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Abstract

We address machine prediction of an individual’s
label (private or public) for a given image. This
problem is difficult due to user subjectivity and in-
adequate labeled examples to train individual, per-
sonalized models. It is also time and space con-
suming to train a classifier for each user. We pro-
pose a Group-Based Personalized Model for image
privacy classification in online social media sites,
which learns a set of archetypical privacy models
(groups), and associates a given user with one of
these groups. Our system can be used to provide
accurate “early warnings” with respect to a user’s
privacy awareness level.

1 Introduction

There has been increasing interest in understanding users’
privacy attitudes, especially in social network contexts
[Lampinen erf al., 2011; Wang et al., 2011b; Sheehan, 2002;
Mazzia et al., 2012]. Decisions related to image privacy have
been under scrutiny, due to the potential negative effect of
sharing an image with unintended audiences [Wang er al.,
2011al. To date, however, research has mainly focused either
on “universal” privacy prediction models, at one extreme, or
on personalized models, for generic content types (e.g. text,
media content, etc.) at the other extreme[Mazzia et al., 2012].
Both bodies of work fail to address some concerns. First, ev-
ery image is unique and carries different degrees and types
of personal information with it. Further, generic privacy pat-
terns do not necessarily reflect an individual user’s unique
sharing comfort levels. For instance, consider Figure 1. Two
users may agree on what is “public” for non-personal content
(e.g. landscapes or scenes from public places), but may dif-
fer greatly on images with kids, partial nudity, partying, and
other life events. Ultimately, whether an online image should
be private or not is subjective, affected by one’s personality,
experience, and degree of privacy awareness [Xu et al., 2012;
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Wang et al., 2011b]. Yet, several studies also suggest it is pos-
sible to predict how users will treat certain content, given their
level of privacy awareness and personal taste [Sheehan, 2002;
Spyromitros-Xioufis et al., 2016].

A technical challenge that personalized models need to
overcome is the amount of data necessary to train accurate
models. Even if a large amount of training data is available,
it is both time and space consuming (e.g., in the cloud) to
train and store models for every user. But sufficient personal-
ized training resources may anyway not be available. Thus
we argue new approaches are needed, leveraging common
“archetypical” privacy patterns across subsets of users, with
statistical strength in learning thus borrowed across users.

We propose a stochastic Group-Based Personalized Model
(GBPM) for image privacy classification in online social me-
dia sites. We introduce the concept of privacy groups, which
model a subset of users, and treat (exclusive) group member-
ship as a latent variable for each user. Our model is “per-
sonalized” in that each (test) user probabilistically associates
with each of the groups, based on any labeled examples sup-
plied by the user and the user’s demographics info. The user’s
posterior probability that any given image is private is thus a
user-specific (personalized) average of the privacy posteriors
under each of the groups.

Our model performs comparatively well regardless of the
amount of data used for training, consistently outperforming
several baselines, including the obvious approach of training
a separate personalized model for each user. Our experiments
show that, on a dataset of 114 users and about 3,400 image
labelings, our model achieves an overall accuracy measure of
79.31% when a few (15) images are used to infer group as-
sociations for each (test) user. We also achieve a promising
overall average accuracy of 62.2% even when test users pro-
vide no labeled data, but merely some personal profile data
(thus addressing the Cold Start Problem[Schein et al., 2002]).

Furthermore, because our model groups users according
to their privacy labeling patterns, we can analyse whether
groups of users who display similar behavior with respect to
image privacy are also similar in demographics and personal
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characteristics. Our results indicate that group dynamics are
complex, and while our groups cluster users well with respect
to privacy, no group appears to be well-described by a sin-
gle set of demographics. Rather, certain profiles, although
different, (e.g. an elder Asian woman and a Hindu young
man) could exhibit similar privacy patterns. To the best of
our knowledge, this is the first image privacy recommenda-
tion model able to guide users’ privacy preferences even in
the case of no or very limited labeled data for new users.We
also note that the proposed model could easily be extended to
address more general recommendation systems, with minor
changes. This is because recommendation systems are typi-
cally also highly subjective. Users patterns can be exploited
by our model (e.g. a users background and purchase history
could help us group users for similar recommendations).

2 Related Works

A number of recent studies have analyzed sharing pat-
terns and social discovery in image sharing sites like Flickr
[Lampinen et al., 2011; Yu et al., ; Wang et al., 2011a;
Bonneau and Preibusch, 2010]. Among other interesting find-
ings, scholars have determined that images are often used for
self and social disclosure.

Several mechanisms to protect user-uploaded images have
been proposed recently[Ra et al., 2013; Backes et al., 2014;
Tierney et al., 2013; Klemperer et al., 2012; Zerr et al., 2012;
Tran et al., 2016]. These mostly rely on the premise that users
make privacy decisions typically consistent with socially ac-
cepted norms of what is sensitive and what is not [Sheehan,
2002]. Accordingly, the authors focus on finding “universal”
features and a universal model for image privacy detection,
based on the Scale-invariant feature transform (SIFT), color
histogram deep learinig (DL) features, and text features from
tags and captions. However, these methods treat all users
identically. Consistently, they find that a single SVM trained
on an ensemble of features performs fairly well. However, we
demonstrate experimentally that these approaches lose accu-
racy by not accounting for subjectivity in privacy. Also note
that one primary baseline we compare with (universal SVM)
follows the method[Zerr et al., 2012]. This “universal” SVM
has much lower accuracy compared with our proposed model.

Recently, [Spyromitros-Xioufis et al., 2016] explored per-
sonalized privacy models using DL features. They separately
trained a logistic regression model for every user using la-
beled data provided by the user plus some additional labeled
data from a set of other users. However this approach re-
quired many labeled examples from each user to be most ef-
fective. Our approach is a compromise between these strate-
gies, more flexible than the single model approach, less per-
sonalized than a “pure personalized” approach, but borrowing
statistical strength from users in the same (discovered) group
to reduce labeled data requirements. Moreover, besides pro-
viding privacy predictions, our approach discovers multiple
groups given a set of personalized labelings/ratings.

3 Method

We assume P, training users, with user p providing N, im-
ages and a corresponding binary vector of labels by, indicat-
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ing private or public for each image. For a private image,
only spatially localized regions may contain sensitive con-
tent, with other (e.g. background) regions not really influenc-
ing a privacy decision. For modeling purposes, we process
each image into L overlapping patches or regions. Image
patches are chosen randomly, with the top-left corner’s po-
sition chosen based on a uniform distribution, and then with
the bottom-right corner chosen uniformly conditioned on the
remaining size of the image. Each patch’s width and length
are restricted to be at least 20 pixels, to make sure each patch
contains enough visual information.

3.1 Group-Based Personalized Model (GBPM) for
Users’ Privacy Decisions

Our model assumes M types of private content (M a priori
unknown), with the characteristics of these types also a pri-
ori unknown, e.g., they could represent bare skin, children’s
faces, religious, or political content. Private content may be
included in one or more regions of a given image. Accord-
ingly, an image is assumed private if and only if it contains at
least one region with private content.

Consistent with recent work on users’ privacy awareness
and online behavioral studies [Wang er al., 2011b], we as-
sume that a user’s privacy decisions follow one of a finite
set of patterns, i.e. we define privacy groups. These pat-
terns (e.g. younger users are comfortable sharing images with
bare skin) may result in different privacy decisions for the
same image by different groups, according to a group’s pref-
erences. These groups need to be discovered through our
learning mechanism. Supposing for now that there are K
groups, we introduce a 0-1 latent variable V5, which indi-

cates whether user p belongs to group k, where Zszl Vo =
1. Vi, (for both training and test users) will be inferred from a
user’s available labelings and from their personal profile data.

As mentioned above, images are processed into L patches.
We parametrize the probability that patch [ for image ¢ (pro-
vided by user p) is private to user p, assuming he belongs to
group k, as:

(m)T

Z%ﬂ e

Mo ™ T X+ whmo |
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i.e. as a generalized logistic regression function, where Cp;,
is the class label for the I-th patch of image ¢ provided by
user p, assuming he is in group k, X,,;; is the D dimensional
feature vector for this patch(deep learning extracted, as de-

scribed later), w,(cm) is a vector of weights for the m-th type of
private content in group k and wyg,o is a bias. We choose the
maximum private probability among all patches as the prob-
ability that the image is private(w.r.t user p, assuming he is
from group k), i.e.:

P[Opik = 1|sz] = max{P[C’pilk = 1|Xpil] = 1, R ,(Lz};,
where Cp;;, is the class label for image i and X,; is the col-
lection of patch feature vectors for image 7.

Under an independent and identically distributed training
data assumption, we can express the incomplete data log like-
lihood function over all the training images of all users, where
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Private for Userl - Public for User 2

Public for Userl and User2

Figure 1: User 1 labeled images in the blue dash box as private while User 2 labeled images private in the red dash box. Orange-boxed images
are images labeled private by both, and images outside both boxes are labeled public by both users.

bpi is the binary class label for image (with 1 indicating the
private class , and O otherwise), by

ZZOQZ HP G =1
p=1

(1 = P[Cpir = 1[Xpi]) ")

Because the incomplete data likelihood is difficult to optimize
directly, we instead invoke Expectation-Maximization (EM).
We first define the complete data log likelihood:

K
> Viw{bpilog P[Cir = 1|Xpi]+
i—1 k=1 “4)

1 —by;)log(1 — P[Cpik = 1|Xpi])}7

where V), is the hidden data within the EM framework.
The E-step and M-step are applied alternately until the log-
likelihood function (3) is locally maximized. Specifically, in
the E-step, we calculate the expectation of the latent variables
given the observed data:

E[Vpk|Xpabp] = P[k|vabp] X
NP

exp(Y_{byi 1og P[Cpir, = 1|X )+ ®)
1=1

(1= bpi) log(1 = P[Cpir = 1|X,i)})

In the M-step, we maximize the expected value of the com-
plete data log likelihood over the weight vector model pa-
rameters, with the expected latent variables held fixed. Since
a closed form solution does not exist, we used gradient as-
cent. Backtracking line search[Nocedal and Wright, 2006]
was used for choosing the step size automatically. To deal
with the max function (2), we used the pseudo-gradient [Teow
and Loe, 1997], a mathematically sound method based on
Fourier convergence analysis of side-derivatives to derive an
approximate gradient for max-min error functions.Thus, we
can obtain the approximate gradient of the log-likelihood
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3.2 Modeling the User’s Profile

By itself, the algorithm in Section 3.1 can learn groups with
strong intra-group privacy agreement. However, this gives no
way to infer privacy decisions for new users who have labeled
no images. This motivates us to include user profile infor-
mation in our GBPM model, which may be correlated with
interpersonal characteristics[Xu er al., 2012], e.g religion be-
lief, age, and gender. We extend our model to use profile data
y, of every user p. y, is a 30-dimensional binary vector!,
with each entry representing the value of a particular profile
attribute. Based on this, we can define prior probabilities on
group membership:

. er ty., +
priory, = p(ﬁkYp 51@0) )

Sy exp(BLYp + Bror)

Thus our complete data log likelihood function now becomes:

P,

Z Z Vi (log(priorps) + Z:{bpZ log(P[Cpir = 1|1X,])
p=1k=1
+ (1 = bpi) log(1 — P[Cpix = 1|Xpi])})- (3

!"There are 7 demographic variables. The total cardinality of
these 7 variables is 30, e.g. for ethnicity there are 5 possible values.
Thus, we create a 30-dimensional binary vector, with each binary
entry taking on value 1 when the associated demographic variable
takes on a particular value, and zero otherwise.
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EM is still applied to learn the model, where:

Plk|Xp, bp] o
NP

exp(log(priorpk) + Z{bpi log P[Cyi = 11X] (9
i=1

+ (1= bpi) log(1 = P[Cpi = 1[Xp]) })-

Even if new (test) users provide no labeled examples, our
model can still use the learned prior probabilities to infer their
group memberships, based on their profile data.’

3.3 Prediction

Given that a new user p has already labeled some images, we
can compute P[k|Xp, bp] according to the E-step equ (9).
Then for a new image i, we can compute the a posteriori
privacy probability for user p as:

K
P[Cpilxpvbp] = ZP[MXpabp]P[Cpik = 1|Xpi]- 10)
k=1

Currently, we threshold this probability at 0.5 to make a deci-
sion. However, the threshold could be chosen to achieve any
desired true positive/false alarm tradeoff.

4 Experimental Validation

4.1 Dataset

We collected our own dataset for testing purposes as follows.
The imageset was taken from the Picalert study, a collec-
tion of images with varying degrees of sensitivity [Zerr et
al., 2012]. We randomly sampled 2,700 images, and split
them evenly into 90 subsets such that each subset has 30 im-
ages. In order to learn and test users’ differences in terms
of privacy choices, each subset was assigned to two unique
Mechanical Turk workers, who were recruited using the Turk
platform. Each worker’s hit included two tasks: 1. Complete
a survey demographics and Social Network usage practice,
and 2. Label as private or public 30 images provided by us.
The first subtask specifically requested: gender, age range,
education level, ethnicity, religious belief, social network ac-
cess frequency (expressed on a 5-item frequency scale) and
frequency of posting on a social network.

In total, 114 valid user responses were collected and 3420
labels in total (2496 public labels and 924 private labels).
In 28.24% of the cases, images were labeled inconsistently
by the users who evaluated them. In terms of demograph-
ics, 59.29% of the respondents were male, the average age
was in the range of 25-35, and the average respondent has
a college degree (46.9%). The majority of the population is
white (69%), followed by Asian, African American, Hispanic
or Latino and other ethnicities. 53 participants are Christian
(43.6%), 2 are Buddhist, 10 are Hindu, 33 do not affiliate with
any religion, and the remaining respondents believe other reli-
gions. Finally, on average, 77.67% of the respondents access
and use social network sites frequently, about once a week.

2t is possible to add these examples to the labeled training set
and retrain the model for the new user. This approach entails much
greater system complexity, and was not investigated in this paper.
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On average, users post content once a week - similar to com-
mon usage patterns in the social media population [Correa et
al., 2010].

4.2 Deep Learning for Feature Extraction

Our image features are deep learning(DL) features, con-
structed as follows. We use the pre-trained eight-layer imple-
mentation of Convolutional Neural Networks implemented
by Caffee [Jia ef al., 2014], which is a benchmark standard
for image classification and object detection tasks [Razavian
et al., 2014]. The first five layers of this network extract fea-
tures by convolution with a set of image filters. Because we
are not interested in object identification, we disregard the 8th
layer and treat the 4096-dimensional output of the 7th layer of
the network as a feature vector, describing high-level features
of each image or image patch but not objects or categories.
Note that prior to feeding an image or an image patch into
the Deep Learning Network, it is re-sized to 224%224. In this
way, a patch can be represented as a 4096 dimensioned DL
feature vector regardless of its size.

4.3 Hyper-parameter Selection and Initialization

In GBPM, three hyper-parameters need to be chosen — the
number of private content types M, the number of patches L
and the number of user groups K'; we use nested cross valida-
tion (CV) to choose M and K. We first divide the dataset into
10 (outer) folds, and use 9 of these folds for training-plus-
validation, with the last fold used for testing. To calculate
the optimized hyper-parameter, we further split the collection
of nine training-plus-validation fold samples, again using 5-
fold cross validation, with four of these (inner) folds used for
training and one for validation. The search grid for K is cho-
sen from 4 to 7 with search step of 1, and M is chosen over
a range from 20-50 with a search step of 5, to maximize the
average (inner) validation fold CV accuracy. We found that
M=40 and K = 6 fit best for this dataset. Larger M and
K may be found for larger datasets (with more users). L was
chosen to be the minimum number such that the patches cover
90% of the image support. Thus, L = 100.

Since Equ (1) is non-convex, initialization plays an impor-
tant role since otherwise EM may converge to a poor local
maximum. In our study, we initialized our model based on
seven “seed” users with distinguished backgrounds and asked
them to label 60 common images (which were also included
in the training users’ set for baseline methods we evaluated).
We then trained the GBPM for each of them by setting the
group number K = 1. Finally, we combined these initial
pre-trained models and randomly generated the profile data
weights to instantiate our initial model parameters.

4.4 Baselines

We validate the accuracy of our model with 10-fold cross val-
idation by randomly splitting all 114 users into 10 user folds,
using 9 user folds for training and 1 for testing. For the test-
ing user fold we further split the labeled data provided by
each test user into two halves. We use the first half to in-
fer the test user’s group memberships for our model (this is
achieved by applying only the E-step using these test user la-
beled examples). The second half labeled data is used for
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Classifier Overall Accuracy | TNR TPR Fl-measure | SD of Overall Accuracy
Universal SVM 53.51% 72.13% | 34.88% 0.4702 0.1797
PSVM 59.53% 80.22% | 38.83% 0.5233 0.1717
IPSVM 56.84% 79.51% | 34.16% 0.4778 0.1803
IPPSVM 59.42% 74.29% | 44.55% 0.5570 0.1918
GBPM without Profile 65.03% 81.97% | 48.09% 0.6062 0.1922
GBPM 79.31% 85.38% | 73.23% 0.7883 0.1934

Table 1: Classification results using Deep Learning features.

calculating accuracy, comparing all baselines’ and GBPM’s
prediction results with the test user labels (which are treated
as ground-truth for accuracy evaluation purposes). We com-
pare our model’s accuracy with baselines when each test user
provides 30 labeled images, half used to evaluate testing ac-
curacy. For every baseline, we also measure the Standard
Deviation (SD) of the accuracy across users, so as to check
whether the performance is stable over all users.

We first compared our model mentioned in Section 3.1,
where no profile data is used, with our final GBPM, with pro-
file information used. We trained our models using 9 folds
of training users’ data, and infer the group type latent vari-
able using only the first half labeled data from a test user. As
shown in Table 1, we obtained an average TPR of 48.09% and
TNR of 81.97% when profile data is not used. The GBPM
model (with profile info) greatly improves the overall accu-
racy. We also tested several baselines as a comparison to our
model; these baselines all use as input features the 4096 DL
features obtained by feeding the whole image into the DL net-
work and extracting the layer 7 outputs. One approach is to
use all 9 fold training users’ data to train a Universal SVM
for all users, assuming all users have similar taste in privacy.
We used an RBF kernel SVM as the classifier; nested cross
validation was used to get the optimal hyper-parameters of
the SVMs. At the other extreme, we train a separate SVM for
every user. We call this second baseline Personalized SVM
(PSVM). Since in our dataset each user labeled 30 images,
we used half of these data to train and the rest to test without
using other users’ data. Due to the small amount of training
data, linear SVM was used here to avoid overﬁtting3.

To balance between these two extremes, we also trained
a global RBF-SVM with 9-folds training users’ data; then
for every new user, 15 labeled data (first half) was added
to the training dataset and (personalized) retraining was ap-
plied. We call this baseline Incremental Personalized SVM
(IPSVM). Further, we also designed a 4th baseline, Incremen-
tally Personalized Profile-SVM (IPPSVM), which is the same
as IPSVM except that it uses the user’s profile data as addi-
tional features. This approach uses exactly the same features
and data resources as GBPM.

When provided 15 test user labeled images to infer group
memberships, GBPM substantially outperforms all these
baselines, as shown in Table 1. Our results confirm on the
one hand that the assumption of one model for all users - per
the Universal-SVM model - is too simple. A pure personal-

3Due to insufficient number of training images, CV was not used
here; thus we directly used the (margin slackness) hyper-parameter
learned by the universal SVM.
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Figure 2: Accuracy of our model, IPSVM and IPPSVM versus the
number of test user provided labeled images.

ized model (PSVM), on the other hand, while better than the
universal SVM, still leads to poor performance, due to lack
of sufficient training data. Finally, even with IPPSVM, which
offers a compromise between these two strategies, we did not
observe any significant performance improvement. We be-
lieve this is due to the fact that IPPSVM “indiscriminately”
adds (global) labeled examples to train a personalized SVM —
many of these are from users with different privacy tolerances
than the current user, and thus are not helpful in achieving
more accurate personalization. Also note that as reported in
Table 1, our model and all baselines’ SDs are similar, which
shows our approach is as “stable” as the baselines.

Impact of Different Amounts of Test User Labels We var-
ied the number of test user-provided labeled examples from
none to 15 images to assess the effect of adding labeled test
user data. Note that when no images are labeled by the
user (0 user-provided labels), this becomes an instance of
the Cold-Start problem. In Figure 2, we compare our model
with the IPSVM and IPPSVM baselines since both methods,
similar to ours, exploit the test user-provided data (IPSVM
and IPPSVM use them for Incremental retraining purpose,
whereas our model (only) uses them to infer a better group
association for a new user using the E-step (without updat-
ing the model)). As shown in Figure 2, GBPM achieves a
higher average accuracy than these two baselines, both in the
Cold-Start case and as labeled images are added. Also as
expected, with more labeled test user data, the average accu-
racy of our model increases. In general, the improvement is
greater at the beginning and slows down as more images are
added. However, GBPM is seen to benefit much more from
test user examples than the baselines.

Complexity The training step for our model has a rela-
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tively high complexity, due to the high dimensional feature
space and gradient-ascent based M-step. Precisely, it takes
O(K * M * P* Np, * L x D) operations to compute the E-step
and O(K * M? % P x N, * L * D) to calculate each approx-
imate gradient of the log-likelihood for the M-step, where D
is the largest order (4096). However, note that GBPM’s train-
ing occurs only once for the user population, compared with
training a model for every user as for all other personal base-
lines. Also, our model needs O(K * Np, x L * M * D) time
complexity to infer the group membership of a test user, with
N, being the number of labeled images provided by a new
user p, and 0(1) space complexity to save this information.
By contrast, even PSVM, which required the least training
time, needs at least O(Ng * D) complexity to train and O(JV,,)
space complexity to save the model for (every) new user. That
is, while our training complexity primarily grows with the
number of groups (which depends on the number of training
users), complexity for a personalized SVM grows with the
number of fest users, which in general is much greater.

4.5 User Clustering Analysis

Since GBPM groups users according to their privacy behav-
ior, it is interesting to see whether users with similar privacy
patterns share common profile attributes. Using inferred in-
dicator variables V},;, we can calculate the group distribution
for each of the profile attributes. Recall that, for our 114
users, we have determined 6 groups (from 2 to 54 mem-
bers per group, average 19 and SD 18.60), using 7 distinct

profile attributes and their labeled image data. In Figure 3
we report the distributions of four representative profile at-
tributes: gender, age, education level and frequency of so-
cial networks usage. Viewed individually (based on their
group conditioned histograms), individual attributes are not
very group-discriminating. Moreover, there does not appear
to be even a single vector of values (over all attributes) that is
group-defining, or group-characteristic.

Another approach to explore how distinct the user groups
are is to check the overlap of combinations of user profile
attributes among groups. We calculate a similarity matrix
(see Figure 4), where M, ; represents the percentage of similar
profile data in group j compared with the data in group . We
define a pair of user profiles similar if two profiles have two
or less different attribute values (28% difference). As shown,
the distinction between different groups is significant, since
the values on non-diagonal elements are quite small. We also
observe that the diagonal elements, which show the similarity
of profile data inside of a group, are not very high, indicating
that users in a group do not share identical attributes. As men-
tioned before, people with similar level of privacy awareness
are not always identical with respect to demographics and in-
terpersonal characteristics. As privacy is highly dependent on
complex dimensions beyond social and demographic back-
ground, such as exposure to privacy outcries and personal
experiences [Xu et al., 20121, two highly similarly profiled
users may exhibit very different privacy patterns.

5 Future Work

First, we can extend our model to address multi-group deci-
sion making in other contexts, e.g. Supreme Court Decisions
or recommendation systems. Second, it would be interesting
to extend the privacy problem to the multiple levels of privacy
case [Squicciarini et al., 2014]. Third, our learning objective
function is non-convex; alternative training could solve this
problem more efficiently. Finally, model retraining to include
each new user’s labeled examples could be investigated.
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