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ABSTRACT

Many machine learning techniques have been proposed to reduce the information overload in social media data
during an emergency situation. Among such techniques, domain adaptation approaches present greater potential as
compared to supervised algorithms because they don’t require labeled data from the current disaster for training.
However, the use of domain adaptation approaches in practice is sporadic at best. One reason is that domain
adaptation algorithms have parameters that need to be tuned using labeled data from the target disaster, which is
presumably not available. To address this limitation, we perform a study on one domain adaptation approach with
the goal of understanding how much source data is needed to obtain good performance in a practical situation, and
what parameter values of the approach give overall good performance. The results of our study provide useful
insights into the practical application of domain adaptation algorithms in real crisis situations.
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INTRODUCTION

With the prevalent usage of social media, we often see newspapers or TV stations citing texts and images posted on
Twitter by eye-witnesses of emergency events. Such first-hand information during emergencies has the potential to
also help emergency teams to improve situation awareness and response (Castillo 2016; Hughes et al. 2014; Reuter
et al. 2015; Starbird et al. 2010; Landwehr and Carley 2014; Palen, Vieweg, et al. 2011). In practice, however,
large-scale disaster response organizations haven’t extensively adopted the use of such social media data (Tapia
and Moore 2014). A survey of emergency managers in U.S.A. at county level (Plotnick et al. 2015) and surveys
of emergency staff in some European countries (Reuter et al. 2015) show that although the responding officers
see social media as being useful, many challenges still impede the extensive adoption of social media data in
operations. These challenges include both management challenges such as lack of guidance, lack of staff, and
technical challenges such as information overload, and reliability or trustworthiness of the information source.

Many recent research works have used machine learning approaches on social media data gathered during emergency
events. Such works have suggested that automated approaches based on machine learning can enable management
and response organizations sift through large amounts of information, and prioritize the information to be carefully
analyzed based on relevance, reliability, trustworthiness, etc. (Imran, Elbassuoni, et al. 2013; Imran, Mitra, et al.
2016; C. Caragea, Squicciarini, et al. 2014; C. Caragea, Silvescu, et al. 2016; Li, Guevara, et al. 2015; Imran,
Castillo, et al. 2015). However, machine learning algorithms cannot be easily deployed and used in emergency
situations due to different challenges, depending on the algorithms.

One big challenge for supervised learning algorithms is that such algorithms require labeled data from a current
disaster of interest, i.e. tweets labeled as relevant to the disaster or not-relevant, tweets labeled as relevant and
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informative versus tweets labeled as relevant but not-informative, etc. Unfortunately, it is not realistic to assume
that labeled data for a current disaster is readily available, as trustworthy labels require significant time and effort.
However, it is reasonable to assume that labeled data is available for a prior disaster, called “source”, and several
works have focused on learning supervised classifiers for the “target” disaster based on a “source” disaster (Imran,
Elbassuoni, et al. 2013; Imran, Mitra, et al. 2016). One drawback of this approach is that the classifiers learned
from a prior source disaster may not generalize well to the target disaster (Imran, Elbassuoni, et al. 2013; Verma
et al. 2011), as the target disaster may have unique characteristics in terms of its nature, location, etc. and may also
cause different social media response (Palen and Anderson 2016).

Domain adaptation algorithms (Li, Guevara, et al. 2015) that make use of target unlabeled data in addition to source
labeled data represent a good alternative to supervised classifiers learned from labeled source data only, given that
unlabeled data from the target disaster accumulates quickly. The algorithm proposed in (Li, Guevara, et al. 2015) is
an iterative algorithm based on Expectation Maximization (EM). A variant of this algorithm, based on the idea of
self-training, has been introduced in our prior work (Li, D. Caragea, et al. 2017). Our prior experimental results
have shown that the self-training variant gives results comparable, and sometimes better, than the EM variant. More
importantly, both variants result in classifiers that are significantly better than the supervised classifiers learned
from labeled source data only. Furthermore, the self-training variant is more appropriate for scenarios where more
unlabeled target data may become available during the algorithms’ later iterations. Such scenarios better reflect the
reality, making the self-training approach more desirable when attempting to use domain adaptation algorithms in
practice during an emergent disaster.

However, there are other challenges that prevent the self-training domain adaptation approach from being deployed
in a real situation. First, to be able to successfully deploy this approach, it is important to understand how much
source labeled data the algorithm needs, as too little labeled data may result in inaccurate classifiers, while too
much labeled data may not be worth the effort of labeling it. Thus, our first objective is to study the variation of the
performance of this domain adaptation algorithm with the amount of labeled source data. Second, the algorithm
has two parameters that need to be tuned, a parameter that controls the weights assigned to the source and target
data during training, and a parameter that controls the number of target instanced added to the classifier at each
iteration. Parameter tuning is not a challenge specific to domain adaptation. In fact, many supervised learning
algorithms require tuning for best performance, a process that can be time consuming. But in addition to being time
consuming, in a domain adaptation scenario, parameter tuning requires labeled data from the target disaster. Under
the assumption that labeled data is not available for the target disaster, parameter tuning becomes impractical.

To address these issues, we use a relatively large number of (source, target) pairs and study the performance of
the self-training domain adaptation algorithm under different amounts of labeled source data, with the goal of
identifying the size of source data that the algorithm needs. We then study how the performance changes when
varying the parameters of the algorithm. The objective is to identify parameter values that work well for a large
number of (source, target) pairs, and use those values as default values when deploying a domain adaptation in
practice, thus avoiding the need for parameter tuning in a real scenario.

In addition, we study the performance of the algorithm with the number of iterations. As mentioned earlier, the
algorithm terminates when there is no change in the labels of the current instances in the target data, in between two
consecutive iterations. We can think of this condition as a pseudo-convergence condition, in the sense that if the
labels don’t change in between two consecutive iterations, the classifiers will presumably not change much if the
most confidently labeled instances at the last iteration are still added to the training data. However, in practice,
the addition of the most confidently labeled instances can result in a classifier with performance different from
the performance of the classifier at pseudo-convergence. The objective is to understand if the algorithm should
terminate when the pseudo-convergence condition is met, or if it should run for a certain number of iterations
(dependent on the number of target unlabeled instances to be added to the training data).

‘We summarize our main contributions as follows:

* We evaluate the performance of the domain adaptation algorithm with self-training on a relatively large set of
(source, target) pairs, when using different amounts of labeled source data. The goal is to identify a good
trade-off between the amount of labeled source data necessary for good performance and the effort to label
that data.

* We evaluate the performance of this algorithm when varying its parameters. The goal is to identify parameter
values that give good results, in general, and use those values as default values in a realistic scenario, where
tuning is impractical.
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* We also evaluate the performance of the algorithm when varying the number of iterations. The goal is to
identify the number of iterations that leads to the best performance, in general, and use that number as a
default value in a realistic scenario.

METHOD

We focus on the task of classifying tweets posted during a disaster as related to the disaster, or on-fopic, and not
related to the disaster, or off-topic. This is one of the most important classification tasks as many other tasks during
a disaster are performed on tweets relevant to a disaster. Furthermore, this is a task where supervised classifiers
learned from source only do not generalize well (Li, Guevara, et al. 2015). While any algorithm, including Naive
Bayes, Random Forest (RF), Support Vector Machines (SVM), Logistic Regression (RF), etc. can be used with
domain adaptation, we choose to use the Naive Bayes algorithm as it doesn’t have any parameters that need to be
tuned. Furthermore, our prior work (Li, D. Caragea, et al. 2017) has shown that for our classification task, Naive
Bayes gives better results than the RF, SVM, LR algorithms with default parameters (without tuning).

We implemented a version of self-training domain adaptation based on (Li, Guevara, et al. 2015; Herndon and
D. Caragea 2015). The self-training domain adaptation builds a weighted Naive Bayes Bernoulli (Manning et al.
2008) classifier, which linearly combines source and target data in an iterative fashion, to simultaneously estimate
the prior P(c;) and the likelihood P(wj]c;), as follows:

P(ci) = (1 = y)Ps(c;) + yPru(ci) 9]

P(wjlci) = (1 = y)Psp(wjlci) + yPru(wjlc;) 2
In the equations above, c¢; represents a class label, w; is a feature in the feature set or vocabulary V, the probability
subscript (SL or TU) denotes the type of data used to estimate that probability, i.e. SL denotes source labeled data,
TU denotes target unlabeled data, and ¢ is a parameter that controls how fast we shift the weight from source to
target data. This parameter is defined as y = min(z = 6, 1), where t = {0, 1,2, - - - } is the iteration number. Initially,
t = 0, y = 0, which means that only source labeled data is used. Then, according to the Bayes Theorem, we estimate
the posterior class label ¢; for a new instance d as:

Peild) < P(c)) | | POwjle) 3)

JEV]

At each iteration, the current classifier (originally trained only from source labeled data) is used to classify the
remaining target unlabeled data (originally all the target unlabeled data). The most confidently classified unlabeled
instances (e.g., top k instances in each class) are moved to the training set, with hard (e.g., 0/1) labels, to be used in
subsequent iterations. By default, the algorithm runs until convergence, where “convergence” means that the labels
of the remaining target unlabeled instances don’t change in between two consecutive iterations (Yarowsky 1995).
The domain adaptation approach with self-training is summarized in Algorithm 1 below.

So the algorithm has two parameters that need to be tuned, a parameter ¢ which defines how fast we shift the weight
from source to target data, and another parameter £ which defines how many instances of each class to add at each
iteration while training.

DATASET

CrisisLexT6 dataset is a collection of English tweets from six disasters, published by (Olteanu et al. 2014). This
dataset is collected through Twitter API based on keywords and geo-locations of affected areas. The six disasters all
occurred between October 2012 and July 2013 in USA, Canada and Australia. There are approximately 10,000 tweets
for each disaster, all manually labeled as on-topic or off-topic through the crowdsourcing platform Crowdflower. We
used the same pre-processing as in (Li, Guevara, et al. 2015) to clean the tweets, including removing non-printable
ASCII characters; replacing URLs, email addresses, and usernames with an URL/EMAIL/USERNAME placeholder,
removing RT (i.e., re-tweet) and duplicate tweets etc. Furthermore, we represented both source disaster tweets and
target disaster tweets as feature vectors (using the bag-of-words 0/1 representation), where the features are words
that appear in the target disaster with frequency as least 10. Thus, the vocabulary size is different for different target
disasters, but generally each vocabulary consists of around 1000 features for the source/disaster pairs that we chose
to experiment with. We do not perform additional feature selection as we assume that target labeled data is not
available. The statistics for the final dataset are shown in Table 1, sorted based on the time when each disaster
happened.
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Algorithm 1: Naive Bayes Domain Adaptation algorithm with self-training

1. Given: Target unlabeled data TU, source labeled data SL and target test data TT

2. Initialize TUparg = ¢ and TUjer, = TU, where TUpq,q is the set of instances with hard labels assigned by
self-training, and TUj., is the set of unlabeled instances left in T7U

3. Use SL and TU} g4 to simultaneously compute the prior and likelihood with Equations 1 and 2, respectively.
At the first iteration, only SL is used

4. Compute the posterior class probability of target instances still unlabeled, TUj.s,, with Equation 3

5. Select the k£ most confidently labeled instances from each class ¢; based on probability ranking, move them to
TUnara (to use for training in the next iteration) and remove them from 7Ujf;

6. while (labels assigned to instances in TUj.f; change) or (maximum number of iteration not reached) do

M-step: Simultaneously compute the prior and likelihood using Equations 1 and 2, respectively, using a
combination of SL and TUy,,,4 weighted based on y = min(z = 6, 1), where ¢ is the iteration number

E-step: Compute the posterior class probability of target instances still unlabeled, TUj.,, with Equation 3 and
select the & most confidently labeled instances as in Step 4

end

7. Use the final classifier to predict the labels of the target test instances 7T

Table 1. Number of instances for each disaster in the dataset, before and after cleaning

Before Cleaning After Cleaning
Crisis On-topic Off-topic Total  On-topic Off-topic  Total
2012_Sandy_Hurricane 6138 3870 10008 5261 3752 9013
2013_Queensland_Floods 5414 4619 10033 3236 4550 7786
2013_Boston_Bombings 5648 4364 10012 4441 4309 8750
2013_West_Texas_Explosion 5246 4760 10006 4123 4733 8856
2013_Oklahoma_Tornado 4827 5165 9992 3209 5049 8258
2013_Alberta_Floods 5189 4842 10031 3497 4714 8211

EXPERIMENTAL SETUP

Our experimental setup is designed to help us understand the use of the domain adaptation algorithm from a
practical point of view. First, we want to understand how many source instances are needed to learn an accurate
classifier for a target disaster in a domain adaptation setting. Second, we aim to understand how the performance of
the domain adaptation classifier varies with parameters ¢ and k values, and to select good overall values to use in
practice. Third, we aim to study how the performance varies with different numbers of iterations, and to identify an
appropriate number of iterations for good performance. More specifically, we ask the following questions:

* How many source labeled instances are needed to build an accurate classifier for the target?
o What values should we use in practice for the parameters 6 and k of the domain adaptation algorithms?

* How many iterations are needed to build an accurate classifier for the target?

To answer these questions, we follow the timeline of the six disasters in the dataset and select a variety of disaster
pairs to perform experiments. Except for Hurricane Sandy, which does not have a prior disaster in this dataset, all
the other disasters are used as target disasters in one or more pairs. We end up with 11 pairs, which cover natural
disaster pairs, man-made disaster pairs, and also natural and man-made disaster pairs. When reporting the results,
we arrange pairs having the same target disaster but different source disasters together, and represent each pair with
its initials of the source and target disasters, as shown in Table 2.
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Table 2. Source-Target pairs of disasters used in the experiments

Pair Source Disaster Target Disaster

SH -> QF 2012_Sandy_Hurricane 2013_Queensland_Floods
SH -> BB 2012_Sandy_Hurricane 2013_Boston_Bombings

QF -> BB 2013_Queensland_Floods 2013_Boston_Bombings

SH -> WTE 2012_Sandy_Hurricane 2013_West_Texas_Explosion
BB -> WTE 2013_Boston_Bombings 2013_West_Texas_Explosion
SH -> OT 2012_Sandy_Hurricane 2013_Oklahoma_Tornado
QF -> OT 2013_Queensland_Floods 2013_Oklahoma_Tornado
BB -> OT 2013_Boston_Bombings 2013_Oklahoma_Tornado
SH -> AF 2012_Sandy_Hurricane 2013_Alberta_Floods

QF -> AF 2013_Queensland_Floods 2013_Alberta_Floods

BB -> AF 2013_Boston_Bombings  2013_Alberta_Floods

Training and test data: For each pair, we use 5-fold cross-validation to select target unlabeled data and target test
data. Specially, we split the target data into 5 folds; at each rotation, one fold is used as target test data (TT), and
three folds are used as target unlabeled data (TU) to be used in domain adaptation together with source labeled
data (SL). The last fold is reserved for potential usage as target labeled data in future work. To choose different
amounts of source labeled data for each pair, we randomly select 250, 500, 1000, 2000 instances from each class
(on-topic/off-topic), and then finally include all instances from each class. Thus, we end up with SL-500, SL-1000,
SL-2000, SL-4000 and SL-ALL number of source instances, respectively. The number of all instances for each
disaster is around 8000 after cleaning, except for Hurricane Sandy whose number is around 9000.

Parameter tuning: To report best performance for a pair, we tune parameters ¢ and k during a validation step. We
randomly select one of the three target unlabeled (TU) folds as validation data (TTV), and use the other two folds of
TU as target unlabeled data for validation (TUV). We use SL+TUYV for training and TTV and select the best values
for the parameters based on TTV. After tuning, the whole TU is used to learn the final classifier for the target, and
performance is estimated using the target test set TT. The values used for ¢ are: {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9}, and the values used for k are {1,5,10}.

Experiments: We perform several experiments on each pair of disasters. The first experiment is domain adaptation
with self-training running until convergence, with parameter values tuned based on the validation data. We refer to
this experiment as NB-STT-Conv. The second experiment, NB-STF-Conv, is similar to the first one, except that the
algorithm runs with fixed values for parameters ¢ and k. We compare the results of these experiments to understand
how much is lost, if anything, by fixing parameters.

To see whether the performance can still improve after convergence, we also vary the number of iterations for fixed
¢ and k parameters, beyond convergence. The following value are considered for the number of iterations: {10,
50,100,150,200,250,300}, and the best number of iterations, among those considered, is identified. We refer to the
experiment where the algorithm runs with fixed parameters ¢ and k, and fixed number of iterations as NB-STF-Iter.
The results of all experiments are reported in terms of the area under the ROC curve (auROC), but other measures
(e.g., accuracy) show similar trends.

EXPERIMENTAL RESULTS AND DISCUSSION

To answer our research questions, we first run the algorithm using source datasets of different sizes and tune
parameters. We then analyze how the performance varies with different values for parameters ¢ and k, when
running until convergence. We identify the general best values for those parameters. Then, using the selected 6 and
k values, we study the performance of the algorithm when increasing the number of iterations, and identify a good
number of iterations to use instead of convergence. We answer the research questions in the following discussion.

How many source labeled instances are needed to build an accurate classifier for the target?

Table 3 shows the variation of the performance with the size of the source dataset. We performed column-wise
paired t-tests p < 0.05) to compare the results in a row and identify values that are significantly better than their
counterparts. The best values for each row/pair are shown in bold. As can be seen, the performance generally
increases with the amount of labeled source data. However, between using 4000 instances and using all instances
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Table 3. Variation of the performance of the domain adaptation algorithm with the size of the source dataset. The
supervised Naive Bayes classifier learned from all source data is used as a baseline. Performance is reported as
weighted auROC values obtained using parameter tuning (averaged over 5 folds). The algorithm terminates upon
convergence (NB-STT-Conv). The best value in each row is shown in bold (based on a t-test with p < 0.05).

Pair | Baseline | SL-500 SL-1000 SL-2000 SL-4000 SL-All
SH->QF | 0911 | 0945  0.955 0.964 0.971 0.974

SH->BB | 0.753 0.877 0914 0.926 0.935 0.941
QF->BB | 0.820 0.840 0.863 0.866 0.890 0.890

SH->WT | 0.853 0.973 0.972 0.976 0.986 0.987
BB -> WT | 0.983 0.969 0.972 0.972 0.980 0.984

SH->OT | 0.865 0.921 0.932 0.944 0.953 0.951
QF ->OT | 0.880 0.916 0.921 0.919 0.926 0.924
BB -> OT | 0.905 0.919 0.924 0.927 0.942 0.944

SH-> AF | 0.830 0.925 0.942 0.956 0.970 0.972
QF -> AF | 0.860 0.880 0.890 0.892 0.918 0.922
BB -> AF | 0.806 0.898 0.912 0.935 0.950 0.950

(approximately 8000), the performance does not increase much. In fact, for 7 out of 11 pairs, the results obtained
with 4000 instances are as good as the results obtained with all source instances, suggesting that the effort that
goes into data labeling is not worth beyond 4000 instances. Furthermore, we can also see that as few as 500 source
instances can produce classifiers with performance close to 90%, and most of the time better than the performance
of the supervised classifiers learned from all the source d ata. Therefore, if labeling 4000 instances is not possible,
the domain adaptation algorithm can still help as compared to the supervised learning algorithm.

What values should we use in practice for the parameters ¢ and k of the domain adaptation algorithms?

Figures 1 and 2 show the variation of performance with parameters ¢ and k, respectively. In each figure, the
variation of performance when 500 source instances are used is shown on the left, whereas variation when 4000
source instances are used is shown on the right. We focus on 500 and 4000 instances, respectively, to understand if
the best values for parameters are different for smaller versus larger source datasets. In all cases, the algorithm is
run to convergence.

Subplots (a), (b), (c) in Figure 1, show the variation of the performance with § when 500 source instances are
used, and £ is fixed to 1, 5, 10, r espectively. Similarly, subplots (d), (e), (f) in Figure 1, show the variation of
the performance with 6 when 4000 source instances are used, and k is fixed to 1, 5, 10, r espectively. We can
see that when we have 4000 source instances, the best results are generally obtained for a very small value of
0, specifically 0.001, regardless of the value used for k . This result suggests that a source with 4000 instances
produces a reasonably good classifier in the first place, and therefore the shift from the source to the target should
be done slowly to allow for the accumulation of accurately labeled target instances in the training set. Another
interesting observation is that for values of § greater than 0.1, the performance does not change much. This is
because when ¢ is large, the algorithm shifts all the weight to the target data in a small number of iterations. For
example, when § = 0.2, the weight assigned to the target will be 1.0 at the sixth iteration (min(5 0.2, 1) = 1), and
thus the classifier solely depends on the self-training of the target unlabeled instances added in the first 5 iterations,
which will lead the algorithm to converge very fast.

‘When 500 source instances are used, the best results are also obtained with small values of ¢, but the best value is
not consistent as 0.001. In some cases, the best 6 value is 0.01 or 0.1, which shows that the shift from source to
target happens faster when the original classifier learned from source is not very good. In effect, a higher weight
will be assigned to the target data, which is still small in size and possibly not very accurate. Given that, from a
practical point of view, it is desirable to have a larger amount of source data (approximately 4000), as that makes it
easier to find good overall values for the parameter ¢.

Subplots (a), (b), (c) in Figure 2 show the variation of the performance with k£ when 500 source instances are used,
and ¢ is fixed to 0.001, 0.01, 0.1, r espectively. Similarly, subplots (d), (e), (f) in Figure 2 show the variation of
the performance with § when 4000 source instances are used, and ¢ is fixed to 0.001, 0.01, 0.1, respectively. By
analyzing these plots, we can see that when ¢ is very small, for example 0.001, the performance is more steady,
generally increasing very slowly with &, with some exceptions (e.g., SH -> AF in Figure 2 (a)). In particular, for
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Figure 1. Variation of the performance (auROC) with ¢ for two sizes of the source dataset: SL-500 (left) and
SL-4000 (right). The parameter £ is fixed to 1, 5, and 10, r espectively. The algorithm terminates upon convergence.

4000 source instances and § = 0.001, the best performance is observed for either k = 5 or k = 10. The performance
decrement from k = 5 to k = 10 that is observed for some pairs can be explained by the addition of mislabeled target
instances to the training data, which can easily happen when too many target instances are added at once. When ¢ is
0.01 or 0.1, the increase/decrease pattern is less consistent overall, although for many pairs larger k is better.

Figures 1 and 2 together suggest that the best performance overall is obtained when the source data consists of
approximately 4000 instances, parameter § is set to 0.001 and parameter k is set to 5 or 10. Furthermore, even
when only 500 source instance are available, the same parameters can be used.

To understand if performance is sacrificed when fixing parameters as opposed to tuning them, we compare the two
settings when the algorithm runs to convergence. The results are shown in Table 4. As can be seen, the results
obtained using fixed parameter values are as good as the results obtained using tuned values for most pairs, with
only two exceptions for ST-4000 (QF -> BB, QF->0T) and two exceptions for ST-500 ( QF->OT and SH -> WTE),
where the performance with fixed values is just slightly worse than the performance with tuned values.

How many iterations are needed to build an accurate classifier for the target?

Using the findings about best overall p arameters, our next objective is to compare the performance when the
algorithm terminates upon convergence versus performance when the algorithm terminates after a fixed number of
iterations, identified as a good overall number of iterations during v alidation. Specifically, we run experiments with
fixed parameters ¢ and k, and vary the number of i terations. The results on the target validation data are shown
in Figure 3, for 500 source instances (left) and 4000 source instances (right). The dot on each curve represents
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Figure 2. Variation of performance (auROC) with & for two sizes of the labeled source data: SL-500 (left) and SL-
4000 (right). Parameter ¢ is fixed to 0.001, 0.01 and 0.1, r espectively. The algorithm terminates upon convergence.

the number of iterations at “convergence” for the corresponding pair on a curve. As can be seen, the performance
generally increases with the number of iterations, beyond the number of iterations at which “convergence" is reached.
However, after a certain number of iterations (equivalently, after a certain number of target instances have been
added to the training set), the performance does not change much. As expected, the number of iterations at which
performance stabilizes is larger for k = 5 as compared to k = 10, as less target instances are added to the training
data, at each iteration, for k = 5. In particular, the performance becomes stable around 250/300 iterations for k = 5
and around 150 iterations for k£ = 10. For k = 5, 300 iterations correspond to 5x2x300=3000 target instances being
added to the training data, while for k£ = 10, 150 iterations correspond to 2x10x150=3000 target instances as well.
This result suggests that the number of target instances to be included in the training dataset needs to be greater than
3000 for best performance. However, it is important to note that the algorithm can start with the unlabeled target
data available at the onset of a disaster. As more unlabeled target data becomes available at a later time, that data
can be used in subsequent iterations of the domain adaptation algorithm, in an online fashion.

Table 5 shows the results of the algorithm when run with fixed parameters 6 = 0.001 and £ = 5 and two termination
conditions, respectively: convergence (NB-STF-Conv) and fixed number of iterations, specifically 300 iterations
(NB-STF-Iter). As can be seen, the results are almost aways better when using a fixed number of iterations, therefore
running the algorithm beyond pseudo-convergence is generally advantageous.

In summary, our empirical results suggest that fixing the algorithm’s parameters ¢ and k, and fixing the number of
iterations n can be done without scarifying performance. In turn, this finding makes it possible to use our domain
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Figure 3. Variation of performance (auROC) with the number of iterations for two sizes of the labeled source data:
SL-500 (left) and SL-4000 (right). The dots on each curve represent the performance at “convergence."

adaptation approach in a practical situation, where target labeled data for tuning parameters is not available, but
batches of unlabeled target data accumulate quickly in an online fashion.

RELATED WORK

In the context of automatically classifying disaster data, several research papers have studied supervised learning
algorithms in regard to transferring information from a prior source disaster to a current target disaster (Imran,
Elbassuoni, et al. 2013; Imran, Mitra, et al. 2016; Verma et al. 2011; Rudra et al. 2015). Verma et al. (2011)
used natural language processing techniques together with machine learning algorithms, both Naive Bayes and
Maximum Entropy, to identify situational awareness tweets belonging to four crisis events. They studied how well
the Maximum Entropy classifiers performed across the four events and found that the classifiers didn’t generalized
well across different types of disasters. In a similar study, Imran, Mitra, et al. (2016) used Random Forest classifiers
and achieved good results for disasters of the same type, but not for disasters of different types. Imran, Elbassuoni,
et al. (2013) performed experiments on two disasters, Joplin Tornado (as source) and Hurricane Sandy (as target),
with the goal of identifying information nuggets. After classifying different types of informative (casualties,
donations, etc.) tweets with Naive Bayes classifiers, they used a machine-learning sequence labeling algorithm,
conditional random fields (CRF), to extract useful information, such as the number of casualties or the name of the
infrastructure. Their experiments showed that using source data only results in a significant drop in the detection
rate, while not affecting significantly the recall.

Most of these supervised algorithms, e.g., Maximum Entropy, Random Forest, are well developed and have been
used extensively in text classification, but have hyper-parameters that need to be t uned. When applying these
supervised algorithms to classify disaster social media data, default parameter values may not produce models as
good as those obtained when tuning parameters. Furthermore, supervised classifier learned from a prior source
disaster only may not perform well on an emergent target disaster as suggested by (Verma et al. 2011; Imran,
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Table 4. Tuning results (NB-STT-Conv) versus results Table 5. Results with fixed parameters when the al-
with fixed parameters 6 = 0.001 and &k = 5 (NB-STF- gorithm runs to convergence (NB-STF-Conv) or for a

Conv). In both cases, the algorithm terminates upon fixed number of iterations (NB-STF-Iter), specifically
convergence. Best value in each column of a pair is 300 iterations. Best value in each column of a each pair
shown in bold (row-wise t-test with p < 0.05). is shown in bold (row-wise t-test with p < 0.05).
| Pair Experiment ~ SL-500 SL-4000 || Pair Experiment ~ SL-500  SL-4000 |
SH -> QF NB-STT-Conv  0.945 0.971 SH -> QF NB-STF-Conv  0.949 0.967
NB-STF-Conv  0.949 0.967 NB-STF-Iter 0.957 0.972
SH -> BB NB-STT-Conv  0.877 0.935 SH -> BB NB-STF-Conv  0.873 0.938
NB-STF-Conv  0.873 0.938 NB-STF-Iter 0.893 0.935
QF -> BB NB-STT-Conv  0.840 0.890 QF -> BB NB-STF-Conv  0.855 0.878
NB-STF-Conv  0.855 0.878 NB-STF-Iter 0.880 0.898
SH->WTE NB-STT-Conv 0.973 0.986 SH->WTE NB-STF-Conv 0.959 0.985
NB-STF-Conv  0.959 0.985 NB-STF-Iter 0.980 0.990
BB ->WTE NB-STT-Conv  0.969 0.980 BB ->WTE NB-STF-Conv 0.973 0.983
NB-STF-Conv  0.973 0.983 NB-STF-Iter 0.981 0.987
SH-> OT NB-STT-Conv  0.921 0.953 SH-> OT NB-STF-Conv  0.910 0.950
NB-STF-Conv  0.910 0.931 NB-STF-Iter 0.938 0.962
QF -> OT NB-STT-Conv  0.916 0.926 QF -> OT NB-STF-Conv  0.893 0.914
NB-STF-Conv  0.893 0914 NB-STF-Iter 0.919 0.933
BB -> OT NB-STT-Conv  0.919 0.942 BB -> OT NB-STF-Conv 0911 0.942
NB-STF-Conv  0.911 0.942 NB-STF-Iter 0.934 0.952
SH -> AF NB-STT-Conv  0.925 0.970 SH -> AF NB-STF-Conv  0.928 0.965
NB-STF-Conv  0.928 0.965 NB-STF-Iter 0.940 0.968
QF -> AF NB-STT-Conv  0.880 0.918 QF -> AF NB-STF-Conv  0.864 0.919
NB-STF-Conv  0.864 0.919 NB-STF-Iter 0.902 0.916
BB -> AF NB-STT-Conv  0.898 0.950 BB -> AF NB-STF-Conv  0.894 0.946
NB-STF-Conv  0.894 0.946 NB-STF-Iter 0.932 0.959

Elbassuoni, et al. 2013; Li, Guevara, et al. 2015 and our own work (Li, D. Caragea, et al. 2017)). At last, the works
mentioned before use source data sets of varying sizes, and it is not clear how that affects the performance.

In terms of unsupervised domain adaptation, Li, Guevara, et al. (2015) proposed a domain adaptation algorithm
based on EM. Their algorithm makes use of target disaster unlabeled data, together with source disaster labeled
data, and produces classifiers that are better than the supervised classifiers learned from labeled source data only.
Li, Guevara, et al. (2015) experimented with three classification tasks from two disasters, Hurricane Sandy (used as
source) and Boston Bombing (used as target), with promising results on the task of identifying tweets relevant to a
certain disaster. As opposed to the algorithm proposed by Li, Guevara, et al. (2015), our domain adaptation variant
uses self-training, enables the learning process to start quickly (when only a small number of target unlabeled data
is available) and allows for incremental updates of the target unlabeled data, as more target unlabeled data becomes
available. This makes our variant more appropriate for a real scenario.

C. Caragea, Silvescu, et al. (2016) explored the use of Convolutional Neural Networks (CNN) to classify informative
tweets from six flood e vents. Their idea to identify overall good parameters for the models is similar to the idea in
our paper. To implement this idea, they used three flood disaster datasets with labeled instances, tuned parameters
on one dataset and tested them on the other two test datasets to see how well the tuned parameters generalize.
Nguyen et al. (2016) used convolutional neural networks (CNN) to classify crisis related tweets. They assumed that
some target labeled data is available and used two simple supervised domain adaptation techniques to combine
prior source disasters data with current disaster labeled data during training. One technique was weighting the
prior source disasters data, while regularizing the modified m odel. The other technique was simply selecting a
subset of the prior source disaster tweets, specifically those that were correctly labeled by a target-based classifier.
Experimental results showed that CNNs with the simple instance selection domain adaptation technique gave better
results. One drawback of these approaches is the requirement that some target labeled data is available.
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At last, Zhang and Vucetic (2016) proposed another supervised domain adaptation approach that requires target
labeled data, and used the dataset that we also used. Their proposed approach first clustered words from unlabeled
tweets, and then trained a logistic regression classifier on labeled disaster tweets represented with the word clusters
as features. They varied the number of current disaster labeled instances and found that the performance was
generally better with more labeled data. This result is similar to our result that suggests that the more source labeled
data, the better the performance. However, we found out that for our domain adaptation approach, more source
labeled data can help up to a point when the performance stabilizes (in our experiments, the performance stabilized
at 4000 source labeled instances). Zhang and Vucetic (2016) also varied the number of unlabeled instances from
the current disaster and/or other source disasters, and even pre-trained a vocabulary based on word clustering. They
found that more unlabeled data gives better results, in general, with some exceptions. In our experiments, the
performance stabilized around 3000 target unlabeled instances.

CONCLUSION

The value of social media data, such as Twitter data, in emergency situations has been widely recognized by
researchers. However, emergency organizations haven’t extensively adopted such data in practice due to many
challenges, including, information overload and reliability of data, among others. At the same time, many machine
learning and data analysis techniques and systems have been proposed to address the information overload problem.
Unfortunately, many machine learning algorithms require parameter tuning to build a good model, and this represents
a big challenge when labeled data for tuning is not available (as it’s the case in a current crisis situation). To address
this challenge, we studied an unsupervised domain adaptation algorithm inspired by Li, Guevara, et al. (2015)
on the the very first task aimed at reducing information overload on Twitter disaster data, specifically the task of
classifying tweets as related to the disaster of interest or not related.

Our study provides recommendations for good overall parameter values to be used in practice for the domain
adaptation algorithm with self-training. Furthermore, our study provides recommendations with respect to the
number of labeled source instances to be used for good performance, and also with respect to the number of
iterations needed for good performance.

We used the CrisisLexT6 dataset and constructed eleven source and target disaster pairs to experiment with. We
showed that in general more source labeled data can produce better results, but performance does not change
significantly after a certain amount, for example after 4000 instances (2000 on-topic and 2000 o ff-topic). If that
amount of source labeled data is not available, our experiments show that even 500 source labeled instances can
result in a relatively good classifier. This provides some insights into how much effort we should put into labeling
data. Based on the analysis of performance variation with parameters, we recommend small values for ¢ (e.g.,
0.001) to very slowly shift the weight from source to target and get good overall results. Furthermore, our study
suggests that adding more than 1 instances from each class at each iteration of the algorithm (e.g., adding 5 or
10 instances from each class) benefits the final cl assifier. Finally, we showed that best overall results are obtained
when fixing the shifting speed ¢ as 0.001, adding k = 5 instances from each class at each iteration, and running 300
iterations. This suggests that we can potentially use these parameter values as default in practice without sacrificing
performance, and thus help disaster management and response teams prioritize the information that they need to
more carefully analyze.

There are of course limitations to our work. While our results could contribute to a decrease in the amount of
information that a human analyst needs to consider, by identifying tweets related to a disaster of interest, additional
analysis is needed on other classification tasks, for example multi-class classification tasks, to understand how the
algorithm behaviors generalize to different classification tasks. Thus, as part of future work, we plan to analyze
the domain adaptation algorithm with self-training on more classification tasks. For example, we plan to consider
the task of classifying disaster related tweets further into subcategories based on the user publishing the tweets
or based on the tweet content - a tweet can be contributed by eyewitnesses, by victims or by news agents, etc., or
a tweet can be about casualty, infrastructure, etc. As deep learning techniques have shown their potential in the
context of social media data posted during emergencies, we plan to extend existing deep learning algorithms into
unsupervised domain adaptation approaches, or supervised domain adaptation approaches that require a very small
amount of target labeled data. Finally, we also plan to study how to choose a good source disaster for a particular
target disaster, when we have different source disasters available. Alternatively, we plan to explore approaches for
combining multiple source disasters.
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