the new
diagnostic tasks. We also show the benefits of our
approaches for length generalization in SCAN
(Lake & Baroni, 2018) and CFQ (Keysers et al.,
2020). Our code is available on GitHub1.

1. Introduction
Neural seq2seq (Sutskever et al., 2014) is a powerful generic
framework for the task of transforming an input sequence of
arbitrary length into an output sequence of arbitrary length.
Although seq2seq models can perform impressively in a
great variety of tasks (Raffel et al., 2020; Lewis et al., 2020),
they can still struggle in out-of-distribution generalization
(e.g., systematic generalization or length generalization),
and sometimes, even in simple algorithmic tasks (Kim et al.,
2022; Dubois et al., 2020; Dehghani et al., 2019; Lake &
Baroni, 2018; Liska et al., 2018). Even after extensive
pre-training, neural models can show mixed results in such
forms of generalization (Kim et al., 2022; Anil et al., 2022).
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In this paper, we focus on length generalization, i.e., the
ability of a model to generalize to sequences of unseen (and
typically higher) lengths. Particularly, we concentrate on
enhancing the interlayer attention mechanism in seq2seq
encoder-decoder models for improved length generalization.
Similar to Csordás et al. (2022), we take a bottom up ap-
proach to model development and explore the effects of
different strategies of increasing complexities on a range
of controlled synthetic probing tasks—each targeting a nar-
rowly defined model behavior or phenomenon—to inves-
tigate which strategy works and to what extent, and why
does or does not work, and thus, each task precisely pin-
pointing their capabilities as well as their limitations. Such
thorough investigation in a natural language domain can be
difficult for at least the following reasons: (1) it can be hard
to isolate the exact reasons of failure in natural language
due to its complexities and diversity; (2) often there can be
exploitable heuristics like emphasis on recency that may
improve the overall length generalization performance but
preserve systematic issues leading to failures in cases where
the heuristics do not apply. Such failures may not be re-
flected in the overall evaluation if the heuristics apply in the
majority of the samples. Besides these factors, the simple
synthetic tests that we consider here can be still fairly chal-
lenging for neural models. We believe they offer an initial
step toward the design of more general-purpose models.

To achieve the above desideratum and evaluate length gen-
eralization capability of different interlayer attention mecha-
nisms, we set up ten synthetic probing task (see Table 1 and
§2). Following prior work (Graves et al., 2014; Dehghani
et al., 2019; Liang et al., 2021), we first consider the task of
simply copying source texts in both forward and backward
(reverse) directions. Following Dubois et al. (2020), we also
consider compositional lookup table task (Liska et al., 2018)
in both directions. However, as we will show in §2, in these
tasks the ideal attention position can be trivially determined
from the decoding timestep alone—a condition (let us call
it C1) that simply allows the relative positional attention
(Shaw et al., 2018; Dai et al., 2019) to perform perfectly
given the right implementation. Thus, we propose new prob-
ing tasks involving repeated copy (ReCopy) and its variants
to create settings where C1 is not satisfied. While there are
already more synthetic tasks where C1 is not satisfied, our
proposed tasks (ReCopy and its variants) are intended to be
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Task Input Output
Copy 4 7 9 8 4 7 9 8

Reverse Copy 4 7 9 8 8 9 7 4

Lookup 010 t3 t4 t2 t6 t1 . 010 011 010 011 001 001

Reverse Lookup t1 t6 t2 t4 t3 010 . 010 011 010 011 001 001

ReCopy 4 7 9 8 4 4 4 7 7 7 7 7 9 9 9 9 9 8 8 8 8 8

Reverse ReCopy 4 7 9 8 8 8 8 8 8 9 9 9 9 9 7 7 7 7 7 4 4 4

Inv ReCopy 4 4 4 7 7 7 7 7 9 9 9 9 9 8 8 8 8 8 4 7 9 8

Inv Reverse ReCopy 8 8 8 8 8 9 9 9 9 9 7 7 7 7 7 4 4 4 4 7 9 8

SCAN look and run right I LOOK I TURN RIGHT I RUN

Table 1. Input-output examples for each task (except CFQ).

small extensions over simple copy tasks such that the exact
cause of model failure can be clearer compared to more com-
plex tasks. Not only do we propose new probing tasks, but
we also propose new strategies to tackle them. Prior models
(Dehghani et al., 2019; Dubois et al., 2020) already strug-
gled in reverse copy or reverse lookup tasks. We introduce
a technique of interpolating forward and reversed encoded
representations to handle reverse direction even with simple
relative attention (the technique is universally applicable to
any seq2seq architecture). Moreover, we also propose new
attention models, OneStep attention and monotonic location
attention (our full model), to handle the proposed probing
tasks on which the prior models fail. We also show that
our models maintain comparable performance in the SCAN
(Lake & Baroni, 2018) (a dataset for translating simple com-
mands into sequences of actions) and CFQ (Keysers et al.,
2020) length splits (a dataset for query-to-SQL translation).

2. Probing Tasks
We now describe the ten2 probing tasks used in this paper.
We present examples for each task in Table 1.

Copy: The copy task requires copying input tokens into the
output tokens. In this case, the encoder-decoder network
has to simply learn an identity function (x = f(x)). For
this task we use a vocabulary of natural number tokens from
0-9 (see Table 1 for an example). We generated 10, 000
training samples with sequence length in the range 5-10.
For the development set, we generated 2, 000 samples of
sequence length 10-15. For test sets, we generated a split
with sequence length 15, another split with sequence length
30, and another with sequence length 100. Each test split
has 2, 000 samples.

Reverse Copy: In the reverse copy task, the model has to
copy the input as above but in the reverse direction (see
Table 1 for an example). This task is generated with the
same parameters as the copy task.

Lookup: Lookup represents the “Long Lookup Tables”

2Twelve including tasks in Appendix A.

task (Liska et al., 2018) as made available in the code.3

For any input like “001 t1 t2 t3 .”, the output for this task
will be “v1 v2 v3 v4” where v1 = 001, v2 = t1(001),
v3 = t2(t1(001)), and v4 = t3(t2(t1(001))). Here, t1, t2,
and t3 are functions, each corresponding to some lookup
table such that ti : {0, 1}3 → {0, 1}3 (for any natural
number i). The task is generated using the supplied code.3

The code generates a training split of approximately 9, 000
samples of lengths ≤ 6. We consider three generated test
splits that are of sequence lengths 7, 9, and 11. The first test
split has approximately 4, 500 samples whereas the others
have approximately 5, 000 samples. The development split
consists of about 500 samples of sequence length ≤ 6 and
approximately 500 samples of length 7.

Reverse Lookup: Reverse Lookup represents the “Long
Lookup Tables Reverse” task (Liska et al., 2018) as can
be generated from the code.3 For any input like “t1 t2 t3
001 .”, the output for this task will be “v1 v2 v3 v4” where
v4 = 001, v3 = t3(001), v2 = t2(t3(001)), and v1 =
t1(t2(t3(001))). Here, t1, t2, and t3 are lookup functions
as before. The splits of this task are created similarly to
those of the Lookup task described above.

ReCopy: There is one thing that is common in the above
tasks. For the forward tasks (Lookup, Copy), assuming
that the encoder can keep the information of position i at
position i after encoding with necessary contextualization
(e.g., composition of previous functions in case of Lookup),
the ideal encoding position to attend during decoding will
always remain at the same constant distance from the de-
coding timestep. This is also true for the reversed tasks
(Reverse Copy, Reverse Lookup) if the encoding is reversed.
For example, to copy “4 7 9 8”, at timestep 1 the model has
to attend position 1 to print 4. Next, at timestep 2 the model
has to attend position 2 to print 7. Thus, more generally, for
any timestep t the model has to attend an encoding position
i such that i − t = c (where c is some constant. In this
example, c = 0). Even more generally, in all these tasks,
the ideal position to attend can be determined just based on

3https://github.com/i-machine-think/
machine-tasks
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the decoding timestep t. For instance, for the above tasks,
the ideal position of attention i can be defined as a function
over timestep as i = f(t) = t+ c. However, such a happy
situation will not be maintained in more complex tasks.

Thus, we decide to create a new set of diagnostic/probing
tasks that are close to the previous tasks but precludes the
possibility of determining the position of attention just from
the timestep. With this motivation, first, we introduce the
task ReCopy (Repeated Copy). In this task, the vocabulary
includes natural numbers in the range 0-9. If the input for
the task is “4 7 9 8”, then the corresponding output will be
“4 4 4 7 7 7 7 7 9 9 9 9 9 8 8 8 8 8”. Effectively, in this task,
the model has to learn to not just copy but also to repeat the
copied item for a certain frequency before copying the next
item. There is a specific set of rules behind how many times
an item should be repeated. That is, if the item is a number
≤ 3 the model should print it once, if the item is a number
x such that 3 < x ≤ 6 the model should print it three times,
and for any other number > 6, the model should print it five
times. The splits and sample sizes for this task are similar
to those of the copy task.

Our intention here is to make a small extension of the
copy task that avoids determination of the attention position
purely from the timestep but without introducing any ad-
ditional sources of difficulty so that the causes of failures
can be disentangled more easily. For instance, if a model
succeeds in the copy task but fail in ReCopy we can now rea-
sonably infer that its cause of failure is the specific difficulty
introduced in ReCopy. Note that if we made ReCopy a bit
simpler by requiring each number to be copied and repeated
for a uniform frequency, then the determination of the ideal
position for attention will again become trivially possible
just from a decoding timestep; thus ReCopy requires repeat-
ing with varying frequency depending on which number is
being copied.

Reverse ReCopy: The Reverse ReCopy task is similar to
the ReCopy task in all aspects other than the fact that the
copying takes place in the reversed direction (see example
in Table 1). The task splits are generated in the same way
as in the Copy task.

Inv ReCopy: The Inv ReCopy task (Inverse ReCopy) is
similar to the ReCopy task in all aspects other than the fact
that the inputs and outputs are inverted (see example in
Table 1). The task splits are generated in the same way as in
the Copy task.

Inv Reverse ReCopy: The Inv Reverse ReCopy task (In-
verse Reverse ReCopy) is similar to the Reverse ReCopy
task in all aspects other than the fact that the inputs and out-
puts are inverted (see example in Table 1). The task splits
are generated in the same way as in the Copy task.

SCAN: SCAN is a popular dataset used for testing system-

atic generalization (Lake & Baroni, 2018). It involves the
task for translating simple commands into a sequence of
actions. We explore its original length generalization split.

CFQ: CFQ is a realistic semantic parsing dataset (Keysers
et al., 2020) proposed for evaluating compositional general-
ization. We explore its length generalization split.

We also propose and explore two additional probing tasks
(DeDupe and PosRetrieve) in Appendix A.

3. Seq2Seq General Framework
A seq2seq model can be formalized as a function Fseq2seq :
Ns → Nz that maps some input sequence x1:s =
(x1, x2, . . . , xs) of length s to an output sequence y1:z =
(y1, y2, . . . , yz) of length z. Here each element in x1:s and
y1:z is a natural number that indexes some distinct token
from a vocabulary. Fseq2seq constitutes two major compo-
nents: an encoder function (Fenc) and a decoder function
(Fdec). The encoder Fenc : Ns → IRs×d maps the initial
token indices x1:s to a sequence of hidden state represen-
tations e1:s = (e1, e2, . . . , es) (where any ei ∈ IRd). The
decoder Fdec : N∗ × N → N generates the output sequence
y1:z recursively one token at a time, typically in an autore-
gressive manner. That is, at each timestep t (beginning at
t = 1), Fdec takes as input the history of all previously gen-
erated tokens Ht−1 = (go, y1, y2, . . . , yt−1) and the last
generated token index yt and outputs yt+1. H0 is initialized
with (go) where go represents the index of a special token
that marks the beginning of the generation.

One salient component within the decoder is an interlayer
(cross) attention function (Bahdanau et al., 2015) that allows
the decoder to interact and retrieve encoded state informa-
tion. The decoder, in timestep t, will typically create history-
contextualized representation ht−1 ∈ IRd (compressing
Ht−1). Let query qt−1 = fq(ht−1), keys ki = fk(ei), and
values vi = fv(ei) (∀i ∈ {1, . . . , s}) where fq, fk, and fv
are linear transformations (fq|k|v : IRd → IRd). In the at-
tention layer, the query interacts with the keys to score each
corresponding value. A weighted sum of values based on
those scores is then computed as the result of the attention
function. This allows the decoder to dynamically and softly
retrieve information from any position in the encoded repre-
sentations e1:s at any timestep. For our work, we explore a
variety of cross-attention functions which we discuss below.

4. Prior Approaches to Cross-Attention
4.1. Content Attention

As a baseline, we use the popular scaled inner dot-product
query-key based attention as used in Vaswani et al. (2017):

cti =
< qt, ki >√

d
, (1)
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ati =
exp(cti)∑s
j=1 exp(ctj)

, ot = fo(

s∑
j=1

atj · vj), (2)

where fo : IRd → IRd is a linear transformation, cti, ati ∈
IR and ot ∈ IRd. Note that this is a fully content-based
attention because it does not explicitly use any position or
distance-related information about the query or keys.

4.2. Relative Attention

As another baseline, we use the relative attention mecha-
nism4 as used in Dai et al. (2019). Effectively, a sinusoidal
positional encoding (Vaswani et al., 2017; Dai et al., 2019)
is first used to create embeddings for each relative distance.
Let pek ∈ IRd represent the embedding for the distance
k ∈ Z. Then, the relative position attention creates a query-
key score sequence based on the corresponding relative
distances between the query and the keys:

rti =
< (qt + b2), pei−t >√

d
(3)

where b2 ∈ IRd is a bias for position attention and rti ∈ IR.
This is integrated with content-based attention by modifying
Eqn. 1 in §4.1 as:

cti =
< (qt + b1), ki >√

d
+ rti (4)

b1 ∈ IRd is a bias for content-based attention. Everything
else is kept the same as was for content-based attention.

4.3. Location Attention

Location attention, as introduced in Dubois et al. (2020), is
primarily a form of attention based only on the positions
of the encodings e1:s; however, it is more expressive than
the relative positional attention. Here we discuss the details
of location attention with some refinements. Dubois et al.
(2020) introduced a method to determine the locational
“center of focus” for attention which is made to resemble
human attention in visual search in how even when it focuses
on a specific part of the input, it also perceives neighboring
parts due to the eccentricity effect (Carrasco et al., 1995).
Let µt ∈ IR represent the center of focus such that positions
close to µt get higher attention than those farther away. With
such µt, an attention spread can be modeled by using µt as
a mean in a Gaussian distribution:

λti = exp

(
− (i− µt)

2

2 · σ2
t

)
(5)

Here σt is the standard deviation, which determines the
spread of the attention focus. However, using raw values of
i and µt is not ideal because the range of values (especially

4Initially the idea was introduced in Shaw et al. (2018).

of i) can differ based on sequence length. This becomes
more problematic for unseen length generalization. Thus,
the formalism is modified as follows:

λti = exp

(
− (norm(i)− clamp(µt))

2

2 · σ2
t

)
(6)

where:
norm(i) =

i− 1

max(1, s− 1)
(7)

clamp(µt) = max(0 +m · µt,min(1 +m · µt, µt)) (8)

Note that the encoder position index ranges from 1 to s
where s is the sequence length. The norm() function
squeezes any position index i into the range [0, 1] no mat-
ter the sequence length. Further, the clamp() function en-
forces µt to be approximately within [0, 1] which is the
possible range of positions that can be attended. Following
Dubois et al. (2020), m in clamp() acts as a negative slope
(m = 0.01) to add some “leakiness” similar to LeakyReLU.
Note that the result is a PDF over the whole real number
set whereas only the discrete positions of the encoding mat-
ter. Thus, λti can be further normalized to get a discretized
probability measure over only the relevant positions:

λ′
ti =

λti∑s
j=1 λtj

(9)

This gives the location attention. Below we discuss how to
obtain µt and σt. First, a transformation over the decoder
hidden state ht is created as lt = fl(ht) where fl : IR

d →
IRd is a linear transformation.5 Next, σt is computed as:

σt =
ReLU(fσt(lt)) +minσt

s
(10)

Here fσt
: IRd → IR is a linear transform and minσt

is the
minimum value for σt. Next, µt is computed by taking some
steps (in either forward or backward direction) with respect
to some reference position reft. Given that the norm(.)
function will squeeze any discrete position index into a
continuous number in [0, 1], reft can also be treated to be in
[0, 1]. Formally, µt is computed as:

µt = reft + stepsize · stepst (11)

Here, stepsize is 1
max(1,s−1) . For the reference point reft,

different possible choices can be considered. One possible
choice is the previous attended position pat−1 which is
computed as pat−1 =

∑s
i=1 αt−1i · norm(i) where αt−1i

represents the interlayer attention at the previous timestep
(t − 1) to the encoding position i. Essentially, with this
setup, the attention model can move left or right with respect
to previously attended position. Another choice for the

5Dubois et al. (2020) used a GRU for fl. However, in our
experiments we removed it because we did not find it effective.
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reference point is to simply make a neural network-based
logistic prediction to choose any arbitrary position bt in
[0, 1] as bt = sigmoid(fb(lt)) where fb : IRd → IR is a
linear transform. Here bt can also help initialize reft to
adaptively learn to start attending from the beginning of the
encoding (i = 1) or the end of the encoding (i = s) (or
even somewhere in-between if needed) based on the task.
Ultimately, we can allow the model itself to learn to choose
or combine both pat−1 and bt as needed:

reft = gt · pat−1 + bt (12)

with gt being a real scalar in [0, 1] functioning as a gate
that decides to keep or ignore pat−1. It is computed as
gt = sigmoid(fg(lt)) where fg : IRd → IR is a linear
transform. Next the steps to take (i.e., stepst) with respect
to the reference point are determined as follows:

stepst = softstair(fstep(lt)) (13)

where fstep : IRd → IR is again a linear transform and
softstair is an activation function that pushes the output
towards an integer:

softstair(x) = ⌊x⌋+ sigmoid(τ · (x− ⌊x⌋ − 0.5)) (14)

τ is a temperature hyperparameter which is set to 20 like
in Dubois et al. (2020). Last, the attention is computed
as a convex combination of content attention and location
attention:

ati = mixti ·

(
exp(cti)∑s
j=1 exp(ctj)

)
+(1−mixti) ·λ′

ti (15)

mixti = sigmoid(βfmix(ht)) (16)

Here fmix : IRd → IR is a linear transform and cti corre-
sponds to the content-based pre-normalized attention scores
as computed in Eqn. 1. In some cases, we might want
to ignore the content attention focusing purely on location
attention. In such cases, we can set ati = λ′

ti.

5. Proposed Approaches to Cross-Attention
In this section, we first present the limitations of the prior
approaches discussed above and then present (in a bottom-
up manner) our proposed changes that address them.

5.1. Limitations of Prior Approaches

Limitation 1 (handling reverse tasks): As noted earlier
(see ReCopy task description in §2), in some tasks like Copy
or Lookup, the target cross-attention position is always at
the same constant relative distance from the timestep. In
such cases, the inductive bias from the relative attention
(§4.2) can be especially fruitful. However, this setup is not

maintained by default (without reversing the encoding or
the input in the model), in the reverse directions of the tasks
(Reverse Copy or Reverse Lookup). Consider transforming
“4 7 9 8” to “8 9 7 4”. In this case to print 8 in timestep
t = 1, the model needs to attend to encoding position i = 4.
Thus, the relative distance will be i− t = 3. However, for
printing 9 in timestep t = 2, the model needs to attend to
the encoding position i = 3. Then the relative distance will
be i− t = 1. Thus, the ideal relative distance can vary with
timestep and also depends on the source sequence length.
These facts make it a struggle for relative attention, by de-
fault, to work on reverse tasks. In theory, location attention
is equipped to handle reverse tasks - it has to just initialize
bt as 1 and gt as 0 when t = 1. This will set reft = 1, i.e.,
the reference position will be the end of the input sequence.
From that point location attention can learn to take steps
backward one by one using previous attention (pat−1) as the
reference position if needed. However, in practice, location
attention still tends to be empirically brittle and have been
shown to fail the reverse lookup task (Dubois et al., 2020).

Limitation 2 (handling ReCopy and beyond): As dis-
cussed in §2 (see ReCopy description), tasks like ReCopy,
Reverse ReCopy, or their inverted variants are specifically
designed to serve as settings in which the ideal attention
position can vary from timestep to timestep (no matter if
the encoding positions are reversed or not). Thus, this set-
ting becomes hard for relative attention. Location attention,
again, can theoretically address these situations given its
flexibility to keep track of past attended position and abil-
ity to take any arbitrary steps in reference to past attended
position dependent on the decoder state. Nevertheless, as
mentioned earlier, in practice location attention turns out to
be relatively brittle. Moreover, its use of soft sigmoid-based
gating for making decisions at different stages of the model
can lead to higher error accumulation and lower robustness
to increasing lengths of data.

5.2. Bidirectional Relative Attention

First, we propose a simple approach to extend relative atten-
tion in a manner that addresses limitation 1. We note that if
the task is, e.g., reverse copy, we can simply reverse the en-
coded sequence representations after encoding. Once done
so, from the perspective of the decoder, the task becomes
equivalent to forward copy. Nevertheless, in practice, we
will not know ahead of time whether we are facing a task
where forward version of the encoding is more ideal or the
reversed version of the encoding. Thus, we use a gating
mechanism that interpolates (make a convex combination
of) the two directions of encoding so that the model can
adaptively decide whether to reverse the encodings or not:

erev1:s = reverse(e1:s), αdir = sigmoid(β ·fdir(ecls)) (17)

∀i ∈ {1, . . . , s} ediri = αdir · ei + (1−αdir) · erevi (18)
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β is a scalar (acting as a temperature), fdir : IRd → IR1 is
a linear layer, and ecls ∈ IRd is a vector representation of
the whole sequence e1:s - it can be implemented in multiple
ways (we explain our implementation in Appendix E). After
this we use the same strategy as in §4.2 but using key and
value transformations over edir instead of e. This trick
can also be useful in more practical tasks like translation
where the source and target language may have different
reading orders. Note that edir is different from outputs
from models like bidirectional RNNs. Unlike here, in a
bidirectional RNN, the encoded tokens remain in the same
positions; only the contextualizing information comes from
different directions. Also, note that this strategy is as general
purpose as introducing bidrectionality to RNNs. Moreover,
we are allowing neural networks to dynamically predict the
direction for a given input through the gating mechanism;
thus, avoiding infusion of task-specific knowledge of ideal
direction of attention.6

5.3. OneStep Attention

As discussed in §5.1, fixing limitation 1 by reversing the
encodings (as in §5.2) still does not address limitation 2.
Concerned with limitation 2, we move away from simple
relative positional attention and instead seek to make ad-
justments over location attention to address its potential
issues (see §5.1). As a result we propose a new attention
model - OneStep attention. Below we enumerate the main
adjustments over location attention (from §4.3):

1. OneStep attends to key-value transformations of edir1:s

instead of e1:s similar to §5.2.
2. The computation of reft is simplified as: reft = pat−1

3. The activation function in Eqn. 13 to sigmoid from
softstair: stepst = sigmoid(fstep(lt))

First Change: The first change follows from §5.2 and is
motivated to address limitation 1.

Second Change: The second change is motivated by a
number of factors. First, due to the incorporation of the first
change, the role of bt from Eqn. 12 is severely undermined.
It is not anymore necessary for bt to initialize the starting
position of attention to handle reverse tasks. Besides that
the usefulness of bt can be limited.7 It is motivated for
percentile attention in Dubois et al. (2020) which may not

6While this strategy may appear obvious, it is still not explored
so far to our knowledge. Moreover, theoretical motivation does
not always translate well to empirical performance. For instance,
Location Attention struggles in reverse tasks despite having the
theoretical capacity for reverse attention as discussed in §5.1. So
empirical benefit of this strategy is not a priori obvious and de-
serves the investigation that we do here.

7It can be still useful in special cases when the model has to
attend some x position from the end in one timestep and some y
position from the beginning in another.

be as relevant or can be accomodated by content attention
mixing (Eqn. 15). So we removed it. To reduce error-
accumulation we also remove the gating gt over pat−1; thus
ultimately setting reft = pat−1. It removes the models
capacity for attending to some specific absolute position
from the beginning/end but this capacity is also lacking
from relative attention and is not currently required by most
of our tasks. We keep investigation to incorporating this
capacity better in the future. Currently, absolute positional
encoding in the encoder combined with content attention
mixing can still accommodate for the lack to an extent.

Third Change: In the third change, we replace softstair
with a sigmoid for the step computation. The sigmoid func-
tion enforces the model to softly choose between either tak-
ing a single step forward (stepst = 1) or none (stepst = 0).
We added this change because giving unrestricted freedom
in determining the steps can make it harder for the model to
learn the right function. Particularly in most of our current
diagnostic tasks, it is sufficient to learn to make bounded
steps in [0, 1] with respect to the past attended position.
While this choice is perhaps not ultimately ideal, it helps
us evaluate the breaking points of the Location Attention
framework better. Regardless, even after this restriction, On-
eStep can be still powerful enough to simulate a windowed
version of relative attention (if it takes a single step in ev-
ery timestep) (Shaw et al., 2018). Moreover, a sufficiently
powerful encoded representation can, in theory, always re-
organize or permute the input information to accommodate
for this restriction. Besides, content attention mixing (Eqn.
15) can break the monotonicity of OneStep8 and make it
more flexible.

5.4. Monotonic Attention

In some tasks, it can be easier to learn to take bigger steps
at the level of interlayer attention instead of expecting the
encoder to permute the source input appropriately. So, we
create another attention function where we relax the con-
straints in OneStep by changing the steps computation as:

stepst = g · sigmoid(fstep(lt))+(1−g) ·ReLU(fstep(lt))
(19)

Here, g = sigmoid(p) where p ∈ IR is a model parameter.9

As we can see, with this setup we can allow the model
itself to learn to prefer either taking controlled steps with a
sigmoid or possibly bigger steps with a ReLU. We still use
ReLU activation to keep the attention monotonic (i.e., the
attention mechanism can only make forward steps) similar
to OneStep for reasons discussed in §§5.3 (in Third Change).

8By itself, without content attention mixing, OneStep is mono-
tonic because in it, the center of focus can only move forward with
time.

9In future, it can be better to have g dependent on the input
encoding such as ecls in case we want a multi-tasking model.
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Model Copy Reverse Copy Lookup Reverse Lookup
(Length Splits) 15 30 100 15 30 100 7 9 11 7 9 11

Content 0 0 0 0 0 0 33.3 0 0 3.7 0 0

Relative 100 100 100 0 0 0 100 100 100 78.2 0.8 0.4

LocAttn 99.8 0 0 0.7 0 0 100 9.4 0 13.3 0 0

Ours
Bi-Relative 100 100 100 100 100 100 100 100 100 100 100 100

OneStepAttn 100 100 100 100 100 100 100 100 100 100 100 100

MonoAttn 100 100 100 100 100 100 100 98 29.9 28.5 0 0

Model ReCopy Reverse ReCopy Inv ReCopy Inv Reverse ReCopy
(Length Splits) 15 30 100 15 30 100 15 30 100 15 30 100

Content 19.1 0 0 25 0 0 0.05 0 0 0 0 0

Relative 43.1 0 0 0.1 0 0 75.9 0 0 0 0 0

LocAttn 79.6 0 0 19.7 0 0 99.4 58.8 0 97.9 0.3 0

Ours
Bi-Relative 33.4 0 0 35.3 0 0 69.8 0 0 71.3 0 0

OneStepAttn 100 100 100 100 100 100 0.1 0 0 0 0 0

MonoAttn 100 100 100 100 100 100 100 100 98.8 100 99.9 98.3

Table 2. Accuracy of the models on different length generalization splits in different algorithmic diagnostic / probing tasks. We present
the median of five runs on different seeds. We bold the best results.

Model SCAN (Len.) CFQ (Len.)
Content 17.61± 4.07 62,14± 0.88

Relative 19.21± 5.52 56.64± 1.84

Mix LocAttn 20.74± 5.69 44.83± 9.45

Ours
Bi-Relative 8.41± 1.21 59.48± 1.54

Mix OneStepAttn 29.51± 9.46 60.65± 3.74

Mix MonoAttn 21.08± 7.17 60.32± 3.58

Table 3. Accuracy on SCAN length split and CFQ length split. We
report the mean and standard deviation of 5 runs for SCAN and of
3 runs for CFQ. We bold the best results.

6. Experimental Setup
Similar to Dubois et al. (2020), we use a Bidirectional GRU
(Chung et al., 2014) based seq2seq model as the base for all
the attention mechanisms. We explain more architectural
details and hyperparameters in the Appendix E.

Nomenclature: In Tables 2 and 3, we use the term Content
to refer to content attention (§4.1), Relative to refer to rela-
tive attention (§4.2), and Bi-Relative for bi-directional rela-
tive attention (§5.2). We use the terms LocAttn, OneStepAttn,
and MonoAttn for location attention (§4.3), OneStep Atten-
tion (§5.3), and monotonic attention (§5.4) respectively if
they are used without mixing content attention (i.e., replac-
ing Eqn. 15 with ati = λ′

ti). Otherwise, we use the terms
Mix LocAttn, Mix OneStepAttn, and Mix MonoAttn when
mixing with content attention is done (i.e., Eqn. 15 is kept
as described). We generally use the unmixed variants on the
simpler diagnostic tasks (Lookup, Copy, or ReCopy-based
tasks) because position-based attention is what is mainly
relevant for the tasks.

Evaluation: We calculate the sequence-level accuracy of
our models. Any generated output gets a score of 1 if and
only if it matches exactly with the given target output.

On the EOS problem: The EOS token is a special marker
that a model needs to generate to signify the end of sequence.
In similar contexts, some prior works have tried to make
the evaluation less stringent (Dubois et al., 2020; Newman
et al., 2020) by terminating the model generation based on
the oracle EOS position or by truncating oracle sequence
based on predicted EOS position. We do not modify the
evaluation in any such non-standard manner. Generally,
we do not find EOS prediction to be a problem. If the
inductive bias is suitable for the task, our models learn to
generalize near perfectly without us needing to incorporate
any separate mechanism to predict EOS properly.

7. Experimental Results
In Table 2 we show the results of our different attention
strategies on all our diagnostic tasks except SCAN and CFQ.
The results are close to what we would expect a priori. Pure
content attention (Content) without more explicit guidance
from any positional information suffers in all the tasks. Rel-
ative attention (Relative) does well in the forward copy and
lookup tasks but it fails in the reversed tasks for the reasons
discussed in §5.2. It also fails in the ReCopy-based tasks.
This is consistent with our discussed limitations of prior
works in §5.1. Also, consistent with this discussion, we
find our implementation of location attention (LocAttn) to
struggle in all the tasks.

Bidirectional relative attention (Bi-Relative) succeeds on
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Model Copy Reverse Copy Lookup Reverse Lookup
(Length Splits) 15 30 100 15 30 100 7 9 11 7 9 11

OneStepAttn 100 100 100 100 100 100 100 100 100 100 100 100

−Step 2 100 1.4 0 100 98.6 0 99.2 2.34 0 99.8 0 0

−Step 3 6.9 0 0 0 0 0 41.9 0 0 22.9 0 0

−Sigmoid 100 100 99.8 100 100 100 100 74.3 0.3 19.1 0 0

Model ReCopy Reverse ReCopy Inv ReCopy Inv Reverse ReCopy
(Length Splits) 15 30 100 15 30 100 15 30 100 15 30 100

OneStepAttn 100 100 100 100 100 100 0.1 0 0 0 0 0

−Step 2 15.9 0 0 16.9 0 0 95.5 0 0 96.2 0 0

−Step 3 100 100 100 100 100 99.9 40.3 0 0 45 0 0

−Sigmoid 100 100 100 100 100 100 0 0 0 22 0 0

Table 4. Accuracy of ablations over OneStepAttn in different length generalization splits in different algorithmic diagnostic/probing tasks.
We present the median of five runs on different seeds. We bold the best results.

both forward and reverse directions of copy and lookup
tasks. This is aligned with our motivation for designing it
(§5.2). However, Bidirectional relative attention still does
not alleviate the second limitation (§5.1) and thus, fail in the
ReCopy-based tasks.

OneStep attention (OneStepAttn) succeeds nearly on all
tasks except the inverted variations of the ReCopy tasks. The
Copy tasks and Lookup tasks are easy to learn for OneStep
attention because in either tasks it has to simply learn to take
one step forward relative to the past attended position in
every timestep. The ReCopy and Reverse ReCopy is slightly
more complicated but still not too hard to learn. In these
cases, the model has to learn to wait (predict stepst = 0)
while the decoder is repeating previous generations. The
attention model has to then predict stepst = 1 to move one
step forward in the encoding positions after the repetition
of the content from the past attended position is complete.
Thus, the OneStep strategy is suitable for the ReCopy and
Reverse ReCopy tasks as well.

However, the OneStep strategy faces an issue for the in-
verted versions of the tasks. Consider an Inv ReCopy sample
where the input is “4 4 4 7 7 7 7 7 9 9 9 9 9 8 8 8 8 8” and the
output is “4 7 9 8”. In this case, one way to solve this would
be for the encoder to radically re-organize the positions of
the input information. But if the encoder fails to do that and
keeps the encoded information close to its original position,
OneStep attention, by itself, is ill-equipped for the task. In
the given example, after printing 4 from encoding position
1, in the next timestep it has to take not just one but three
steps forward. OneStep attention cannot do that because its
number of steps is constrained by a sigmoid.

In contrast to OneStep attention, monotonic attention
(MonoAttn) is more flexible allowing bigger steps when
needed. As such, monotonic attention is able to solve Inv
ReCopy tasks that OneStep could not. It also performs
perfectly on copy tasks and ReCopy tasks in both direc-

tions. However, it fails on the lookup tasks. It seems that
its increased flexibility (loosened inductive bias) and its
possibility to make more uncontrolled steps (which are un-
necessary for the lookup tasks) also at the same time make
it more confused when trying to learn the lookup tasks in a
length-generalizing manner.

Ultimately, both OneStep attention and monotonic attention
perform better than any of the other attention models. Both
solves 6 out of the 8 tasks in Table 2 with 100% accuracy.
However, we also discover a trade-off - the restricted steps
of OneStep attention preclude it from solving the inverted
versions of ReCopy tasks whereas the more unconstrained
steps of monotonic attention manages the inverted ReCopy
tasks but at the cost of the lookup tasks.

In Table 3, we present the results on SCAN. We find location
attention and our extensions of it (OneStep attention or
monotonic attention) to generally also perform better on
the task of translating simple commands into sequences of
actions than other forms of interlayer attention even though
they are not designed explicitly keeping the structure of
SCAN task in mind. OneStep attention (Mix OneStepAttn)
does particularly better than the others in SCAN. In the same
table, we also present the results on CFQ. Interestingly, the
basic position-encoding-less version of inter-layer attention
does the best here. However, both OneStep and monotonic
attention keep up with it better than others - like location
attention or unidirectional relative attention.

7.1. Additional Analyses

Ablations: In Table 4, we show some of the main ablations
of OneStep Attention. −Step 2 represents using the more
sophisticated location attention variant of reft computation
(Eqn. 12) instead of the proposed reft = pat−1 change in
step 2 in §5.3. −Step 3 represents using softstair activation
for step computation (Eqn. 13) from location attention in-
stead of the proposed sigmoid activation in step 3 change of
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OneStep (§5.3). −Sigmoid represents removing the activa-
tion function from Eqn. 13 altogether. As the ablation shows
both of our proposed changes are important to succeed in
most of the tasks. Interestingly, we find here that having no
activation at all in Eqn. 13 generally serves us better than
having softstair activation. Besides that, the ablation results
support our original motivation for proposing Step 2 and
Step 3 in OneStep attention. We show several more ablation
tests in Appendix B.

Additional Tasks: In Appendix A, we introduce and ex-
plore two additional tasks - DeDupe and PosRetrieve.

Alternate Evaluation: In Appendix C we evaluate the
models on edit distance instead of exact match accuracy.
Edit distance serves as a more fine-grained evaluation.

Examples: In Appendix D we present some example failure
cases of OneStep attention and monotonic attention.

8. Limitations
First, although OneStepAttn and MonoAttn perform better
than LocAttn in general, they are also more restricted. Nev-
ertheless, OneStepAttn and MonoAttn show the potential
of the LocAttn-like framework with restrained room for
error accumulation and slightly stronger inductive biases.
Ideally, we want to improve upon them in the future to get
both higher flexibility and good performance. Moreover,
when building specific modelling capacities (say attending
to absolute positions), we should also consider building ap-
propriate synthetic tasks for sanity checking in a similar
spirit as done in this paper. In Appendix A, we propose Pos-
Retrieve which can be a sanity check for absolute position
attention capability for future developments.

Second, our experiments are limited to mainly synthetic
tasks most of which require purely location-based atten-
tion10 but no complex synergy between content-based atten-
tion and position-based attention. More synthetic tasks for
sanity checking such capacities can be built.

Third, our exploration is currently limited to RNN-based
seq2seq models. One reason for focusing on RNNs is be-
cause vanilla non-pretrained Transformers encoders can
struggle to solve tasks like lookup table for decoder to do its
job without specific changes (Csordás et al., 2022). More-
over, integration of location attention into Transformers is
complicated by the fact that they use multiple layers of cross-
attention in each timestep introducing additional variables
to consider (the problem is not that our methods cannot be
integrated with Transformers but that there are many ways to
do so). Given these added variables, we leave investigations

10Although, we should note that despite their simplicity, the
tasks still have been difficult to solve perfectly (Dubois et al., 2020;
Dehghani et al., 2019; Liang et al., 2021)

with Transformers for future work.

9. Conclusion
We introduce several new probing tasks - ReCopy and its
variants (some others in Appendix A) to enable additional
diagnoses of length generalization performance of neural
models. Although our proposed tasks are simple, this very
simplicity can allow better isolation of failure cases and pro-
vide sanity checks for locational reasoning skills. Moreover,
the new tasks are still challenging enough that none of the
models explored here succeed in all of them.

We propose a way to softly switch between the forward
encodings and its reversed version to get near perfect per-
formance in reverse variants of copy and lookup tasks that
have been previously challenging to solve. We illuminate
the limits of location attention and show how certain mod-
ifications in the form of OneStep attention and monotonic
attention can bring massive improvement. Although, the
modifications bring stronger inductive biases than location
attention, they can still simulate windowed relative atten-
tion and empirically demonstrate more stable performance
across datasets including more realistic ones like CFQ.

Monotonic attention or OneStep attention can also be more
broadly applicable in any context requiring list traver-
sal i.e. monotonic traversal through a list of items in a
backpropagation-friendly manner — for example, one ap-
plication can be skill selection with a dynamic time horizon
instead of a fixed one (Garg et al., 2022). OneStep attention
is suitable if the only relevant choice during the traversal is
to either stay at a position or move to the next position by a
single step. Monotonic attention is suitable if we also want
to allow the model to skip positions during traversal.
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A. Additional Tasks
We introduce and analyze two additional tasks here. We
present examples for each in Table 5.

DeDupe: As the name suggests, DeDupe is essentially a
de-duplication task of removing contiguous repetitions11 as
shown in Table 5. The task is very similar to Inv ReCopy
but with a few differences. In Inv ReCopy, repetition occurs
based on a fixed rule, each number will be repeated some
fixed number of times dependent on that specific number.
The task in Inv ReCopy is to remove the fixed number
of number-specific repetitions rather than all contiguous
repetitions. For instance, if the input is “4 4 4 4 4 4” the
output for Inv ReCopy will be “4 4” (because “4” is bound
to repeat three times according to the rules of ReCopy) but
for the same input, the output for DeDupe will be just “4”.
Unlike Inv ReCopy, the DeDupe function is not invertible.
Thus the task cannot be inverted (whereas ReCopy is the
inversion of Inv ReCopy). We generate the splits for this
task (DeDupe) in the same way as the Copy task.

PosRetrieve: The task of PosRetrieve is to treat the input
values as position indices to retrieve from. Given an input
x in a list format, x = [i, j], the output y will be y = i :
f(i, x); j : f(j, x);. Here, f(i, x) = x[i] if len(x) > i else
f(i, x) = n/a. We generate the splits for this task in the
same way as the Copy task. This task can more explicitly
check for a models ability to choose some pth position item
from the beginning. This was one ability for which location
attention was motivated (Dubois et al., 2020), but there was
no benchmark to explicitly check for this.

We mainly focus on the forward variations of the task here
but reverse variants can also be created.

Results: In Table 6, we show the results of the main models
on DeDupe and PosRetrieve. Only MonoAttn performs de-
cently in DeDupe which makes sense given that it is the only
approach that does well in Inv ReCopy which is similar to
DeDupe. DeDupe is, however, a bit harder than Inv ReCopy
for MonoAttn because the encoder needs to encode informa-
tion about total contiguous repetitions from the context so
that MonoAttn can predict the right amount of steps without
looking ahead (which it cannot without some kind of multi-
step attention). In Inv ReCopy, the encoder does not have to
encode any contextual information, since repetition happens
according to a fixed context-independent rule. Thus, we see
reduced performance in DeDupe compared to that in Inv
ReCopy. None of the models is currently able to do well
at PosRetrieve. This is, perhaps, expected for most models
since they are currently lacking any explicit capability for
modelling absolute positions but Location Attention still
struggles with it despite theoretically having the capacity.
We leave this task as an open challenge.

11We thank one of our reviewers for this idea.

B. Ablations
B.1. Ablation Models and Other Alternatives

We also show experimental results of different potential al-
ternatives in the vicinity of location attentions and ablations
of monotonic attention. We discuss the different models
below.

Bi-ROPE: Here, we use the same strategy as in §5.2 to
create the encoder representations but then we apply a dif-
ferent positional encoding for modeling relative distances -
rotary positional encodings (ROPE) (Su et al., 2021). ROPE
rotates the query and key vectors in space based on their
sinusoidally encoded positions before using the query and
key in a content-based attention as in §4.1.

LocAttn S: This is a simplified (S) version of location at-
tention (without content attention mixing) where we set
reft = bt for the first timestep to initialize the reference po-
sition using bt and then use reft = pat−1 like OneStep At-
tention/monotonic attention. This approach can be thought
to be “in between” the original location attention and mono-
tonic attention.

Mix LocAttn S: This is same as LocAttn S but with content
attention mixing (Eqn. 15).

Mix LocAttn S PR: When mixing with content attention
(Eqn. 15), there is an option to set pat−1 to track only the
location-based attended position to keep as a reference point
by setting pat−1 =

∑s
i=1 λ

′
t−1i · norm(i) where λ′

t−1i

is the location-only attention from the past timestep. We
use the modifier PR (Position Attention based Reference)
to denote this way of setting pat−1. Mix LocAttn S PR
extends Mix LocAttn S with PR.

Mix OneStepAttn PR: This extends Mix OneStepAttn with
PR.

Mix MonoAttn PR: This extends Mix MonoAttn with PR.

RMonoAttn: In RMonoAttn (Relaxed Monotonic Atten-
tion) we remove the sigmoid completely and overall simplify
the step computation to: stepst = ReLU(fstep(lt)).

Mix RMonoAttn: This is RMonoAttn with content atten-
tion mixing (Eqn. 15).

Mix MonoAttn PR: This extends Mix RMonoAttn with
PR.

B.2. Ablation Results

In Table 7, we show the results of the above models in all the
main paper tasks but SCAN and CFQ. Bi-ROPE performs
similarly to Bi-Relative as we would expect. LocAttn S
with its simplification performs better than LocAttn (Table
2) but still falls behind OneStep/monotonic attention. The
Mix variant models tend to perform worse than the unmixed
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Task Input Output
DeDupe 4 4 4 7 7 7 7 9 9 9 9 9 8 8 8 8 8 4 7 9 8

PosRetrieve 5 4 2 7 9 6 9 5 7 3 5:6; 4:9; 2:2; 7:5; 9:3; 6:9; 9:3; 5:6; 7:5; 3:7;

Table 5. Input-output examples for DeDupe and PosRetrieve

Model DeDupe PosRetrieve
(Length Splits) IID 15 30 100 IID 15 30 100

Content 98.7 37.1 0 0 100 0 0 0

Bi-Relative 99.9 68 0 0 100 0 0 0

LocAttn 99.6 96.9 71.4 0 96.3 0 0 0

OneStepAttn 94.1 51. 0 0 70.6 0 0 0

MonoAttn 99.7 98.3 94.3 75 79 0 0 0

Table 6. Accuracy of the models on different length generalization splits in DeDupe and PosRetrieve. We present the median of five runs
on different seeds. We bold the best results.

.

ones - this is because these tasks can be done purely based on
positional reasoning and the content attention is more likely
to confuse the models than help in these specific tasks. PR
can help better track past locationally attended positions and
thus improve the performance of the Mix models (compared
to when they are used without PR). RMonoAttn tends to
struggle more compared to MonoAttn demonstrating the
value of gating with sigmoid-activated step prediction (eqn.
19).

In Table 8, we show the results of the above models for
SCAN. In SCAN, the trend reverses a bit - mix models
tend to be here better than unmixed ones. We suspect that
mixing with content attention is more beneficial in more
sophisticated tasks (SCAN is at least relatively more so-
phisticated than others besides CFQ) because it adds more
flexibility. PR can sometimes further help in SCAN too in
some models.

C. Alternate Evaluations
In Table 9, we show the results of the main models on the
probing tasks with mean edit distance12 as the evaluation
metric. This paints a more fine-grained picture of the differ-
ences between model performances.

D. Examples
In Table 10, we show some failure case examples from
OneStep attention and monotonic attention. Generally we
find that they can generate the sequence correctly from
the beginning up to a point (the correct generated part is
highlighted in cyan) after which things go awry.

12Computed using NLTK (Bird et al., 2009).

E. Experimental Details
E.1. Architecture

For the encoder, a stack of bi-directional GRUs is used. ecls
is the concatenation of the final hidden state of the forward
encoder GRU and the first hidden state of the backward
encoder GRU. In every timestep t, the decoder state ht−1

(h0 initialized with ecls) is used as a query and the encoded
representations (e1:s or edir1:s depending on need) are used
as keys and values. The values are passed through an extra
non-linear transformation with LeakyRELU following the
code from (Dubois et al., 2020) before the standard linear
transformation. For the non-linear transformation we use
the same d neurons per layer. The output of the attention
is concatenated with the embedding of the last generated
token (initially some special token “go” indicating start of
sequence). The concatenation is used as input to a decoder
stack of GRUs with ht−1 as the hidden memory. The output
of decoder GRU is ht. A linear transformation over ht is
used to change the size of the vector from d (size of ht)
to de (where de is the embedding size). We then use the
transpose of the embedding matrix to create the distribution
over vocabulary. We select the maximum scoring token as
the generated token for the timestep t.

E.2. Hyperparameters

We attempted to keep the hyperparameters similar to
(Dubois et al., 2020). We use 64 as the embedding size (i.e
de = 64) and single-layered GRUs for the encoder/decoder.
The total hidden size for the encoder/decoder GRU is 128
(therefore d = 128). We only use one head for the attention
mechanism. We use a dropout of 50% on the encodings
similar to Dubois et al. (2020). We set β = 5. Follow-
ing tradition we keep attention head dimension as d/heads
which in our case is 128 since heads = 1. For CFQ, we
use two layered GRUs for the encoder/decoder and twice
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Model Copy Reverse Copy Lookup Reverse Lookup
(Length Splits) 15 30 100 15 30 100 7 9 11 7 9 11

Bi-ROPE 100 100 0 100 100 0 100 100 100 89.5 1.6 0.2

Mix LocAttn 99.8 0 0 1.5 0 0 8.6 0 0 7.5 0 0

LocAttn S 100 26.6 0 100 74.1 0 100 46.3 0 99.6 0.1 0

Mix LocAttn S 99.7 0 0 85.9 0 0 33.5 0 0 3.5 0 0

Mix LocAttn S PR 83.6 0 0 99.7 10.5 0 32.9 0 0 1.1 0 0

Mix OneStepAttn 2.6 0 0 0.4 0 0 100 71.7 1.6 100 79.1 8.1

Mix OneStepAttn PR 100 100 100 100 100 100 100 100 47.8 57.5 0 0

Mix MonoAttn 99.95 5 0 100 50.8 0 94.5 0 0 53.5 0 0

Mix MonoAttn PR 100 99.2 86.7 100 100 99.7 15.3 0 0 0 0 0

RMonoAttn 100 100 100 100 100 99.9 64.3 0 0 72.8 0 0

Mix RMonoAttn 31.1 0 0 100 66.3 0 99.8 0 0 41.4 0 0

Mix RMonoAttn PR 0 0 0 100 100 100 39.2 0 0 4.3 0 0

Model ReCopy Reverse ReCopy Inv ReCopy Inv Reverse ReCopy
(Length Splits) 15 30 100 15 30 100 15 30 100 15 30 100

Bi-ROPE 43.4 0 0 39 0 0 56.0 0 0 53.1 0 0

Mix LocAttn 36.1 0 0 30.4 0 0 99.6 65.1 0 98.6 24.1 0

LocAttn S 98.7 5.2 0 99.9 1.4 0 100 99.3 91.1 99.9 99.3 91.8

Mix Location S 99.7 0 0 99.6 0 0 98.9 66.6 0 98.8 57.7 0

Mix Location S PR 99.6 0.4 0 100 61.4 0 99.8 98.6 88 99.6 98.1 84.8

Mix OneStepAttn 43.5 0 0 87.1 0 0 10.4 0 0 5.45 0 0

Mix OneStepAttn PR 99.9 88.4 30.2 100 100 100 0 0 0 0 0 0

Mix MonoAttn 7.09 0 0 99.85 0 0 99.8 82.4 0 100 82.2 0

Mix MonoAttn PR 100 100 100 100 53 0.5 0 0 0 89.6 77.6 42.1

RMonoAttn 100 100 99.9 0 0 0 100 100 99.1 100 100 99

Mix RMonoAttn 98.1 0 0 23.4 0 0 99.85 70.5 0 100 83.8 0

Mix RMonoAttn PR 100 90.8 51.2 100 100 100 0 0 0 40 0 0

Table 7. Accuracy of the models on different length generalization splits in different algorithmic diagnostic/probing tasks. We present the
median of five runs on different seeds. We bold the best results.

Model SCAN (Length Split)
Bi-ROPE 10.46± 3.78

LocAttn 24.56± 17.51

LocAttn S 25.12± 6.30

Mix LocAttn S 27.55± 10.10

Mix LocAttn S PR 19.8± 3.26

OneStepAttn 15.38± 0.42

Mix OneStepAttn PR 17.67± 3.54

MonoAttn 14.98± 0.15

Mix MonoAttn PR 26.68± 10.27

RMonoAttn 15.28± 1.47

Mix RMonoAttn 22.92± 6.39

Mix RMonoAttn PR 27.99± 11.26

Table 8. Accuracy on SCAN length split. We report the mean and
std of 5 runs. We bold the best results.

the hidden size/embedding size than above. Generally, we
use a batch size 32, a learning rate of 1e − 3 with Adam
(default parameters) and no weight decay. We halve the
learning rate if the accuracy plateaus for four contiguous
epochs. We run the models for a maximum of 100 epochs
with 50 patience for early stopping. More hyperparameter

details can be found in the codebase.

F. Connections to Other Models
Neural Turing Machines (Graves et al., 2014) include one of
the earliest incorporation and motivation of a location-based
attention (distinguished from content based attention) within
a modern neural network-based paradigm. Luong et al.
(2015) proposed a Gaussian distribution-based attention for
localized focus which is similar to how eccentricity effect is
modeled here. Location attention from Dubois et al. (2020)
expands upon many of these prior ideas.

In the context of Transformers, countless works proposed
ways to include some form of position-based attention bias
(Shaw et al., 2018; Yang et al., 2018; Dai et al., 2019; Wang
et al., 2020; Ke et al., 2021; Su et al., 2021; Luo et al.,
2021; Qu et al., 2021; Chang et al., 2021; Wu et al., 2021;
Wennberg & Henter, 2021; Likhomanenko et al., 2021;
Dufter et al., 2022; Luo et al., 2022; Sun et al., 2022) (in-
teralia). Dynamic convolution (Wu et al., 2019) and other
similar models can also be treated as forms of location at-
tention (query-to-distance-based attention within a local
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Model Copy Reverse Copy Lookup Reverse Lookup
(Length Splits) 15 30 100 15 30 100 7 9 11 7 9 11

Content 6.1 21 90.7 6.8 21.9 91.7 1.4 4.6 6.5 1 3.8 5.4

Relative 0 0 0 4.4 20.7 90.2 0 0 0 0.3 4.9 6.3

LocAttn 0 14.2 82 1.7 16.7 84.9 1.2 3 5.7 1.3 3.9 6.2

Ours
Bi-Relative 0 0 0 0 0 0 0 0 0 0 0 0

OneStepAttn 0 0 0 0 0 0 0 0 0 0 0 0

MonoAttn 0 0 0 0 0 0 0 0 0.9 0.7 3 4.9

Model ReCopy Reverse ReCopy Inv ReCopy Inv Reverse ReCopy
(Length Splits) 15 30 100 15 30 100 15 30 100 15 30 100

Content 8 53.4 249.2 8.1 53.7 249.3 4 19.7 90.1 4.3 20.1 90.4

Relative 3.7 31.5 160 17.9 60.8 250.7 0.5 13.7 73.8 3.2 18.4 88.3

LocAttn 0.8 56.5 233 2.7 39.1 226.1 0 0.5 45.8 0 7.8 72.5

Ours
Bi-Relative 4.5 32.4 159.6 4.2 31.9 159.1 0.7 14.4 74 0.6 13.9 74

OneStepAttn 0 0 0 0 0 0 3 16.6 86 3.1 17.2 85.7

MonoAttn 0 0 0 0 0 0 0 0 0 0 0 0

Table 9. Average edit distance (lower the better) of the models on different length generalization splits in different algorithmic diagnos-
tic/probing tasks. We present the median of five runs on different seeds. We bold the best results.

.
Model Task Examples

OneStepAttn Inv ReCopy

Input: 1 2 5 5 5 5 5 5 7 7 7 7 7 2 9 9 9 9 9 9 9 9 9 9 3 7 7 7 7 7
9 9 9 9 9 4 4 4 5 5 5 3 3 4 4 4 0 1 1 4 4 4
Oracle: 1 2 5 5 7 2 9 9 3 7 9 4 5 3 3 4 0 1 1 4
Prediction: 1 2 5 5 7 2 9 9 3 9 7 3 4 3

OneStepAttn Inv ReCopy

Input: 9 9 9 9 9 2 1 1 6 6 6 6 6 6 3 7 7 7 7 7 6 6 6 8 8 8 8 8 1
5 5 5 4 4 4 3 7 7 7 7 7 4 4 4 5 5 5 7 7 7 7 7 3 7 7 7 7 7
Oracle: 9 2 1 1 6 6 3 7 6 8 1 5 4 3 7 4 5 7 3 7
Prediction: 9 2 1 1 6 6 3 7 6 8 1 4 5

MonoAttn Reverse Lookup
Input: t4 t4 t1 t6 t5 t2 t6 t3 t4 100 .
Oracle: 100 001 100 010 011 010 111 111 101 110
Prediction: 100 001 100 010 110 100

MonoAttn Reverse Lookup
Input: t4 t4 t2 t6 t5 t4 t2 t2 t3 110 .
Oracle: 110 010 011 101 110 011 001 100 001 100
Prediction: 110 010 011 101 110

Table 10. Failure case examples of OneStepAttn and MonoAttn. We highlight the matching subsequence in cyan.

window). Most of the approaches mentioned in this para-
graph, however, involve emphasis on relative distances. As
we find in our investigations based on two popular repre-
sentatives of such forms of attention — Relative attention
(Dai et al., 2019) and ROPE (Su et al., 2021) — they tend
to struggle on tasks like ReCopy where the ideal relative
distance of attention position can be arbitrarily big and can
vary with every timestep.

Press et al. (2022) introduced a new positional encoding
technique for transformer-based decoders for better length
generalization on language modeling. They add a bias to-
wards locality for that purpose. However, the advantage
of locality bias in the contexts of seq2seq tasks that we
consider here are less clear given that the ideal position of
attention can be arbitrarily distant from the current timestep

of decoding in our tasks. Transformers can iteratively trans-
fer information depth-wise through local operations but that
will be also limited by the maximum layer depth. However,
allowing adaptive layers (Schmidhuber, 2012; Graves, 2016;
Bai et al., 2019; Banino et al., 2021) or intermediate compu-
tation based on scratchpad (Nye et al., 2021) may mitigate
these issues. Recently, Anil et al. (2022) showed that length
generalization in large language models can be enhanced by
a careful synergy of different techniques such as scratchpad
and in-context examples.

Neural GPU (Kaiser & Sutskever, 2016) also achieves
strong length generalization performance on several algo-
rithmic tasks but with curriculum learning. Csordás et al.
(2022) solve the lookup table tasks in both directions with
gated Transformer-based models but it does so only at the
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level of encoding (which can be already done with a Bidirec-
tional RNN as shown in the same paper) where it only has
to learn to compute and output the final function output. It
does not tackle the challenge of doing the task at a seq2seq
level (or in the style of a language model) which requires
printing a sequence of intermediate function outputs in a
rule-based manner in addition to the final output.
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