
Playscript Classification and
Automatic Wikipedia Play Articles Generation

Siddhartha Banerjee
The Pennsylvania State University
University Park, PA-16802, USA

Email: sub253@ist.psu.edu

Cornelia Caragea
University of North Texas
Denton, TX-76203, USA
Email: ccaragea@unt.edu

Prasenjit Mitra
The Pennsylvania State University
University Park, PA-16802, USA

Email: pmitra@ist.psu.edu

Abstract—In this work, we aim to create Wikipedia pages
on plays automatically by extracting relevant information from
various web sources. Our approach involves building an efficient
classifier that can classify web documents as playscripts. From
the set of correctly classified instances of playscripts, we extract
relevant play-related information from the documents and use it
to obtain additional information from various sources on the web.
This information is aggregated and human-readable Wikipedia
pages are created using a bot. The results of our experiments
show that classifiers trained by combining our designed features
along with “bag-of-words" (bow) features outperform classifiers
trained using only bow features. Our approach further shows
that good quality human-readable pages can be created using
our bot. Such automatic page generation process can eventually
ensure a more complete Wikipedia.

I. INTRODUCTION
Since the inception of digital libraries around 1990’s, the

way they have matured is phenomenal [1], [2]. There are
already many digital libraries and digital resources available
on the Web in the domain of music (e.g., iTunes and Pandora),
movies (e.g., International Movie Database (IMDb)) or schol-
arly papers (e.g., Google Scholar, CiteSeerX , and ArnetMiner).
However, to the best of our knowledge, there has not been any
effort made to automatically create a single-information source
in the domain of drama and plays. According to Wikipedia1,
a play is “a form of literature written by a playwright, usually
consisting of scripted dialogue between characters, intended
for theatrical performance rather than just reading.” Currently
the users have to search and collect information from multiple
sites. Often, they give up and therefore obtain incomplete
information.

We seek to build a focused crawler that would crawl
play-related websites from the web and an automatic article
generator that would generate Wikipedia articles from the
information crawled from the web. The Wikipedia Theatre
project 2 mentions the goal of making Wikipedia “the finest,
most comprehensive resource of theatre topics available on-
line”. As an effort to create an information resource on plays,
we aim to contribute to the Theatre project by automatically
authoring such articles. More importantly, this can also have a
broader impact of automatic generation of articles on various
topics that have limited coverage on Wikipedia.

Automatic authoring of Wikipedia articles is hard. First,
our system has to determine which plays are “notable” and
deserve a Wikipedia article. Addressing this issue is beyond the
scope of this work and will be addressed in the future. Second,

1http://en.wikipedia.org/wiki/Play_(theatre)
2http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Theatre

automatic natural language generation is a hard problem [3],
[4]. Even if we could generate natural language, generating
it in the form and level-of-detail needed for an encyclopedia
article is exceedingly hard.

Our system initially crawls URLs that contain playscripts 3

using a focused crawler [6]. We design features that help
machine learning algorithms to classify web documents into
two classes - playscripts and non-scripts, with high accu-
racies. The script of a play provides a lot of information
on the play such as the title, author, characters, etc. This
information is extracted and further used to gather additional
information (plot summary, audience reception, performances,
etc.) on the play from the web, which is later summarized
to generate human-readable Wikipedia entries of high quality.
Search queries are formulated that help retrieve links on the
play from the web using Google. Text from the web pages
is extracted, summarized and populated into the Wikipedia
articles in separate sections.

We focus on two problems. First, we address the problem
of classifying crawled web documents that contain playscripts.
Second, we address the problem of extracting relevant infor-
mation of plays from various web resources and automatically
generating Wikipedia articles. The articles generated should
also confirm to Wikipedia standards and be coherent for
readability. The research questions that we specifically address
are: Can we design techniques to effectively and efficiently
classify web documents as containing playscripts? Moreover,
can we create high quality Wikipedia articles adhering to
Wikipedia quality requirements?

In summary, our contributions are as follows:
(i) To the best of our knowledge, we are the first to address

the problem of playscript classification from web documents.
The dataset (1988 documents) 4 built as part of this study
will be made publicly available to the research community
and would be useful for various tasks.

(ii) We show that the addition of nine structural features,
such as presence of delimiters, names of characters, etc. further
improves the classification accuracy as obtained using Bag-
of-Words features. An ensemble approach that combines two
classifiers, one trained on structural features and the other
trained on “bag of words" achieves the highest performance
(0.96 F-Measure) on our dataset.

(iii) Finally, we found that only about 10% of the plays
in our dataset have corresponding Wikipedia pages (i.e., only

3Wordnet [5] defines playscript as “a written version of a play or other dramatic composition, used in preparing for a
performance.”

4https://dl.dropboxusercontent.com/u/105934454/Playscript_dataset.zip



popular plays such as those written by famous playwrights
such as William Shakespeare (e.g, King Lear), Oscar Wilde
(e.g, The importance of being earnest) and Bernard Shaw (e.g,
Caesar and Cleopatra)). Using our dataset, we create new
Wikipedia pages automatically for not very well-known plays.

The rest of the paper is organized as follows. In the next
section, we discuss related work. In Section 3, we present the
feature design approach to classifying web documents followed
by automatic Wikipedia page generation. In Section 4, we
explain our dataset construction, followed by experiments and
results in Section 5. The last section concludes the paper.

II. RELATED WORK
Classification techniques have been applied extensively in

movie and music classification tasks [7], [8], [9], [10], [11],
[12]. In the literary domain, though classification tasks have
been used in several poetry classification works [13], [14] yet
there has been very limited application of machine learning
approaches in the domain of drama or play-related text. Some
notable work in this domain include genre identification of
drama using visualization of dramatic structure [15] as well as
identifying gestures from play scripts [16].

In contrast to previous work on drama and plays, in this
paper we address the classification of web documents as drama
and play scripts versus non-scripts.

We also address the task of automatic Wikipedia page
generation on plays. Wikipedia has become an important
information source [17]. Our preliminary experiments showed
that only few plays have corresponding Wikipedia articles,
hence we aim to automatically create Wikipedia pages. Our
Wikipedia task is closely related to the work by Sauper and
Barzilay [18], yet we are restricted by the fact that plays have
very less coverage on the internet when compared to other
general topics such as diseases. Previous work on Wikipedia
have used template learning models for creation of domain
independent articles [19]. In our case, we use the traditional
concept-to-text generation, where a content planner provides a
detailed template for information organization [3].

To the best of our knowledge, automatic Wikipedia page
generation on topics having scarce web resources has not been
addressed in the past.

III. PROPOSED APPROACH
Our proposed approach consists of mainly two stages.

Firstly, we classify the set of documents into two classes -
playscripts and other documents. Then, using the playscripts,
we extract information on the play name and author, use this
information to extract relevant information from various web
sources and eventually aggregate that information as Wikipedia
play pages.

A. Feature Design
Drama and play classification can be seen as a text clas-

sification problem, where the instances are web documents
and the task is to classify them into drama and playscripts
or others. The “bag of words" approach, typically used for
text classification, constructs a vocabulary of size d, which
contains all words in a collection of documents. A document
is represented as a vector x with as many entries as the
words in the vocabulary, where an entry k in x can record the
frequency (in the document) of the kth word in the vocabulary,
denoted by xk. However, we argue that drama and playscripts

have specific structural properties that substantially differ from
those of non-script documents. These structural properties
can be exploited to improve the performance of playscript
identification. For example, script pages, by definition, contain
dialogues, which would be uncommon for a general web
document. We hypothesize that structural properties on script
pages can provide additional evidence for the drama and
playscript classification.

Proposed Featureset

Feature Name Feature Description

KeywordFreq Frequency of keyword matches
NumLinesCapitals Number of lines with capital letters only
RatioLinesCapitals Ratio of count of lines in capitals to count of all lines
DelimiterFreq Frequency of delimiters
RatioDelimiterLines Ratio of number of delimiters to the number of lines
NumBrackets Number of brackets
NumPlayActorCapitals Number of play actors using lines with capital letters
NumPlayActorDelimiters Number of play actors using lines with delimiters
RatioNonBlankLines Ratio of the number of non-blank lines to total number of lines

TABLE I: Feature names and descriptions of our proposed
feature set.

We design nine structural features for script classifiers, as
described below. The features are summarized in Table I.
1) Frequency of keyword matches: This is a word-matching
based feature. We create a dictionary of keywords K, com-
monly found in drama and play script documents. These
keywords are: K ={drama, play, playscript, script, scene,
cast, character, screenplay, act, stage, curtain, comedy, humor,
tragedy}. For this feature, we used the number of times words
in K occur in a web document. If two or more keywords in
K occur on a page, we sum up their counts. Although these
keywords may exist in other drama-related web documents,
e.g., critics’ reviews, their presence on a page can be a
potentially good indicator for script pages.
2) Number of lines with capital letters only: Generally,
character names and information about the time or place where
a scene is taking place are mentioned using capital letters
and occur on a separate line. To capture this characteristic
of scripts, we use the number of lines with capital letters only,
as a feature.
3) Ratio of count of lines in capitals to count of all lines:
Lines containing dialogues by characters in plays start with
a capital letter followed by lower-case letters. For any drama
or play script, there would be a particular structure with lines
in capitals only (character names or place, etc.) followed by
dialogue lines. This alternating behavior of lines in capital
letters and dialogue lines is captured using the ratio of the
count of lines having all capital letters to the count of all the
lines in a document.
4) Frequency of delimiters: Delimiters such as ‘:’ and ‘-’ are
used very frequently in playscripts to separate character names
from dialogues. To capture this feature, we use the number of
occurrences of delimiters in a document as a feature.
5) Ratio of number of delimiters to the number of
lines: Lines in a playscript contain delimiters mostly when
they separate character names and dialogues. All other lines
generally do not contain delimiters. This feature is captured
as the ratio of the number of delimiters to the total number of
lines in the document.
6) Number of brackets: Actions or expressions (AURORA
(CONT’D) or AURORA (laughs again)) by characters in



playscripts are represented in brackets. AURORA is the name
of the character and the brackets provide directives to the actor
as to what action is to be performed. We extract the number
of brackets as a feature which gives an indication of actions
and expressions in the play.
7) Number of play actors using lines with capital letters:
Characters in playscripts are either separated from dialogues
using a newline character or a delimiter such as “:" or “-". For
the first type, we identify the lines having only capital letters.
The distinct number of words in capitals which occur at least
four times, which indirectly refers to the number of characters
in the play is captured as a feature. The underlying assumption
is that each character has at least four dialogues in the script.
8) Number of play actors using lines with delimiters: This
feature is complementary to the previous feature. Playscripts
often have character names and dialogues separated by delim-
iters. In such a case, we extract the word to the left of the
delimiters, and calculate the distinct number of words which
occur at least four times.
9) Ratio of the number of non-blank lines to the total
number of lines: There are blank lines between the character-
dialogue pairs in a playscript. The ratio of the number of non-
blank to total lines in a document captures this feature.

B. Automatic Wikipedia Page Generation
Our Wikipedia page generation approach extracts and se-

lects information that can be entered into the new Wikipedia
entries. Initially, information on the play title, author and
characters is extracted from the playscripts. This information is
used to further extract additional information on the plays from
various web sources. The steps in the automatic generation
includes:
(1) Extraction of play title and author: From the set of
web pages which have been correctly classified as playscripts,
we extract the title as given by the <title> tag on html pages.
To extract the author, we check the first three lines of the
play page. The intuition behind this is the fact that in most
playscript pages, the title forms the first line followed by the
author mentioned within the next two lines. We search for
patterns such as “by” or “written by” and extract the string
following them. This heuristic worked well in all cases.
(2) Extraction of characters in the play: This step extracts all
the character names in the play. Generally, in playscripts, char-
acter names are separated from dialogues using delimiters. For
example, “CHITRA: I bow to thee, Lord Vasanta.” “CHITRA”
is the character name separated from the dialogue using a ‘:’.
We extract all such occurrences of dialogue - character pairs
from the sentences on the page. For characters, we consider
only the string to the left of the delimiter. We considered
words which have at least a frequency of four in the entire
playscript, under the assumption that each character at least
has four dialogues in the entire play.
(3) Play synopsis generation: Synopsis forms an important
part of any play. Most of the existing play pages on Wikipedia
have a section on synopsis or plot. This stage during the ex-
traction involves four major sub-steps: (i) Identifying relevant
URLs from search engines, (ii) Extracting text from the URLs,
(iii) Relevant passage detection and (iv) Sentence filtering. We
explain each of the steps in detail below:

(i) Identifying relevant URLs: To determine relevant
URLs, defining appropriate search queries is essential. Recent
work by Sauper and Barzilay [18] has shown that queries

using a “conjunction of the document title and topic” performs
the best while retrieving topic specific URLs. In our case, the
topic is the plot summary and the title consists of the play
name and author. Hence, to retrieve links on the synopsis of
the play Chitra by Rabindranath Tagore, we use the query
- “Chitra” “Rabindranath Tagore” plot summary. The top
10 results from Google using the above query are further
processed and flagged relevant only if the <body> tag in the
corresponding URLs have the mention of the play name and
the author’s name.

(ii) Extracting text from URLs: Most web pages have
cluttered text, with a mix of relevant and non-relevant infor-
mation that include ads, external links,etc. We decided to use
the text extraction module in Repustate API 5 to filter out the
relevant text from such web pages.

(iii) Relevant passage detection: We use a well known
text segmentation method called TextTiling [20] developed by
Hearst, where a piece of text is segmented into multiple topical
sections. For each topical section, we check the presence of
author name and play title to identify it as play related or
unrelated, and is flagged accordingly.

(iv) Sentence filtering: This step ensures that only quality
sentences worthy of an encyclopaedic article are extracted.
We use certain rules to avoid sentences that might not be
usable on Wikipedia. Our rules include exclusion of sentences
which end in question marks (e.g. “Enthralling Love story isn’t
it?”), sentences having hyperlink text (e.g.,“It is a one act play
available in the net - http://terebess.hu/english/tagore10.html”),
sentences in the first person narrative (e.g., “I read the play
online today”), etc. We decided not to use multi-document
automatic summarization techniques [21] because they did not
preserve the coherence of paragraphs during summarization.
(4) Notable references on the play from scholarly and
media resources: One of the key research questions we
undertake in this work is that concerning Wikipedia Notability.
In order to ensure that any new article meets the defined
notability criteria, we would have to ensure that the topic has
had “significant coverage” from “secondary sources”. Hence,
we decided to extract mentions of the play from books and
news articles not authored by the play author. We extracted
excerpts from Google Books 6 and the Google News Archive 7.
We also used extractive summarization to summarize the news
excerpts and extracted a two sentence summary of the news
articles. For summarization, we used SMMRY 8, a keyword
selection based text summarizer.
(5) Linking words/concepts internally to other articles: One
of the key features in Wikipedia pages is the existence of links
to other Wikipedia articles. Primarily it is aimed at increasing
the readers’ understanding of the topic at hand, hence we
decided to automatically identify words/concepts which have
to be linked. We considered a number of Wikipedia pages for
a better understanding of linking, and in most of the cases
(more than 90%) the links appeared to be named-entities. This
is expected as Wikipedia urges users not to link common words
understood by most readers in context. We used the Stanford
NER tagger [22] for tagging entities in various articles.

5https://www.repustate.com
6http://books.google.com
7http://news.google.com/archivesearch
8http://smmry.com/about



(1) www.one-act-plays.com, (2) drama.eserver.org,
(3) www.eoneill.com, (4) freedrama.net,
(5) drama.eserver.org/plays, (6) www.10-minute-plays.com
(7) shakespeare.mit.edu

TABLE II: Sample list of Seed URLs input to Heritrix.

Fig. 1: An example playscript document

IV. DATASET CONSTRUCTION
Table II shows examples of seed URLs that we used

for crawling. We used about 30 seed URLs in our crawl.
Figure 1 shows a screenshot of a playscript document of
a play from our collection - The Game by Louise Bryant.
Every such document typically consists of: Title, Author,
Cast or characters, time/act/place/scene (not mandatory) and
dialogues.

We manually annotated the documents as playscripts (i.e.,
the positive class) and non-script documents (i.e., the negative
class). The documents had a mix of HTML, PDF and DOC
files. Finally, our dataset consisted of 1988 documents -
989 positive and 999 negative.

V. EXPERIMENTS AND RESULTS
Our experiments are designed to explore the following

questions: (i) How do the classifiers trained using the struc-
tural features perform as compared to “bag of words" based
classifiers? (ii) How does the performance of classifiers trained
on the combination of structural features and “bag of words"
compare with the performance of classifiers trained on struc-
tural features and “bag of words" independently, as well as
with the performance of an ensemble of two classifiers, one
trained on structural features and the other trained on “bag of
words"? (iii) Can we automatically use extracted information
on plays from playscripts and other web sources to populate
Wikipedia pages?

To answer these questions, we conducted several experi-
ments detailed in the next subsections. In the experiments, we
use three different classifiers, namely Support Vector Machine
(SVM), Naive Bayes (NB) and Random Forest (RF), and
show classifiers’ performance using Precision (P), Recall (R)
and F-Measure (F-M) averaged in 10-fold cross-validation
experiments on our dataset. We used Weka implementation

of classifiers with the default set of parameters for all our
classification tasks.

A. Comparison of Structural Features with “Bag of Words"
Features (BOW)

To assess the quality of our designed structural features,
we compared the performance of classifiers trained using these
features with that of classifiers trained on the BOW features
(our baseline). We used the term occurrences of the words for
the BOW features. There were a total of 37968 BOW features.

Structural Features BOW (Baseline)

Classifier P R F-M P R F-M

SVM 0.84 0.84 0.84 0.95 0.95 0.95
NB 0.82 0.78 0.77 0.91 0.91 0.91
RF 0.93 0.93 0.93 0.91 0.91 0.91

TABLE III: Performance of classifiers - comparison between
structural features and BOW features.

Table III shows the comparison of structural features and
BOW features, using various classifiers. As shown in the table,
the SVM and NB classifiers trained using the BOW features
outperform, in terms of F-Measure, the classifiers trained using
the nine structural features. Random Forest (RF) works better
with the nine structural features. Furthermore, we can also see
that Support Vector Machine (SVM) trained with the BOW
features has the best performance. One thing to be noted here is
the fact that Naive Bayes (NB) is used in case of the structural
features whereas Naive Bayes Multinomial (NBM) was used
with the BOW features.

Error Analysis: We also did error analysis of our doc-
ument classification task, so that we can improve our feature
design in future to correctly classify the documents. The errors
can be divided into two types : (i) Playscripts classified as non-
playscripts and (ii) Non-playscripts classified as playscripts.
Some URLs, such as freedrama.net provides fill in the blanks
exercise documents for students, in which they are required
to fill the playscript. Though these documents have been
tagged as non-scripts owing to their nature and purpose, these
documents do have similar structure to playscripts and hence
the classifier (RF) is not able to predict these correctly. On the
other hand, some positive class documents were misclassified.
Most of such misclassifications occur because either the script
is short or has very less number of dialogues, and they do not
prominently reveal the specific features we designed.

B. Feature Selection on Structural Features and BOW Features
In order to see if a smaller subset of the structural features

would perform better than all the nine features, in other words,
if there are redundant or irrelevant features in our set, we
carried out the following experiment. We used information gain
(IG) to rank our structural features.

Table IV shows the ranked features from the most to the
least informative. As can be seen, the first and the second most
informative features in the dataset are NumPlayActorCapitals
and NumPlayActorDelimiters, respectively. Both these features
are related to extraction of the total number of characters in
the play and hence appear to be the most relevant features for
identification of playscripts.



Rank Feature IG Score

1 NumPlayActorCapitals 0.47
2 NumPlayActorDelimiters 0.34
3 KeywordFreq 0.33
4 NumLinesCapitals 0.24
5 DelimiterFreq 0.19
6 RatioNonBlankLines 0.18
7 RatioDelimiterLines 0.18
8 NumBrackets 0.09
9 RatioLinesCapitals 0.08

TABLE IV: Structural features ranked from most informative
to the least, using Information Gain.

Fig. 2: F-Measure as a function of the number of features
on a logarithmic scale. Dotted lines: structural features, Bold
lines: BOW features.

Similarly, we performed feature selection on BOW. Figure
2 shows the F1-Measure achieved by the three classifiers, as a
function of the number of features (ranked by their IG score)
on a logarithmic scale (results are shown for both structural and
BOW features). As can be seen from the figure, specifically
for RF, as we increase the number of structural features, the
weighted F-Measure generally keeps on increasing. On the
other hand, for BOW, the performance generally increases as
we increase the number of features for all the classifiers. The
highest performance is achieved at 1000 features using SVM.
We performed a paired t-test between the F1-Measures of
structural features and BOW to check the statistical signifi-
cance of our results and found that the results are statistically
significant at significance level of 0.05.

C. Ensemble of Classifiers vs Single Classifier on Structural
and BOW Features

To obtain a composite global model, we also run ensemble
of classifiers by combining a classifier trained on structural
features and a second one trained on BOW. We run three
ensembles: (i) RF+NB, (ii) RF+RF and (iii) RF+SVM. Table V

Ensemble P R F-M

RF +NB 0.96 0.96 0.96
RF +RF 0.95 0.95 0.95
RF + SVM 0.95 0.95 0.95

TABLE V: Performance of ensembles on our dataset

Classifier P R F-M

RF 0.92 0.92 0.92
NB 0.93 0.93 0.93
SVM 0.95 0.95 0.95

TABLE VI: Performance of classifiers on combining structural
and BOW features.

shows the performance of ensembles on our dataset. As can
be seen, RF+NB outperforms other ensembles, using 10-fold
CV. Moreover, comparison of the results with table III shows
that there is a 1% increase in F1-Measure using this ensemble
over the single SVM classifier trained with BOW features.

We also ran experiments combining all structural features
with BOW to assess how the combination of the features would
perform when training a classifier. 10 fold CV experiments on
the dataset (with features combined) were performed using RF,
NB and SVM classifiers. NB in this case is actually NBM as
we decided to use the multinomial classifier model owing to
the fact that the majority of the combined features are BOW
features. Table VI shows the performance of the classifiers
using combination of features. As can be seen from the table,
SVM works best with the combined set of features. Although
RF and NBM show 1-2% improvements using the combined
features as compared to only BOW features, F-Measure of
SVM does not show any improvement (0.95).

D. Wikipedia Automatic page generation
This experiment is designed to determine whether we can

extract relevant information from correctly classified plays and
present the extracted information in an organized template.

1) Quality assessment of generated Wiki pages: Our ap-
proach as described earlier collected several references from
the web. Specifically, the references were used to check
relevant synopsis paragraphs on the web, while the news and
book links were used to ensure notability and understanding
of the public reception on such plays. We will consider the
example of a play article we created and was finally accepted
after Wikipedia reviewing. The initial page we created using
our automatic generation method can be found here 9. As can
be clearly seen, though this play “Chitra” by “Rabindranath
Tagore” did not have an existing Wikipedia article, yet it had
moderately good coverage on the web, including books and
news articles. While it has been studied well in academia, it
also had notable public reception as evident from the media
articles.

This submitted page was finally accepted after Wikipedia
reviewing. There were significant changes made by the re-
viewers and the final page reflects some of the improvements
we can incorporate in our bot. The final accepted page 10

shows that while most of the references have been retained, the
scholarly references have been merged in the synopsis section.
Also the media reviews underwent several changes in terms of
reducing excerpts from news articles. While some of the quotes
were retained, yet they were condensed or paraphrased based
on the understanding from the actual source. The other play
“Fourteen” by Alice Gerstensberg, was moved into Wikipedia

9http://en.wikipedia.org/w/index.php?title=Chitra_(play)&oldid=566936809
10http://en.wikipedia.org/wiki/Chitra_(play)



mainspace with minimal changes. All the references, quotes
and paragraphs were retained 11.

Statistics Count

Number of play pages created 15
Number of play pages accepted by Wikipedia 2
Number of play pages awaiting review 4
Number of play pages rejected due to Notability issue 7
Number of play pages rejected due to quality 2

Average number of references generated 6
Number of plays with synopsis 7
Average number of media articles 2
Average number of scholarly articles 1
Average number of external links 5

TABLE VII: Statistics of generated Wikipedia articles.

Table VII shows some quantitative statistics on some of
the plays for which we created automatic pages. We did
manual evaluation of the content of the various generated
pages. The comments on the rejected pages gave us an insight
on what improvements we can propose to enhance quality of
the articles. As can be seen from the table, most reviewers
cited problems with notability issues as we could not gather
many resources from media or scholarly articles. Only in two
cases, the article was rejected on grounds of quality stating that
it appeared more like an essay rather than an encyclopaedic
article. Moreover, information extracted from various sources
needs to be summarized in an abstractive [23] fashion to avoid
copyright infringement issues. We aim to replicate the success
achieved in the two accepted articles by improving informa-
tion extraction from the web and ensuring better quality of
article authoring by employing natural language generation
techniques.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we proposed a supervised machine learning

model for playscript classification. Our major contribution
is the design of structural features for playscript classifica-
tion, which along with bag-of-words’ features can classify
playscripts with high accuracies. We also showed that an
ensemble of classifiers achieve the highest accuracy on our
dataset. We designed a bot to automatically create Wikipedia
pages by extracting relevant information from plays on the
Web. These articles would be a good starting point for readers
interested in plays. In future, we plan to improve synopsis
generation of such articles. We also plan to use abstractive
summarization and natural language generation techniques to
improve article generation quality.

REFERENCES
[1] E. A. Fox, M. A. Gonçalves, and N. A. Kipp, “Digital libraries,” in

Handbook on Information Technologies for Education and Training.
Springer, 2002, pp. 623–641.

[2] D. B. Marcum, “Research questions for the digital era library,” 2003.
[3] E. Reiter and R. Dale, Building natural language generation systems.

MIT Press, 2000, vol. 152.
[4] A. Gatt and E. Reiter, “Simplenlg: A realisation engine for practical

applications,” in Proceedings of the 12th European Workshop on Natu-
ral Language Generation. Association for Computational Linguistics,
2009, pp. 90–93.

11https://en.wikipedia.org/wiki/Fourteen_(play)

[5] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[6] S. Chakrabarti, M. Van den Berg, and B. Dom, “Focused crawling:
a new approach to topic-specific web resource discovery,” Computer
Networks, vol. 31, no. 11, pp. 1623–1640, 1999.

[7] Z. Rasheed, Y. Sheikh, and M. Shah, “On the use of computable features
for film classification,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 15, no. 1, pp. 52–64, 2005.

[8] Z. Rasheed and M. Shah, “Movie genre classification by exploiting
audio-visual features of previews,” in Pattern Recognition, 2002. Pro-
ceedings. 16th International Conference on, vol. 2. IEEE, 2002, pp.
1086–1089.

[9] M. F. McKinney and J. Breebaart, “Features for audio and music
classification,” in Proc. ISMIR, vol. 3, 2003, pp. 151–158.

[10] M. I. Mandel and D. P. Ellis, “Song-level features and support vector
machines for music classification,” in ISMIR 2005: 6th International
Conference on Music Information Retrieval: Proceedings: Variation 2:
Queen Mary, University of London & Goldsmiths College, University of
London, 11-15 September, 2005. Queen Mary, University of London,
2005, pp. 594–599.

[11] P. Chaovalit and L. Zhou, “Movie review mining: A comparison
between supervised and unsupervised classification approaches,” in
System Sciences, 2005. HICSS’05. Proceedings of the 38th Annual
Hawaii International Conference on. IEEE, 2005, pp. 112c–112c.

[12] A. Kennedy and D. Inkpen, “Sentiment classification of movie reviews
using contextual valence shifters,” Computational Intelligence, vol. 22,
no. 2, pp. 110–125, 2006.

[13] N. Jamal, M. Mohd, and S. A. Noah, “Poetry classification using support
vector machines,” Journal of Computer Science, vol. 8, no. 9, p. 1441,
2012.

[14] R. M. Roxas and G. Tapang, “Prose and poetry classification and bound-
ary detection using word adjacency network analysis,” International
Journal of Modern Physics C, vol. 21, no. 04, pp. 503–512, 2010.

[15] S. Ramsay, “In praise of pattern,” Faculty Publications–Department of
English, p. 57, 2005.

[16] E. Hanser, P. Mc Kevitt, T. Lunney, and J. Condell, “Scenemaker:
Intelligent multimodal visualisation of natural language scripts,” in
Artificial Intelligence and Cognitive Science. Springer, 2010, pp. 144–
153.

[17] T. Lucassen and J. M. Schraagen, “Trust in wikipedia: how users
trust information from an unknown source,” in Proceedings of the 4th
workshop on Information credibility. ACM, 2010, pp. 19–26.

[18] C. Sauper and R. Barzilay, “Automatically generating wikipedia articles:
A structure-aware approach,” in Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume
1-Volume 1. Association for Computational Linguistics, 2009, pp.
208–216.

[19] C. Yao, X. Jia, S. Shou, S. Feng, F. Zhou, and H. Liu, “Autopedia: auto-
matic domain-independent wikipedia article generation,” in Proceedings
of the 20th international conference companion on World wide web.
ACM, 2011, pp. 161–162.

[20] M. A. Hearst, “Texttiling: Segmenting text into multi-paragraph
subtopic passages,” Computational linguistics, vol. 23, no. 1, pp. 33–64,
1997.

[21] J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz, “Multi-
document summarization by sentence extraction,” in Proceedings of the
2000 NAACL-ANLPWorkshop on Automatic summarization-Volume 4.
Association for Computational Linguistics, 2000, pp. 40–48.

[22] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local
information into information extraction systems by gibbs sampling,” in
Proceedings of the 43rd Annual Meeting on Association for Computa-
tional Linguistics. Association for Computational Linguistics, 2005,
pp. 363–370.

[23] D. R. Radev, E. Hovy, and K. McKeown, “Introduction to the special
issue on summarization,” Computational linguistics, vol. 28, no. 4, pp.
399–408, 2002.


