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Abstract

Social media platforms such as Twitter provide valuable information for aiding disaster
response during emergency events. Machine learning could be used to identify such
information. However, supervised learning algorithms rely on labeled data, which is not
readily available for an emerging target disaster. While labeled data might be available for a
prior source disaster, supervised classifiers learned only from the source disaster may not
perform well on the target disaster, as each event has unique characteristics (e.g., type,
location, culture) and may cause different social media responses. To address this limitation,
we propose to use a domain adaptation approach, which learns classifiers from unlabeled
target data, in addition to source labeled data. Our approach uses the Naive Bayes classifier,
together with an iterative Self-Training strategy. Experimental results on the task of
identifying tweets relevant to a disaster of interest show that the domain adaptation
classifiers are better as compared to the supervised classifiers learned only from labeled
source data.

Keywords: Twitter, Domain Adaptation, Classification, Disaster Response

1 Introduction

Nowadays, social media platforms, such as Twitter, are widely used for sharing and
spreading information and news during emergency events. First-hand information produced
by people in the affected areas is especially valuable as such information cannot be easily
obtained from other sources (Landwehr & Carley, 2014). Furthermore, it has been suggested
that people are very motivated to help and offer support to victims during emergency events
(either natural disasters or man-made disasters), and such behaviors extend to social
network users as well (Kaufhold & Reuter, 2016; Palen & Vieweg, 2008). As an example,
during the Paris attacks in November 2015, eyewitnesses, or friends of eyewitnesses, shared
information about gunfire and dangerous places through Twitter, to alert people within
minutes after attacks in different places (BBC Trending, 2015). Parisians also launched the
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hashtag #PorteOuverte (meaning “open door”) to offer, through Twitter, safety and refuge to
those affected by the attacks (Murdock, 2015). Therefore, microblogging data from Twitter-
like platforms are seen to have intrinsic value for both responder organizations and victims,
due to their growing ubiquity, communications rapidity, and cross-platform accessibility
(Vieweg et al., 2010). Governments that aim to improve situation awareness during
emergencies are also starting to value such on-the-ground information offered by
eyewitnesses or average citizens on social media during emergency event (Homeland
Security, 2014; Hughes et al., 2014;Palen et al., 2009; Reuter et al., 2015).

There are numerous challenges when considering the use of social media data for
emergency response, including issues of reliability, quantification of performance, deception,
focus of attention, and translation of reported observations into a form that can be used to
combine with other information. One problem became apparent during the earthquake in
Haiti when thousands of technical volunteers from around the world suddenly attempted to
provide responders with mapping capabilities, translation services, people and resource
allocation, all via SMS at a distance (Harvard Humanitarian Initiative, 2011; Meier, 2013). As
Meier (2013) stated: “We quickly realized that our platform was not equipped to handle this
high volume and velocity of urgent information.” Despite the good will of field staff, their
institutions' policies and procedures were never designed to incorporate data from outside
their networks, especially at such an overwhelming flow. In addition, the organizations did not
have the technical staff, or the analytical tools, to turn the flow of data into actionable
knowledge (Harvard Humanitarian Initiative, 2011; Palen et al., 2010; Tapia & Moore, 2014).
Still, researchers have been optimistic about the potential value of microblogging data in
helping emergency teams to improve situational awareness and emergency response,
provided that accurate information can be automatically identified (Castillo, 2016; Meier,
2015; Palen & Anderson 2016; Qadir et al., 2016; Reuter et al., 2015; Watson et al., 2017).

Temporally, the above problems arise at the stage when emergency responders and
organizations begin engaging their organizational mechanisms to respond to the crises in
question (Munro, 2011). For decades, these organizations have operated with a centralized
command structure, standard operating procedures, and internal vetting standards to
ascertain appropriate responses to emergencies. While not optimized to current expectations
of speed, efficiency and knowledge, these mechanisms have been successful at bringing
rescue, response and recovery to millions (Dugdale et al., 2012; Walton et al., 2011).

Towards optimizing current organizational mechanisms in terms of speed, efficiency and
knowledge, supervised machine learning algorithms have been used to help responders sift
through the big crisis data, and prioritize information that may be useful for response and
relief (Ashktorab et al., 2014; Beigi et al., 2016; Caragea et al., 2014; Gao et al., 2011; Imran
et al., 2015; Kumar et al., 2014; Terpstra et al., 2012; Yin et al., 2012). Supervised algorithms
require labeled training data to learn classifiers that can be further used to label more data
from the same domain. The labels are precisely the categories that we want to associate with
data of interest, for example relevant or non-relevant for tweets relevant to a disaster,
positive or negative in the case of tweets that express a sentiment, or even the specific
sentiment expressed by a tweet (anger, compassion, sorrow, fear, etc.). Labeling of the
training data is usually done manually, and is therefore a time-consuming and expensive
process. This presents a big challenge when trying to use supervised learning algorithms to
aid disaster response in the case of a new disaster, as the time and effort required to label
tweets from that disaster prevents the timely usage of the classifiers.

To address this challenge, several works proposed to use labeled data from prior “source”
disaster to learn supervised classifiers for a target crisis (Caragea et al., 2016; Imran et al.,
2016; Verma et al., 2011).
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One drawback of this approach is that supervised classifiers learned in one crisis event, do
not generalize well to other events (Imran et al., 2015; Qadir et al., 2016), as each event has
unique characteristics (e.g., type, location, culture) and may cause different social media
responses (Palen & Anderson 2016). As suggested by Li et al. (2015), this is particularly true
for classification tasks that aim to identify tweets relevant to a disaster of interest, as
features/words specific to that disaster represent important cues for the classification task.
Unsupervised domain adaptation approaches (Jiang, 2008; Pan & Yang, 2010) that make
use of unlabeled data from the target crisis in addition to label data from source crises are
desirable.

A systematic literature review showed that (Li et al., 2015) was the first work that applied
domain adaptation algorithms in the context of disaster response. The domain adaptation
algorithm proposed by Li et al. (2015) was based on an iterative Expectation-Maximization
(EM) approach, where a classifier is learned at each iteration, and used to assign soft
(probabilistic) labels to the target unlabeled data. Subsequently, the target data is used to
train the classifier at the next iteration. Experimental results on a small dataset from the
Hurricane Sandy and Boston Marathon Bombings suggested that the domain adaptation
approach that makes use of target unlabeled data, in addition to source labeled data, is
better than supervised learning approaches that only use of source labeled data. This is
especially true for domain specific tasks, such as the task of identifying tweets that are
relevant to a disaster of interest.

Similar to Li et al. (2015), we use a domain adaptation approach to address the problem of
identifying tweets that are relevant to a disaster of interest, among all the tweets that are
posted during that disaster. Given the availability of a large set of crisis event tweets
published by Olteanu et al. (2014), our goal is to extend the study of the domain adaptation
approach proposed by Li et al. (2015) to gain more insights into its behavior when presented
with a larger number of different types of disasters and larger amount of data for each
disaster. As opposed to Li et al. (2015), who used EM with soft-labels when adding target
data to the training set during the domain adaptation iterations, we propose the use of self-
training with hard-labels as a prior text classification study (Nigam & Ghani, 2000) suggests
that self-training with hard-labels can give better results than EM with soft-labels. Our main
contributions are summarized as follows:

o We propose a modified version of the weighted Naive Bayes domain adaptation
algorithm introduced by Li et al. (2015). Our version uses the self-training strategy with
hard-labels, instead of EM with soft-labels, to identify disaster related tweets.

o We perform experiments with a large dataset collected from several disasters (Olteanu et
al., 2014) to better understand how much a domain adaptation algorithm can help
improve a ready-to-use classifier trained only on labeled data from a previous disaster.

o We compare our self-training based classifiers with both supervised Naive Bayes
classifiers learned from source only and EM based classifiers learned using the original
approach proposed by Li et al. (2015).

2 Related Work

Domain adaptation methods (Blum & Mitchell, 1998; Yarowsky, 1995) are not new in
machine learning, and have been extensively used in areas such as text classification (Dai et
al. 2007), sentiment analysis (Tan et al. 2009), bioinformatics (Herndon & Caragea, 2014;
2015). In what follows, we will review works that are closely related to our approach and
application. For more details on domain adaptation approaches and applications, the reader
is referred to the surveys by Jiang (2008) and Pan & Yang (2010).
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Dai et al. (2007) proposed a domain adaptation algorithm, based on the Naive Bayes
classifier and EM, to classify text documents from Newsgroups, SRAA, and Reuters into top
categories. Experimental results showed that this algorithm performs better than supervised
algorithms based on either Support Vector Machine (SVM) or Naive Bayes classifiers.

Tan et al. (2009) proposed a weighted version of the multinomial Naive Bayes classifier
combined with EM for sentiment analysis. Their algorithm filters out domain specific features
from the source domain, by keeping only the top-ranking features that have similar
probabilities in both source and target domains. In the first step, a Naive Bayes classifier is
trained on the source data and used to label the unlabeled data from the target domain. In
subsequent iteration, the EM algorithm is used with a weighted combination of the source
and target data to train a new Naive Bayes classifier. Specifically, in the maximization (M)
step, the prior and likelihood are calculated, and in the expectation (E) step, the posterior is
calculated for the instances in the target data. These steps are repeated until convergence,
with the weight shifting from the source to the target domain, iteration by iteration.

Herndon and Caragea (2015) proposed an approach like the one in (Tan et al., 2009) for the
task of splice site prediction. They used a weighted Naive Bayes classifier, and three
methods for incorporating the target unlabeled data: EM with soft-labels, ST with hard-labels,
and also a combination of EM/ST (with hard-labels for the most confidently labeled instances
in the current target unlabeled data, and soft-labels for the other instances). They found that
for the task of splice site prediction, EM with soft-labels gives better classifiers than the other
two methods, contrary to what has been observed on text classification (Nigam & Ghani,
2000), where ST with hard-labels gives better results.

Peddinti & Chintalapoodi (2011) used domain adaptation to perform sentiment classification
of tweets. Given a source dataset, in addition to target labeled data, they proposed two
methods to identify source instances that can improve the classifier for the target, based on
EM and Rocchio SVM. Namely, at each EM iteration, they first used target labeled data to
classify source instances, then selected the most confident source instances to add back to
the training set. Therefore, this method requires a small amount of target labeled data.

In the context of disaster response and rescue, there are several studies that applied
machine learning and natural language processing (NLP) methods for disaster management
(Kumar et al., 2014; Purohit et al., 2013; Sakaki et al., 2010; Terpstra, 2012). In particular,
several works have studied supervised learning algorithms in regard to transferring
information from a prior source disaster to a current target disaster (Imran et al., 2013a;
2016; Verma et al., 2011), and will be reviewed in what follows.

Verma et al. (2011) used natural language processing techniques together with machine
learning algorithms, Naive Bayes and Maximum Entropy, to identify situational awareness
tweets during crisis events. They used data from four crisis events, Red River Flood in 2009
and 2010, Haiti Earthquake in 2010 and Oklahoma Grass Fire in 2009. They first built two
supervised classifiers with Naive Bayes and Maximum Entropy to classify situation
awareness tweets from each of the four crisis events, respectively. Subsequently, they also
studied how well the classifiers performed across the four events. They found that the
classifiers generalized well across the Red River Flood 2009 and Red River Flood 2010
events, but not for other events. For example, the performance (measured as accuracy) was
poor when using the classifier learned from the Haiti Earthquake data to classify the
Oklahoma Grass Fire data and vice versa, because these two types of events differ from
each other in many aspects.

Imran et al. (2013a) performed similar experiments with two disasters, namely Joplin
Tornado (as source) and Hurricane Sandy (as target), to identify information nuggets using
conditional random fields (CRF). After classifying different types of informative (casualties,
donations, etc.) tweets with Naive Bayes classifiers, they used a sequence labeling
algorithm, conditional random fields (CRF), to extract useful information, such as the number



Journal of Contingencies and Crisis Management, 2016/2017
Special Issue on Human Computer Interaction in Critical Systems 5

of casualties or the name of the infrastructure. They learned supervised classifiers either
from source, or from source and 10% of labeled target data. They tested these classifiers on
all target data and remaining 90% of target data, respectively, and compared the domain
adaptation results with the results of supervised classifiers learned from 66% of labeled
target data, and tested on 33% target data. Their experiments showed that using source data
only results in a significant drop in the detection rate, while not affecting significantly the
recall.

Imran et al. (2016) studied the usefulness of previous disaster tweets, and also the
usefulness of using data in different languages. They experimented with several pairs of
disasters, earthquakes and floods, from different countries. They learned a Random Forest
classifier from a source disaster to classify a target disaster. Their results also showed that
data from prior disasters of the same type as the current disaster can be very useful even
across different languages.

While these works represent great steps towards using domain adaptation for disaster and
crisis situations, the performance of the supervised classifiers used across different types of
disasters or events is still poor, especially for domain specific tasks (e.g., identifying tweets
relevant to a certain disaster). Domain adaptation techniques that have been successfully
used in text classification, sentiment analysis, etc. hold great promise for classification
problems in disaster and crisis management as well.

Inspired by the success of previous domain adaptation approaches, Li et al. (2015) proposed
a domain adaptation algorithm, which made use of unlabeled data from the target disaster,
together with labeled data from the source disaster. Li et al. (2015) studied their proposed
domain adaptation algorithm on three classification tasks from two disasters, Hurricane
Sandy (used as source) and Boston Marathon Bombing (used as target), with promising
results especially on the task of identifying tweets relevant to a certain disaster. However, the
algorithm was not tested extensively given that only data from two disasters was available,
and the amount of data from each disaster was limited. Therefore, the main goal of our work
is to extend the work by Li et al. (2015) and perform an extensive study of EM and ST
domain adaptation approaches in the context of identifying tweets for a disaster of interest.

3 Methods

In this section, we will first introduce the supervised Naive Bayes classifier, which is used as
base classifier in our approach, and then describe our domain adaptation approach.

3.1 Naive Bayes Classifier

The Naive Bayes algorithm is part of a class of algorithms known as Bayesian classification
algorithms (Dai et al. 2007; Lewis, 1992; Manning et al., 2008). In particular, our approach
uses a Naive Bayes algorithm that is based on a multivariate Bernoulli model (Manning et al.,
2008). Given a collection of documents D as training set, each document d; € D, (i =
1, ..., N) represents a data instance, and has a class label ¢, € C associated with it. The set
of words w; in the collection D corresponds to the set of features used to represent
documents, a.k.a., vocabulary V. Using the features in V, each document d; is represented
as a |V| dimensional vector of Os and 1s, based on the occurrence of word w; € V in
document d;. Using the Bayes rule and the assumption that features are independent given
the class, the class label for a new document d can be obtained as:

Vi

= argmax P(cy) 1_[ P(w,|cy)
Ck

t=1

P(d|c,)P(cy)
c¢* = aregmax P(c,|d) = argmax —=
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Therefore, to be able to predict the class label for new documents d, we need to estimate the
prior class probabilities P(c) for all ¢, € C, and the likelihoods P(w;|c,) for all w, € V and
¢, € C. Estimation of the class priors and likelihoods can be done based on a training data,
and the process is generally referred to as training the Naive Bayes classifier. Specifically,
we estimate the class priors and likelihoods from the training data, using the add-1
smoothing strategy (to avoid zero probabilities), as follows:

N(Ck)+1
S
Nw,=0,c,) +1
P(Wt=0|Ck)= N(Ck)+2
Nw,=1,¢,)+1
Plw, =116 = e = Lo

N(Ck) + 2

where N is the total number of documents in the collection D, N(c) is the number of
documents in class c¢,, N(w; = 0,¢,) is the number of documents in class ¢, that don't
contain the word w;, and N(w; = 1,¢;) is the number of documents in class c, that contain
the word wy.

3.2 Domain Adaptation with Naive Bayes Classifier

We will use a domain adaptation algorithm to identify tweets related to the current disaster.
Our assumption is that there are no labeled tweets for the current target disaster, although
unlabeled tweets are quickly accumulating. Furthermore, there exists a prior source disaster
with labeled tweets. The goal is to use a domain adaptation approach that can make use of
both source labeled data and target unlabeled data, while learning a classifier for the target.

Our approach is an adaptation of the iterative Expectation-Maximization (EM) approach used
by Li et al. (2015). In the EM approach, a classifier is learned at each iteration, and used to
label the target unlabeled data. Subsequently, the target data, with probabilistic soft-labels
assigned by the current classifier (e.g., p(+|d)=0.7 and p(-|d)=0.3 for an instance d), are
combined with the labeled source data and used to train the classifier at the next iteration.
The original classifier is trained from source data only. The process continues for a fixed
number of iterations, or until convergence.

Similar to the EM strategy, our proposed self-training approach is also an iterative approach
that uses a weighted Naive Bayes classifier to combine source and target data. As the EM
approach, it starts by learning a supervised classifier from source data only, and uses that
classifier to label the target unlabeled data. However, instead of adding all the target data
with probabilistic soft-labels to the training set for the next iteration as in EM, in self-training,
only the most confidently classified data are added to the training set, with hard (e.g., +/- or
1/0) labels.

More precisely, only the most confidently labeled instances (e.g., the top k instances in each
class based on the posterior class distribution, p(+|d) and p(-|d), respectively) are added to
the training set at subsequent iterations, and a new classifier is learned from the added
target instances together with the original source instances. Given that we use the most
confidently labeled target instances, which presumably have high posterior class
distributions, we incorporate these instances with hard-labels, as opposed to probabilistic
soft-labels, to help keep a cleaner decision boundary between the two classes.
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The details of the algorithm are shown in Table 1. We denote the training source labeled
data by tSL and the training target unlabeled data by tTU.

Table 1. Pseudocode for the domain adaptation algorithm

1. Simultaneously estimate the priors and likelihoods (a.k.a., train a Naive Bayes classifier) for the
source domain:
P(c,)=Fg (c,)
P(w,lc)=PFgw,lc,)

2. Use the classifier learned from source to assign labels to the unlabeled instances from
the target domain, and select the most confidently labeled instances (based on the prior class
distribution, e.g., top 5 instances in each class, for a balanced dataset) as hard-labeled
instances for self-training.

3. Loop until the labels assigned to the remaining unlabeled target instances don’t change:

a) M-step: Same as Step 1, but use also the target instances labeled so far:
P(Ck) = (l_y)'RSL(Ck)'I')/'Rru(Ck)
Pw,lc)=-y) Pgw lc)+y Pry(w lc,)

wherey = min (76, 1), t is the iteration number, and § is a parameter that
determines how fast we shift the weight from the source labeled data used for
training (tSL) to the (originally unlabeled) target data used for training (tTU).

b) E-step: Calculate the posterior class distribution for the remaining set of unlabeled
instances from the target domain.

4. Use the final classifier to label test target unlabeled instances d = (wy, ..., w}y)):
14!

c¢* = argmax P(cy) 1_[ P(we|cy)
Ck t=1

where V is the set of features/words used to represent instances.

4 Dataset and Preprocessing

We use a dataset of tweets, called CrisisLexT6, published by Olteanu et al. (2014). The
tweets in the dataset are collected through Twitter APl based on keywords and geo-locations
of affected areas, and manually labeled as relevant to a disaster (on-topic) or not (off-topic)
through the crowdsourcing platform Crowdflower. As discussed in the introduction, for a new
disaster, the task of identifying tweets relevant to that disaster (on-topic), among all the
tweets posted during the disaster, is the first task that needs to be addressed. Furthermore,
this task is particularly suitable for domain adaptation, which uses prior source labeled data
together with target unlabeled data, and can thus capture specific patterns in the target data
itself.

The CrisisLexT6 dataset consists of six disasters occurring between October 2012 and July
2013 in USA, Canada and Australia. There are approximately 10,000 labeled tweets for each
disaster. Similar to Li et al. (2015), we use the bag-of-words 0/1 representation to represent a
tweet as a vector of features. We also use the same cleaning steps: removing non-printable
ASCIl characters; replacing URLs, email addresses, and usernames with an
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URL/EMAIL/USERNAME placeholder, removing RT (i.e., re-tweets) and duplicate tweets etc.
The statistics for the final dataset are shown in Table 2, organized based on the time when
each disaster happened.

Table 2. Statistics for the dataset used before cleaning and after cleaning

Before Cleaning After Cleaning
Crisis On-topic Off-topic  Total On-topic Off-topic  Total
2012_8Sandy_Hurricane 6,138 3,870 10,008 5,261 3,752 9,013
2013_Queensland_Floods 5,414 4,619 10,033 3,236 4,550 7,786
2013_Boston_Bombings 5,648 4,364 10,012 4,441 4,309 8,750
2013 _West_Texas_Explosion 5,246 4,760 10,006 4,123 4,733 8,856
2013_Oklahoma_Tornado 4,827 5,165 9,992 3,209 5,049 8,258
2013_Alberta_Floods 5,189 4,842 10,031 3,497 4,714 8,211

From Table 2, we can see that the CrisisLexT6 disaster datasets are fairly balanced (i.e., the
ratio of on-topic to off-topic tweets is close to 1). Following the timeline, in our experiments,
we select pairs of source and target disasters, such that the source disaster happens first,
while the target disaster happens at a later time.

5 Experimental Setup

Our goal is to evaluate the domain adaptation approach for the task of identifying tweets
relevant to a target disaster (i.e., on-topic versus off-topic tweets). Our main working
hypothesis is that the domain adaptation approach, which makes use of target unlabeled
data in addition to source labeled data, can better capture patterns specific to the target as
compared to a supervised learning approach that would use only source labeled data. To
verify this hypothesis, we ask the following questions:

e How do supervised classifiers learned only from source labeled data perform on target
data?

e How do the results of the domain adaptation classifiers, which use both source labeled
data and target unlabeled data, compare with the results of the supervised classifiers,
which use only source data, when used to classify target data?

Given that our domain adaptation approach uses self-training with hard-labeled target data,
as opposed to EM with soft-labeled target data, our next research question is:

¢ How do the results of the self-training strategy with hard-labeled target data compare with
that of the EM strategy with soft-labeled target data?

Finally, we want to see how the results of the domain adaptation approach compare with the
results of ideal supervised learning classifiers trained from target labeled data, with the
assumption that time and effort would be spent to manually label the available unlabeled
target data. Thus, our last research question is:

¢ How close are the results of the domain adaptation classifiers to the results of supervised
classifiers learned from a large amount of target labeled data?

To have a comprehensive set of results, we select a variety of pairs of disasters when
performing experiments, as shown in Table 3. The pairs are selected based on the timeline
of the disasters, and also based on the nature (or type) of the disasters, as we want to
include pair of disaster of the same type and of different types. Since Hurricane Sandy is the
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earliest disaster among the six disasters in the CrisisLexT6 dataset, it is never used as
target. However, it is used as source in the first five pairs (P1-P5), while the other five
disasters are used as target, respectively. The goal here is to experiment with a fixed source
but varying targets with increasing distance in time from the source. The experiments with
these pairs can tell us if the distance in time from the source disaster to the target disaster
matters. Furthermore, we experiment with pairs of disasters of different types (P6-P9), and
also with pairs of disasters of the same type (P10-P11). Intuitively, regardless of the
distance in time, the similarity in terms of the type of the disaster should generally help.

For each pair of source and target disasters, we use 5-fold cross-validation to select the
target data to be used as unlabeled and test data. Specifically, the target data is split into five
folds; at each rotation, one fold is selected as target test (TT), and three folds as target
unlabeled data (tTU), used by the domain adaptation approach with self-training/expectation-
maximization, together with source labeled data (tSL). The fifth fold is reserved as target
labeled data to be used in future work.

Table 3. Pairs of disasters used in the experiments. The first group of pairs (P1-P5) has Hurricane
Sandy as source and the other disasters as target, respectively. The second group of pairs (P6-P9)
consists of pairs with different types of disasters as source and target, respectively. The last group of
pairs (P10-P11) consists of pairs with the same type of disaster for both source and target.

Pair Source Disaster Set Target Disaster Set

P1 2012_Sandy_Hurricane 2013_Queensland_Floods

P2 2012_Sandy_Hurricane 2013_Boston_Bombings

P3 2012_Sandy_Hurricane 2013_West_Texas_Explosion
P4 2012_Sandy_Hurricane 2013_Oklahoma_Tornado

P5 2012_Sandy_Hurricane 2013_Alberta_Floods

P6 2013_Queensland_Floods 2013_Boston_Bombings

P7 2013_Queensland_Floods 2013_Oklahoma_Tornado

P8 2013_Boston_Bombings 2013_Oklahoma_Tornado

P9 2013_Boston_Bombings 2013_Alberta_Flood

P10 2013_Queensland_Floods 2013_Alberta_Floods

P11 2013_Boston_Bombings 2013 _West_Texas_Explosion

We report the results using accuracy and area under the receiver operating characteristic
curve (auROC) averaged over the five target test folds. Both accuracy and auROC are
metrics commonly used in machine learning, and capture different qualities of a classifier.
The accuracy measures the percentage of correctly labeled instances out of the total number
of instances. The auROC measures the ability of the classifier to rank instances based on
the probability, P(c|d), that they belong to a class (positive or negative), without effectively
assigning instances to classes. Given a ranking, the ROC plots the true positive rate as a
function of the false positive rate, obtained at different cut-points in the ranking. As opposed
to that, the accuracy is obtained based on one single cut-point (most commonly 0.5).

For each pair of source-target disasters, we perform four groups of experiments as described
below, one for each of our research questions stated above.
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Supervised learning from source labeled data only. In this group of experiments, we use
source labeled data as the training set, and learn supervised Naive Bayes classifiers. We
then use the resulting classifiers to classify target test data. Thus, the classifiers learned in
this group of experiments can serve as baselines (intuitively, lower bounds) for the domain
adaptation classifiers. We denote the supervised Naive Bayes classifiers by NB-S. The
training data for this classifier, training source labeled data, is denoted by tSL. Given that
other supervised classifiers have been used successfully in prior work, we also compare the
results of the supervised Naive Bayes classifiers with the results of supervised random forest
(RF), logistic regression (LR) and support vector machine (SVM) classifiers. One advantage
of the Naive Bayes classifier over other classifiers, and the reason our domain adaptation
approach uses it as base classifier, is that the Naive Bayes algorithm does not have any
parameters that require tuning. We used an open-source machine learning library, called
WEKA (Hall el at., 2009), to learn supervised classifiers. We used default parameters for the
RF, LR, SVM algorithms.

Domain adaptation with Self-Training and Expectation-Maximization, respectively.
There are two groups of domain adaptation experiments. One is domain adaptation with self-
training and hard-labeled target data, the other is domain adaptation with expectation-
maximization and soft-labeled target data. In both groups, we use source labeled data and
target unlabeled data to train a domain adaptation classifier for the target, and subsequently
test the classifier on the target test data. We use the notation NB-EM for domain adaptation
with the EM strategy, and NB-ST for domain adaptation with the ST strategy. The training
data for this classifier is denoted by tSL+{TU to suggest that it is consists of source labeled
data and target unlabeled data.

Supervised learning from target labeled data. In this group of experiments, we use the
target unlabeled dataset (tTU) that is used in the domain adaptation setting and assume that
the labels of the instances in this dataset are provided. We learn Naive Bayes classifiers
from the target labeled data and test them on target test data. Intuitively, if labeled training
data from a target disaster is available, we should be able to learn accurate classifiers for
that disaster. Therefore, the results of the supervised classifiers learned from the assumed
target labeled data can be seen as upper bounds for all the results of the other classifiers.
We denote this supervised Naive Bayes classifiers by NB-T*.

Parameter tuning. The domain adaptation approach has two parameters that need to be
tuned: the parameter & that controls how fast we shift the weight from source to target in both
ST and EM strategies; and the parameter k that controls how many instances to hard-label at
each iteration of the ST strategy. To avoid over-fitting, we tune parameters during a
validation step. For the validation, we select one of three target unlabeled (tTU) folds as
validation data (TV), and use the other two folds of tTU as target unlabeled data (tUV). We
use tSL+tUV for training and test on TV to select the best values for the parameters. After
tuning, the whole tTU is used for self-training as well as for EM. The performance metrics are
estimated using the target test set TT. The following values are considered for the parameter
6: {0.001, 0.01,0.1,0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In addition, we hard-label k=1, 5, or
10 instances of on-topic and off-topic, respectively.

6 Experimental Results and Discussion

Tables 4a and 4b show the results of the supervised classifiers learned from source data
only in terms of accuracy and auROC (averaged over 5-folds), respectively. We compare the
following classifiers: Naive Bayes (NB-S), Support Vector Machines (SVM-S), Random
Forests (RF-S) and Logistic Regression (LR-S). As mentioned earlier, we used the Weka
implementations (Hall el at., 2009), with default parameters. Furthermore, we used the
LibLinear variant of SVM (Fan et al., 2008), as opposed to LibSVM variant (Chang and Lin,
2011), as the results were consistently better for the LibLinear variant. We performed paired
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t-tests to identify classifiers that are statistically significantly better than their counterparts
(using p<0.05). The best values within the four rows of a pair are shown in bold.

Table 4a. Accuracy results (averaged over 5-folds) for the eleven pairs of disasters (P1-P11) and four
supervised classifiers trained from labeled source data only: supervised Naive Bayes using source
only as training set (NB-S); supervised support vector machines (SVM-S); supervised random forest
(RF-S); supervised logistic regression (LR-S). SVM-S, RF-S and LR-S are trained with default Weka
parameters. The best values (according to a t-test with p<0.05) obtained with any of four classifiers for
each pair are shown in bold font.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
NB-S 76.84 ©68.66 77.21 80.78 71.06 74.97 84.13 84.35 73.81 78.87 94.77
SVM-S 73.81 5523 6343 7715 68.86 6576 83.97 8145 71.17 76.69 84.29
RF-S 7011 7333 7716 79.78 6585 7165 8156 8245 73.95 7449 09215
LR-S 7185 56.41 64.86 7260 67.09 58.00 79.01 79.78 66.42 72.06 87.85

Table 4b. Weighted auROC results (averaged over 5-folds) for the eleven pairs of disasters (P1-P11)
and four supervised classifiers trained from labeled source data only: supervised Naive Bayes using
source only as training set (NB-S); supervised support vector machines (SVM-S); supervised random
forest (RF-S); supervised logistic regression (LR-S). SVM-S, RF-S and LR-S are trained with default
Weka parameters. The best values (according to a t-test with p<0.05) obtained with any of four
classifiers for each pair are shown in bold font.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
NB-S 0.911 0.753 0.853 0.865 0.830 0.820 0.880 0.905 0.806 0.860 0.983
SVM-S 0.763 0.555 0.626 0.743 0.707 0.661 0.824 0.810 0.705 0.733 0.835
RF-S 0.885 0.825 0.873 0.860 0.818 0.833 0.899 0.891 0.818 0.860 0.977
LR-S 0.847 0525 0.598 0.612 0.766 0.472 0.775 0.817 0.628 0.714 0.919

As can be seen from Tables 4a and 4b, the Naive Bayes classifier has the overall best
performance in terms of both accuracy and auROC metrics, when compared with other
supervised classifiers trained with default parameters. Furthermore, the Naive Bayes
classifier has the advantage that it does not require any parameter tuning. Given these
reasons, we build our domain adaptation classifiers based on Naive Bayes, and compare the
domain adaptation classifiers only with supervised Naive Bayes classifiers in what follows.

The results of the domain adaptation classifiers by comparison with supervised Naive Bayes
classifiers are shown in Tables 5a and 5b in terms of accuracy and auROC, respectively.

Table 5a. Accuracy results (averaged over 5-folds) for the eleven pairs of disasters (P1-P11) and four
approaches: supervised Naive Bayes using source only as training (NB-S); domain adaptation with
EM (NB-EM); domain adaptation with ST (NB-ST); supervised Naive Bayes using target unlabeled
data as labeled training data (NB-T*). The results of the NB-T* classifiers are underlined to suggest
that they can be seen as an upper bound for the other classifiers for a pair. The best values
(according to a t-test with p<0.05) obtained with any of the first three approaches for each pair are
shown in bold font.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
NB-S 76.84 6866 77.21 80.78 71.06 7497 8413 8435 73.81 78.87 9477
NB-EM 7896 80.88 94.66 87.58 76.87 76.69 86.63 87.44 8247 8243 95.79
NB-ST 8240 84.06 90.82 87.76 82.57 81.86 8548 86.91 83.96 86.01 94.82
NB-T* 9342 89.20 9590 90.45 92.63 89.20 90.45 90.45 92.63 92.63 95.90
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Table 5b. Weighted auROC (averaged over 5-folds) for the eleven pairs of disasters (P1-P11) and
four approaches: supervised Naive Bayes using source only for training (NB-S); domain adaptation
with EM (NB-EM); domain adaptation with ST (NB-ST); supervised Naive Bayes using the target
unlabeled data as training labeled data (NB-T*). The results of the NB-T™ classifiers are underlined to
suggest that they can be seen as an upper bound for the other classifiers for a pair. The best values
(according to a t-test with p<0.05) obtained with any of the first three approaches for each pair are
shown in bold font. If the best values are equivalent to the value obtained with the corresponding
supervised classifier NB-T*, they are also underlined. Furthermore, values that are better than the
value obtained with NB-T* are also marked with a star (*).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

NB-S 0911 0.753 0.853 0.865 0.830 0.820 0.880 0.905 0.806 0.860 0.983

NB-EM 0.973* 0.929 0.984 0.938 0953 0.832 0.925 0.942 0.898 0.882 0.989

NB-ST 0.974* 0.941 0.987 0.951 0.972 0.890 0.924 0.944 0.950 0.922 0.984
NB-T* 0.969 0.954 0.989 0.961 0.971 0.954 0.961 0.961 0.971 0.971 0.989

Table 5a shows the 5-fold average accuracy for each classifier and each pair. Table 5b
shows the 5-fold average weighted auROC for each classifier and each pair. The first row in
each of the result tables corresponds to the supervised Naive Bayes classifiers learned from
source only (NB-S), the next two rows correspond to the domain adaptation approaches with
Expectation-Maximization (NB-EM) and Self-Training (NB-ST), respectively. The last row in
each table NB-T* corresponds to an ideal classifier learned from target labeled data. The
results of this classifier, underlined, can be seen as an upper bound for the results that can
be achieved with domain adaptation which has access to only unlabeled data from the target
domain, in addition to labeled data from a prior source domain. For a more visual
comparison, Figures 1a and 1b show the results of the first three rows of Tables 5a and 5b,
respectively, using bar charts.

As for the supervised classifiers, we performed paired t-tests to identify classifiers that are
statistically significantly better than their counterparts (using p<0.05). The best values within
the first three rows of a pair are shown in bold. Furthermore, if a result is equivalent to the
result of the ideal NB-T* classifier, it is indicated with underscore, and underscore with star
(*) means that the corresponding domain adaptation result is better than the result of the NB-
T* classifier.

Based on the results in Tables 4 and 5, we answer our research questions below.

How do the supervised classifiers learned only from source labeled data perform on target
data? As our results in Tables 4a and 4b show, labeled data from a prior source disaster can
be very useful for learning classifier for different target disasters. When using only source
labeled data to learn Naive Bayes classifier (the approach NB-S), the auROC values are
greater than 0.8 or 0.9 for most pairs, with the exception of pair P2, for which the auROC
value is around 0.75. Similarly, the accuracy for most pairs is over 70% or 80% except for
pair P2 as well. The accuracy and auROC values are especially high when considering
disasters of the same type (e.g., pair P11: Boston_Bombings -> West_Texas_Explosion),
and relatively smaller for more different disasters (e.g., pairs P6: Quessland_Floods-
>Boston_Bombings, and P9: Boston_Bombings->Alberta_Floods). Furthermore, it is worth
noting that, while both pairs P5 and P10 have Alberta Floods as target, the results for P10,
which has Queensland Floods as source (another flood) are better than the results for P5,
which has Sandy Hurricane as source. Similar behavior is observed for pairs P3 and P11,
which both have West Texas Explosion as target: Boston Bombings as source in P11 gives
better results than Sandy Hurricane in P3. Together, these results show that supervised
learning based on source can be used to learn classifiers for a target if the source and target
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disasters are similar. This conclusion is consistent with other prior studies (Verma et al. 2011,
Imran et al. 2013b, Li et al. 2015).

A more interesting observation is that for the pair P11, the supervised Naive Bayes classifier
is highly accurate, with accuracy close to 95% and auROC close to 1.0. By examining
sample tweets from the two disasters, we find that they share more common features than
other pairs of disasters in our experiments. Reasons for the common features include the
fact that the West Texas Explosion happened shortly after the Boston Bombings, both
disasters happened in US, and they were man-made. Thus, people who tweeted about West
Texas Explosion often mentioned Boston Bombings as well. However, this is not the case
for the pair P10 (Queensland_Floods->Alberta_Floods), where both the source and the
target disasters are floods (natural disasters), with different geo-locations, but people don’t
talk about Alberta_Floods in relation to Queensland_Floods.

Another interesting observation can be made for pairs P2 and P6 that have Boston
Bombings as target, but Hurricane Sandy (P2) versus Queensland Floods (P6) as sources,
respectively. As Hurricane Sandy mostly affected the east coast of the US, one might expect
that the classifier for pair P2 may give better accuracy than the classifier for pair P6.

However, this is not the case as can be seen in Table 4a, which suggests that domain
similarity or closeness of disasters can be more sensitive to the occurring times of the
disasters rather than geo-locations, or other facts about the disaster types. More datasets
and experiments are needed to get a firmer conclusion in this respect.

Figure 1a. Accuracy results (averaged over 5-folds) for the eleven pairs of disasters (P1-P11) and
three approaches: supervised Naive Bayes using source only as training data (NB-S); domain
adaptation with Expectation-Maximization (NB-EM); domain adaptation with Self-Training (NB-ST).
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Figure 1b. Weighted auROC (averaged over 5-folds) results for the eleven pairs of disasters (P1-P11)
and three approaches: supervised Naive Bayes using source only as training data (NB-S); domain
adaptation with Expectation-Maximization (NB-EM); domain adaptation with Self-Training (NB-ST).
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How do the results of the domain adaptation classifiers that use both source labeled data
and target unlabeled data compared with the results of the supervised classifiers that use
only source data, when used to classify target data? As can be seen from Tables 5a and 5b,
domain adaptation approaches that make use of target unlabeled data definitely help to
improve the results of the classifiers learned from source data only. By comparing the results
of the supervised NB-S with the results of the domain adaptation approaches NB-EM and
NB-ST, we can see that for the first 10 pairs of disasters considered (P1-P10), domain
adaptation classifiers with either EM or ST are better than the corresponding supervised
classifiers. For some pairs, the improvement is very big; for example, for pairs P2, P3, P5
and P9, the accuracy in Table 5a has improved by more than 10% when using the domain
adaptation approach NB-ST as compared to the supervised learning algorithm with source
only. For pair P11, domain adaptation NB-EM with soft-labels still improves the accuracy,
whereas domain adaptation NB-ST with hard-labels doesn’t help much. The reasons for this
may lie in the fact that the source itself is close to that target, and the instances added with
self-training are not very different from the source instances. Still the domain adaptation with
EM give results that are better than the results of the supervised classifier, according to the t-
test (at p<0.05).

How do the results of the self-training strategy with hard-labeled data compare with those of
the EM strategy with soft-labeled target data? When comparing the NB-ST approach (with
hard-labels) with the NB-EM approach (with soft-labels), we can see that in general NB-ST
performs better than NB-EM. More specifically, for 8 out of 11 pairs, NB-ST is either
equivalent (3 pairs) or better (5 pairs) than NB-EM in terms of accuracy, and for all pairs
except P11, either equivalent or better in terms of auROC. For pair P3, although the
accuracy in Table 5a is higher for NB-EM, the weighted auROC in Table 5b is equivalent to
NB-ST. NB-EM with soft-labels is statistically better than NB-ST with hard-labels only on
pairs P3, P7 and P11. EM which is using all target unlabeled data at each iteration may
provide more information than ST as the sources in pair P3 and P7 are not only of different
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types as compared to the target, but also far in time, and thus the original classifier learned
from them is not reliable enough to accurately label a small number of instances for the NB-
ST approach. However, overall, we can confidently say that ST performs better than EM for
our classification task.

How close are the results of the domain adaptation classifiers to the results of supervised
classifiers learned from a large amount of target labeled data? Finally, to answer our last
research question, from Tables 5a and 5b, we can see that domain adaptation approaches
can achieve results very close to the upper bound in several cases but not always. By
comparing the accuracy results of EM/ST in Table 5a with the accuracy results obtained with
the ideal NB-T* approach (used as an upper bound), we can see that the domain adaptation
algorithms get close to the upper bound in a few cases, for example, for pairs P3, P4, P5 and
especially pair P11. However, in general, there is still significant room for improving the
accuracy results of the domain adaptation classifiers. By comparing the auROC results in
Table 5b, we can see that the results of the domain adaptation classifiers are, in general,
closer to the upper bounds except for pairs P6 and P7. Furthermore, in some cases the
results are even better than the upper bound, for example for pair P1. This can be explained
by the fact that the source itself provides accurate results (auROC value higher than 0.9),
which makes it possible to accurately label the originally unlabeled target data. Thus, the
accurately labeled target data together with the source data produce classifiers that are
better than those learned from labeled target data alone (which could be noisy).

7 Conclusion

In this article, we studied an automated solution for sifting through increasingly overwhelming
amounts of data contributed directly by communities affected by a disaster. Our solution is
based on a domain adaptation approach, adapted from (Li et al., 2015), which makes use of
a self-training iterative strategy to incorporate labeled data from a source disaster and
unlabeled data from an emerging target disaster into a classifier for the target disaster.

We used a relatively large dataset, crisis tweets dataset from Olteanu et al. (2014), to
evaluate our proposed domain adaptation classifiers based on Naive Bayes and self-training
with hard labels (NB-ST), and to compare them with supervised classifiers learned only from
source (NB-S) and with domain adaption classifiers based on expectation-maximization (NB-
EM). The results of our experiments showed that using source data only with supervised
learning can help when the source and target disasters are similar. However, the domain
adaptation approaches are always better than the supervised learning with source data only.
Between the NB-ST and NB-EM approaches, generally the NB-ST approach is better. As
last, our experimental results showed that the domain adaptation approaches can give
results comparable, and in some cases better, than an ideal supervised classifier that would
have (noisy) labeled target data available. However, in general, there is still room for
improving the results of domain adaptation classifiers as compared to the ideal supervised
classifier that would have access to labeled target data.

By helping analyze millions of tweets automatically, our proposed approach has the potential
to impact the way in which response organizations operate, particularly, by identifying more
accurate and timely information than it is possible with traditional information gathering
methods, and in turn providing better support to those who need them, and even, saving
more lives.

As part of the future work, we would like to study how the NB-ST algorithm performs for
multi-class tasks, as opposed to binary-class tasks, for example classification of tweets with
respect to situational awareness categories such as: donation, casualty, damage, etc. We
would also like to investigate multi-source domain adaptation algorithms and apply them in
disaster management as well. In general, the labeled data from a particular disaster is
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relatively small, especially for disasters that have data labeled with very specific information,
such as infrastructure damage, donation, etc. Multi-source domain adaptation, which lets us
make use of multiple sources of data, can potentially help to address this problem.
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