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ABSTRACT
Web archive data usually contains high-quality documents that are
very useful for creating specialized collections of documents, e.g.,
scientific digital libraries and repositories of technical reports. In
doing so, there is a substantial need for automatic approaches that
can distinguish the documents of interest for a collection out of
the huge number of documents collected by web archiving insti-
tutions. In this paper, we explore different learning models and
feature representations to determine the best performing ones for
identifying the documents of interest from the web archived data.
Specifically, we study both machine learning and deep learning
models and “bag of words” (BoW) features extracted from the entire
document or from specific portions of the document, as well as
structural features that capture the structure of documents. We
focus our evaluation on three datasets that we created from three
differentWeb archives. Our experimental results show that the BoW
classifiers that focus only on specific portions of the documents
(rather than the full text) outperform all compared methods on all
three datasets.
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1 INTRODUCTION
A growing number of research libraries, museums, and archives
around the world are embracing web archiving as a mechanism to
collect born-digital material made available via the web. Between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
JCDL ’20, August 1–5, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7585-6/20/06. . . $15.00
https://doi.org/10.1145/3383583.3398540

the membership of the International Internet Preservation Con-
sortium, which has 55 member institutions [14], and the Internet
Archive’s Archive-It web archiving platform with its 529 collecting
organizations [4], there are hundreds of institutions currently en-
gaged in building collections with web archiving tools. The amount
of data that these web archiving initiatives generate is typically
at levels that dwarf traditional digital library collections. As an
example, in a recent impromptu analysis, Jefferson Bailey of the
Internet Archive noted that there were 1.6 Billion PDF files in the
Global Wayback Machine [6]. If just 1% of these PDFs are of interest
for collection organizations, that would result in a collection larger
than the 15 million volumes in HathiTrust [21].

Interestingly, while the number of web archiving institutions
and collections increased in recent years, the technologies needed
to extract high-quality, content-rich PDF documents from the web
archives in order to add them to their existing collections and
repository systems have not improved significantly over the years.

Our research is aimed at understanding how well machine learn-
ing and deep learning models can be employed to provide assistance
to collection maintainers who are seeking to classify the PDF docu-
ments from their web archives into being within scope for a given
collection or collection policy or out of scope. By identifying and
extracting these documents, institutions will improve their ability
to provide meaningful access to collections of materials harvested
from the web that are complementary, but oftentimes more desir-
able than traditional web archives. At the same time, building spe-
cialized collections from web archives shows usage of web archives
beyond just replaying the web from the past. Our research focus is
on three different use cases that have been identified for the reuse
of web archives and include populating an institutional repository
from a web archive of a university domain, the identification of
state publications from a web archive of a state government, and the
extraction of technical reports from a large federal agency. These
three use cases were chosen because they have broad applicability
and cover different Web archive domains.

Precisely, in this paper, we explore and contrast different learn-
ing models and types of features to determine the best performing
ones for identifying the documents of interest that are in-scope
of a given collection. Our study includes both an exploration of
traditional machine learning models in conjunction with either a
“bag of words” representation of text or structural features that cap-
ture the characteristics of documents, as well as an exploration of
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Convolutional Neural Networks (CNN). The “bag of words” (BoW)
or tf-idf representation is commonly used for text classification
problems [11, 39]. Structural features designed based on the struc-
ture of a document have been successfully used for document type
classification [10]. Moreover, for text classification tasks, Convolu-
tional Neural Networks are also extensively used in conjunction
with word embeddings and achieve remarkable results [19, 24, 26].

In web archived collections, usually different types of documents
have a different textual structure and cover different topics. The
beginning and the end portions of a document generally contain
useful and sufficient information (either structural or topical) for
deciding if a document is in scope of a collection or not. As an
example, consider a scholarly works repository. Research articles
usually contain the abstract and introduction in the beginning, and
conclusion and references in the end. The text of these sections and
their position in the document are often enough to determine the
classification of documents [10]. Being on the proper subject (or
in scope of a collection) can also be inferred from the beginning
and the end portions of a document, with some works using only
the title and abstract for classification [9, 30]. These aspects mo-
tivated us to explore features extracted from different portions of
documents. To this end, we consider the task of finding documents
being in-scope of a collection as a binary classification task. In
our work, we experiment with bag of words (“BoW”) by using text
from the entire document as well as by focusing only on specific
portions of the document (i.e., the beginning and the end part of the
document). Although structural features were originally designed
for document type classification, we used these features for our
binary classification task. We also experiment with a CNN classifier
that exploits pre-trained word embeddings.

In summary, our contributions are as follows:

• We built three datasets from three different web archives col-
lected by the UNT libraries, each covering different domains:
UNT.edu, Texas.gov, and USDA.gov. Each dataset contains
the PDF document along with the label indicating whether
a document is in scope of a collection or not. We will make
these datasets available to further research in this area.

• We show that BoW classifiers that use only some portion
of the documents outperform BoW classifiers that use full
text from the entire content of a document, the structural
features based classifiers, and the CNN classifier.

• We also show that feature selection using information gain
improves the performance of the BoW classifiers and struc-
tural features based classifiers, and present a discussion on
the most informative features for each collection.

2 RELATEDWORK
Web Archiving. Web archiving as a method for collecting content
has been conducted by libraries and archives since the mid-1990’s.
The most known web archiving is operated by the Internet Archive
who began harvesting content in 1996. Other institutions through-
out the world have also been involved in archiving the web based
on their local collection context whether it is based on a subject or
as part of a national collecting mandate such as with national li-
braries across the world. While the initial focus of these collections
was to preserve the web as it exists in time, there were subsequent

possibilities to leverage web archives to improve access to resources
that have been collected, for example, after the collaborative har-
vest of the federal government domain by institutions around the
United States for the 2008 End of TermWeb Archive whose goal was
to document the transitions from the Bush administration to the
Obama administration. After the successful collection of over 16TB
of web content, Phillips and Murray [37] analyzed the 4.5M unique
PDFs found in the collection to better understand their makeup.
Jacobs [22] articulated the value and importance of web-published
documents from the federal government that are often found in
web archives. Nwala et al. [36] studied bootstrapping of the web
archive collections from the social media and showed that sources
such as Reddit, Twitter, and Wikipedia can produce collections that
are similar to expert generated collections (i.e., Archive-It collec-
tions). Alam et al. [1] proposed an approach to index raster images
of dictionary pages and built a Web application that supports word
indexes in various languages with multiple dictionaries. Alam et
al. [2] used CDX summarization for web archive profiling, whereas
AlNoamany et al. [3] proposed the Dark and Stormy Archive (DSA)
framework for summarizing the holdings of these collections and
arranging them into a chronological order. Aturban et al. [5] pro-
posed two approaches to to establish and check fixity of archived
resources. More recently, the Library of Congress [16] analyzed
its web archiving holdings and identified 42,188,995 unique PDF
documents in its holdings. These initiatives show interest in analyz-
ing the PDF documents from the web as being of interest to digital
libraries. Thus, there is a need however for effective and efficient
tools and techniques to help filter or sort the desirable PDF content
from the less desirable content based on existing collections or col-
lection development policies. We specifically address this with our
research agenda and formulate the problem of classifying the PDF
documents from the web archive collection into being of scope for
a given collection or being out of scope. We use both traditional ma-
chine learning and deep learning models. Below we discuss related
works on both of these lines of research.

Traditional Text Classification. Text classification is a well-
studied problem. The BoW (binary, tf, or tf-idf) representations are
commonly used as input to machine learning classifiers, e.g., Sup-
port Vector Machine [23] and Naïve Bayes Multinomial [33] for text
classification. Feature selection is often applied to these represen-
tations to remove irrelevant or redundant features [17, 18]. In the
context of digital libraries, the classes for text classification are often
document topics, e.g., papers classified as belonging to “machine
learning” or “information retrieval” [31]. Structural features that
capture the structural characteristics of documents are also used for
the classification of documents in digital libraries [10]. Comprehen-
sive reviews of the feature representations, methods, and results on
various text classification problems are provided by Sebastiani [39]
and Manning [32]. Craven and Cumlien [15] classified bio-medical
articles using the Naive Bayes classifier. Kodakateri Pudhiyaveetil
et al. [27] used the k-NN classifier to classify computer science
papers into 268 different categories based on the ACM classification
tree. Other authors [20, 42] experimented with different classifi-
cation methods such as unigram, bigram, and Sentence2Vec [28]
to identify the best classification method for classifying academic
papers using the entire content of the scholarly documents.



Deep Learning.Deep learningmodels have achieved remarkable
results in many NLP and text classification problems [7, 12, 13,
19, 25, 35]. Most of the works for text classification with deep
learningmethods have involvedword embeddings. Among different
deep learning architectures, convolutional neural network (CNN),
recurrent neural network (RNN), and their variations are the most
popular architectures for text applications. Kalchbrenner et al. [25]
proposed a deep learning architecture with multiple convolution
layers that uses word embeddings initialized with random vectors.
Zhang et al. [41] used encoded characters (“one-hot” encoding) as
an input to the deep learning architecture withmultiple convolution
layers. They proposed a 9-layer deep network with 6 convolutional
layers and 3 fully-connected layers. Kim [26] used a single layer
of CNN after extracting word embeddings for tokens in the input
sequence. The author experimented with several variants of word
embeddings, i.e., randomly initialized word vectors later tuned for
a specific task, fixed pre-trained vectors, pre-trained vectors later
tuned for a specific task, and a combination of the two sets of word
vectors. Yin et al. [40] used the combination of diverse versions
of pre-trained word embeddings followed by a CNN and a fully
connected layer for the sentence classification problem.

In our work, we compare the performance of the BoW classifier
that use the entire text of documents, with those that use only some
portions of the documents, with structural features based classifiers
proposed by Caragea et al. [10], and with a CNN classifier that uses
pre-trained word embeddings (which is more efficient that an RNN-
based classifier). We also experiment with top-N selected features,
ranked using the information gain feature selection method for the
BoW and structural features extracted from the entire documents.

3 DATA
For this research, we constructed datasets from three web archives
collected by the UNT Libraries. For each of the datasets we ex-
tracted all PDF documents within each of the web archives. Next,
we randomly sampled 2,000 PDFs from each collection that we used
as the basis for our labeled datasets. Each of the three sets of 2,000
PDF documents were then labeled in scope and out of scope by sub-
ject matter experts who are responsible for collecting publications
from the web for their collections. Each dataset includes PDF files
along with their labels (in scope/out of scope or relevant/irrelevant).
Further description of the datasets is provided below.

3.1 UNT.edu dataset
The first dataset was created from the UNT Scholarly Works web
archive of the unt.edu domain. This archive was created in May
2017 as part of a bi-yearly crawl of the unt.edu domain by the UNT
Libraries for the University Archives. A total of 92,327 PDFs that
returned an HTTP response of 200 were present in the archive. A
total of 3,141,886 URIs were present in the entire web archive with
PDF content making up just 3% of the total number of URIs.

A set of 2,000 PDFs were randomly sampled from the full set
of PDF documents and were given to two annotators for labeling.
These annotators were: one subject matter expert who was respon-
sible for the maintenance of the UNT Scholarly Works Repository
and one graduate student with background in Library and Informa-
tion Systems. They proceeded to label each of the PDF documents

as to whether a document would be of interest to the institutional
repository or if the document would not be of interest. The labeling
of the PDF files resulted in 445 documents (22%) identified as being
of interest for the repository and 1,555 not being of interest. In case
of disagreement between annotators, a final decision was made by
the researchers of this paper after a discussion with the annotators.

3.2 Texas.gov dataset
The next dataset was created from a web archive of websites that
constitute the State of Texas web presence. The data was crawled
from 2002 until 2011 and was housed as a collection in the UNT
Digital Library. A total of 1,752,366 PDF documents that returned
an HTTP response of 200 were present in the archive. A total of
26,305,347 URIs were present in the entire web archive with PDF
content making up 6.7% of the total number of URIs.

As with the first dataset, a random sample of 2,000 PDF docu-
ments was given to two annotators for labeling: a subject matter
expert from the UNT Libraries and a graduate student (as before).
In this case, items were identified as either being in scope for a
collection called the “Texas State Publications Collection” at the
UNT Libraries, or out of scope. This collection contains a wide
range of publications from state agencies. The labeling of the PDF
files resulted in 136 documents (7%) identified as being of interest
for the repository and 1,864 not being of interest. Again, in case
of disagreement between annotators, a final decision was made by
the researchers of this paper after a discussion with the annotators.

3.3 USDA.gov dataset
The last dataset created for this study came from the End of Term
(EOT) 2008 web archive. This web archive was created as a collab-
orative project between a number of institutions at the transition
between the second term of George W. Bush and the first term of
Barack Obama. The entire EOT web archive contains 160,212,141
URIs. For this dataset we selected the United States Department
of Agriculture (USDA) and its primary domain of usda.gov. This
usda.gov subset of the EOT archive contains 2,892,923 URIs with
282,203 (9.6%) of those being PDF files that returned an HTTP 200
response code.

Similar to the previous datasets, a random sample of 2,000 PDF
documents was given to two annotators for labeling: a subject mat-
ter expert who has worked as an engineering librarian for a large
portion of their career and a graduate student (as before). The sub-
ject matter expert has also been involved with the Technical Report
Archive and Image Library (TRAIL) that was collecting, cataloging,
and digitizing technical reports published by, and for, the federal
government throughout the 20th century. The annotators labeled
each of the PDF files as either being of interest for inclusion in
a collection of Technical Reports or not being of interest to that
same collection. The final labeled dataset has 234 documents (12%)
marked as potential technical reports and 1,766 documents iden-
tified as not being technical reports. The disagreements between
the annotators were finally adjudicated by one of the researchers
of this paper.

The three datasets represent a wide variety of publications that
would be considered for inclusion into their target collections. Of



these three, the Texas.gov content is the most diverse as the publica-
tions range from strategic plans and financial audit reports (which
are many pages in lengths) to pamphlets and posters (which are
generally very short). The UNT.edu dataset contains publications
that are typical for an institutional repository such as research
articles, white papers, slide decks from presentations, and other
scholarly publications. The publications from the UDSA.gov dataset
are similarly scoped as the UNT.edu content, but they also contain
a wider variety of content that might be identified as a “technical
report.” A goal in the creation of the datasets used in this research
was to have a true representative sample of the types of content
that are held in collections of this kind.

4 METHODS
Our goal in this paper is to study different types of features and
learning models to accurately distinguish documents of interests
from web archives for indexing in a specialized collection. In this
section, we discuss different types of features that we used in con-
junction with traditional machine learning classifiers for finding
documents of interests, as well as the Convolutional Neural Net-
work model that do not require any feature engineering.

4.1 Bag of Words (BoWs)
“Bag of words” (BoW) is a simple fixed-length vector representation
of any variable length text based on the occurrence of words within
the text, with the information about the positions of different words
in a document being discarded. First, a vocabulary from the words
in the training documents is generated. Then, each document is
represented as a vector based on the words in the vocabulary. The
values in the vector representation are usually calculated as nor-
malized term frequency (tf) or term frequency - inverse document
frequency (tf-idf) of the corresponding word calculated based on
the given document/text.

We experiment with BoW extracted from the full text of the
documents as well as from only some portions of documents. Our
intuition behind using only some portion of the documents is that
many types of documents contain discriminative words at the begin-
ning and/or at the end. For selecting these portions of documents,
we consider first-X words from each document, and first-X words
combined with last-X words from each document before any type
of preprocessing was performed. We experimented with values of
X ∈ {100, 300, 500, 700, 1000, 2000}. For documents with less than
2 · X words, we considered the entire document without repeating
any parts/words from the document.

Moreover, for BoW encoded from the full text of documents, we
also compared the performance of the top-N selected features, using
the information gain (IG) feature selection method, where N ∈

{300, 500, 1000, 2000, 3000}, with the performance of all features.

4.2 Structural features
Structural features (Str) are designed to incorporate aspects specific
to documents’ structure and are shown to be highly indicative of
the classification of academic documents into their document types
such as Books, Slides, Theses, Papers, CVs, and Others [10]. These
features can be grouped into four categories: file specific features,

text specific features, section specific features, and containment
features. Each of these feature categories are described below.

File specific features include the characteristics of a document
such as the number of pages and the file size in kilobytes.

Text specific features include specifics of the text of a document:
the length in characters; the number of words; the number of lines;
the average number of words and lines per page; the average num-
ber of words per line; the count of reference mentions; the percent-
age of reference mentions, spaces, uppercase letters, symbols; the
ratio of length of shortest to the longest line; the number of lines
that start with uppercase letters; the number of lines starting with
non-alphanumeric letters; the number of words that appear before
the reference section.

Section specific features include section names and their posi-
tion within a document. These features are boolean features indi-
cating the appearance of “abstract”, “introduction”, “conclusion”,
“acknowledgements”, “references” and “chapter,” respectively, as
well as numeric features indicating position for each of these sec-
tions. These features also include two binary features indicating the
appearance of “acknowledgment” before and after “introduction.”

Containment features include containment of specific words or
phrases in a document. These features include binary features in-
dicating the appearance of “this paper,” “this book,” “this thesis,”
“this chapter,” “this document,” “this section,” “research interests,”
“research experience,” “education,” and “publications,” respectively.
These features also include three numeric features indicating the
position of “this paper,” “this book,” and “this thesis” in a document.

Similar to BoW, for the structural features (which are 43 in total),
we also compared the performance of the top-N selected features,
ranked using the information gain (IG) feature selection method,
where N ∈ {10, 20, 30}, with the performance of all 43 features.

4.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNN or ConvNets) [29] are a spe-
cial kind of neural networks to process grid-like structured data,
e.g., image data. CNNs are associated with the idea of a “moving fil-
ter.” A convolution consists of a filter or a kernel, that is applied in a
sliding window fashion to extract features from the input. This filter
is shifted after each operation over the input by an amount called
strides. The convolution layer consists of multiple filters of different
region sizes that generate multiple feature maps for different region
sizes. Pooling is usually used after the convolution layer to modify
the output or reduce the dimensionality. The common practice is to
extract the most important feature within each feature map [13, 26],
called 1-max pooling. Max pooling is applied over each feature map
and the maximum values from each filter are selected. Maximum
values from each feature map are then concatenated and used as
input to a fully connected layer for the classification task. Generally,
pooling helps to make the representation become approximately
invariant to small changes in the input. The CNN architecture that
we used in our experiments is shown in Figure 1 and is similar to
the CNN architecture developed by Kim [26].

For CNN, we experimented with using the text from specific por-
tions of the document. While selecting the portions of documents,



Figure 1: CNN architecture for classification.

as before, we considered first-X words and first-X words combined
with last-X words from each document before any preprocessing
was performed (where X ∈ {100, 300, 500, 700, 1000}). For the docu-
ments with less than 2·X words, we considered the whole document
without repeating any part/words from the document.

5 EXPERIMENTAL SETUP AND RESULTS

In this section, we first discuss the experimental setup of our doc-
ument classification task (i.e., documents being of interest to a
collection or not) and then present the results of our experiments.

5.1 Experimental setup

To understand what kind of features are more informative for iden-
tifying the documents of interest for a collection, we experiment
with the “bag of words” (BoW) extracted from the full text of the
documents as well as with the text from specific portion of the
documents, and with the 43 structural features that capture the
structure of the documents. For the BoW and structural features
(Str) extracted from entire documents (full text), we also compare
the performance of top-N selected features, which were obtained
by using the information gain (IG) feature selection method. For the
BoW, we vary N ranging from 300 to 3000, and for the structural
features, we experimented with top 10, 20, and 30 selected features
by IG. For the preprocessing step of the BoW, we remove stop words
and punctuation, and perform stemming. In addition, we keep only
words that appear in at least 5 documents (i.e., having document
frequency d f ≥ 5).

Using the above features, we experiment with several traditional
machine learning classifiers: Gaussian Naive Bayes (GNB) [34],
Multinomial Naive Bayes (MNB) [34], Random Forest (RF) [8], De-
cision Trees (DT) [38], and Support Vector Machines with a linear
kernel (SVM) [23]. We used the scikit-learn1 implementation of
these classifiers.

In addition to these models, we also investigate the performance
of Convolutional Neural Networks (CNNs) on our task. Our CNNs
comprise of mainly two layers (as shown in Figure 1): a convolu-
tional layer followed by max pooling and a fully connected layer for
the classification. For the CNN input, we consider a document (par-
tial) as a sequence of words and use pre-trained word embeddings
1https://scikit-learn.org/stable/

for each word. These pre-trained word embeddings are trained on
the Google News dataset using the Word2Vec2 [35] algorithm. For
CNN, we used its TensorFlow implementation.3

Train, Development, Test Splits. From the original datasets of
2,000 PDF files, we divided each dataset into three parts by randomly
sampling training set (Train), development set (Dev), and test set
(Test) from each dataset. All Train, Dev, and Test follow a similar
distribution as the original dataset. Table 1 shows the number of
positive (+) and negative (-) examples (i.e., documents of interest or
not of interest, respectively) in each of the three datasets for which
we were able to extract the text (from a given PDF document). For
our purpose, to extract the text from the PDF documents, we used
PDFBox.4 The scanned documents and other documents for which
the text was not correctly extracted were ignored.

UNT.edu Texas.gov USDA.gov
Datasets − + − + − +

Train 869 250 981 72 907 121
Dev 290 83 327 24 300 40
Test 290 83 327 24 300 40
Train-2 869 434 981 490 907 453

Table 1: Datasets description.

Because the original datasets are very skewed (see Section 3),
with only around 22%, 7%, and 12% of the PDF documents being
part of the positive class (i.e., to be included in a collection), we
asked the subject matter experts of each web archive collection to
further identify more positive examples. The supplemental positive
examples (for each collection) were added to the training set of
the corresponding collection. Specifically, for the training set, we
sampled from the newly labeled set of positive examples so that
the number of negative examples is doubled as compared with the
number of positive examples. We denote this set as Train-2 (see
Table 1). Note that the test and dev sets of each collection remained
the same (i.e., having the original distribution of the data to mimic
a real world scenario in which data at test come is fairly skewed).

Note that we studied the performance of our models using other
positive to negative data distributions in the training set. However,
we found that the models trained on Train-2 perform better than
when we train on other data distributions (e.g., the original or 1:1
data distributions). We estimated this on the development set that
we constructed as explained above. Thus, in the next sections, we
report the results when we train on Train-2 (2:1 distribution) and
evaluate on Test (original distribution).

Moreover, we use the development set also for the hyper-parameter
tuning for the classifiers, and for the best classifier selection (which
in our experiments was a Random Forest). In experiments, we
tuned hyper-parameters for different classifiers as follows: the C
parameter in SVM ∈ {0.01, 0.05, 0.1}; the number of trees in RF
∈ {20, 23, 25, 27, 30}; in CNN, single as well as three types of filters
with region sizes ∈ {1, 3, 4, 5, 7}; the number of each type of filters
in CNN ∈ {100, 128, 200}.
2https://code.google.com/archive/p/word2vec/
3https://www.tensorflow.org/
4http://pdfbox.apache.org/
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(a) UNT.edu dataset (b) Texas.gov dataset (c) USDA.gov dataset

Figure 2: Performance of BoW classifiers that use various portions of the text of the documents and full text (denoted as ‘all’).

(a) UNT.edu dataset (b) Texas.gov dataset (c) USDA.gov dataset

Figure 3: Performance of BoW classifiers that use the full text of the documents (‘all’) and its feature selection.

Evaluation Measures. To evaluate the performance of various
classifiers, we use precision, recall, and F1-score for the positive
class. All experiments are repeated three times with a different
train/dev/test split obtained using three different random seeds,
and the final results are averaged across the three runs. We first
discuss the results in terms of the F1-score using bar plots. Then
we present all measures: precision, recall, and F1-score, in a table.

5.2 The performance of BoW and its feature
selection

BoW Performance. First, we compare the performance of the
BoW classifiers when we use various portions of the text of the
documents with that of the BoW classifiers that use the full text of
the documents. For the various portions of the text, we use first X
words and first-X words combined with last-X words from each
document, whereX ∈ {100, 300, 500, 700, 1000, 2000}. The results of
this set of experiments are shown in Figure 2 for all three datasets,
UNT.edu, Texas.gov, and USDA.gov, respectively. Random Forest
performs best among all classifiers for the BoW features, and hence,
we show the results using only Random Forest.

As can be seen from Figure 2a, on UNT.edu, the BoW that uses the
first-100 words combined with last-100 words from each document
performs best compared with the performance of the BoW that uses
other parts of the documents and achieves a highest F1-score of
0.86. Interestingly, the BoW that uses the entire text of documents
performs worse than the BoW that focuses only on specific portions

of the text of each document, i.e., the BoW that uses the entire text
of the documents achieves a lowest F1-score of 0.80 as compared
with 0.86 achieved by BoW that uses only the first-100 + last-100
words from each document. This means that using the entire text
of a document introduces redundant or irrelevant features that are
not beneficial for the classification task.

On the Texas.gov dataset, it can be seen from Figure 2b that
the performance of the BoW classifiers increases as we add more
words from the beginning and the end of each document up to 700
words and after that the performance starts decreasing. The BoW
classifier that uses the first-700 words combined with last-700 words
from each document achieves a highest F1-score of 0.78. On the
other hand, the BoW that uses the entire text of documents mostly
performs worse than the BoW that focuses only on specific portions
of the documents, e.g., the BoW that uses the entire content of the
documents achieves an F1-score of 0.66 as compared with the BoW
that uses only the first-700 + last-700 words, which achieves an F1-
score of 0.78. On Texas.gov, the BoW classifiers that use words from
the beginning and ending of the documents generally outperform
those that use words only from the beginning of the documents.

On USDA.gov, as can be seen from Figure 2c, the BoW classifiers
that use words from the beginning combined with the ending of
the documents (first-X + last-X words) generally outperform the
BoW classifiers that use words only from the beginning of docu-
ments. These results are similar to those obtained on Texas.gov,
although the difference in performance is much smaller compared
with Texas.gov. However, interestingly, we notice that the BoW



BoW
UNT.edu Texas.gov USDA.gov

1 data www studi
2 al texa method
3 result program research
4 figur tx result
5 compar area al
6 increas ag effect
7 similar includ potenti
8 rang year observ
9 semest inform occur
10 larg system found
11 tabl site measur
12 model public speci
13 conclusion nation water
14 research contact larg
15 measur result determin
16 recent import similar
17 abstract number environ
18 exist manag high
19 show reduc natur
20 low increas introduc
21 comparison continu differ
22 de level increas
23 high servic reduc
24 usa plan analysi
25 observ base environment
26 doi qualiti signific
27 base state suggest
28 signific work experi
29 lack time control
30 suggest design site

Table 2: Top-30 selected features from
the BoW using information gain.

Structural Features
UNT.edu Texas.gov USDA.gov

1 positionOfThisPaper fileSize refCount
2 refCount numLines refRatio
3 refRatio lnratio strLength
4 positionOfReferences strLength positionOfThisPaper
5 fileSize pgCount pgCount
6 tokBeforeRef numTok numTok
7 references thisDocument positionOfIntro
8 pgCount publications intro
9 positionOfAbstract positionOfIntro numLines
10 thisPaper intro positionOfAbstract
11 concl education positionOfReferences
12 positionOfConcl positionOfThisPaper references
13 strLength avgNumLinesPerPage abstract
14 numLines symbolStart tokBeforeRef
15 abstract ucaseStart ucaseStart
16 numTok spcRatio fileSize
17 positionOfIntro avgNumWordsPerLine positionOfConcl
18 ucaseStart refRatio concl
19 positionOfAck positionOfAck spcRatio
20 ack ack positionOfAck
21 avgNumWordsPerPage positionOfConcl ack
22 avgNumLinesPerPage concl symbolRatio
23 AckAfterIntro positionOfReferences ucaseRatio
24 symbolRatio positionOfAbstract thisPaper
25 spcRatio tokBeforeRef symbolStart
26 symbolStart references AckAfterIntro
27 lnratio refCount lnratio
28 ucaseRatio avgNumWordsPerPage avgNumWordsPerPage
29 intro ucaseRatio avgNumWordsPerLine
30 publications AckBeforeIntro avgNumLinesPerPage

Table 3: Top-30 selected features from the 43 structural features using infor-
mation gain.

classifier that uses only the first-2000 words performs best and
achieves an F1-score of 0.85, which is followed closely by the BoW
classifier . As before, the BoW that uses the entire text of documents
usually performs worse than the BoW that focuses only on specific
portions of each document, e.g., the BoW that uses the entire text of
the documents achieves an F1 of 0.80 as compared to 0.85 achieved
by BoW on first-2000 words from the documents.

From Figure 2, we can also notice that the performance of BoW
classifiers on Texas.gov is lower compared with that of classifiers
on UNT.edu and USDA.gov, which could be explained by a higher
diversity in Texas.gov compared with the other two collections.

Feature selection on the BoW extracted from the entire
document text. Next, we show the effect of feature selection on
the performance of BoW classifiers that use the full text of the
documents. To rank the features and select the top N best features,
we use information gain. Figure 3 compares the performance of the
BoW classifiers that use all features (denoted BoW-all) with that
of classifiers that use the top-N selected features by information
gain, for all three datasets, where N ∈ {300, 500, 1000, 2000, 3000}.
In total, BoW-all has 19733, 19625, and 22255 features for UNT.edu,

Texas.gov, and USDA.gov, respectively. From the figure, we notice
that performing feature selection improves the performance of
BoW-all extracted from the full text of documents for UNT.edu
and Texas.gov, whereas the performance decreases slightly on
USDA.gov. For example, on UNT.edu, top-300 selected features
achieve an F1-score of 0.85 as compared with 0.80 achieved by
BoW-all. On Texas.gov, the highest performance is obtained using
top-2000 selected features, which achieve a highest F1-score of 0.71
as compared with 0.66 achieved by BoW-all. On USDA.gov, the
top-1000, 2000, and 3000 features achieve higher performance as
compared to top-300 and top-500 features. Unlike the other two
datasets, on the USDA.gov dataset, BoW-all achieves a highest F1
of 0.80 as compared with other top-N selected features. Comparing
Figure 2 with Figure 3, it is interesting to note that, although feature
selection improves the performance of BoW-all for UNT.edu and
Texas.gov, still the performance of feature selection performed on
words from the entire content of documents is not as good as the
performance of BoW that uses words from the beginning or the
beginning and ending of documents.



(a) UNT.edu dataset (b) Texas.gov dataset (c) USDA.gov dataset

Figure 4: Performance of structural features and their feature selection.

Table 2 shows the top-30 ranked words using information gain
feature selection method on each dataset. For the UNT.edu data, we
see tokens that appear to be associated with academic publications
such as “data, result, figure, research, or conclusion,” which seem to
match the general scope of this collection as it contains research ar-
ticles and publications authored by faculty members. The Texas.gov
BoW features include tokens that align with publications or other
official documents including “texa (texas), program, area, site, na-
tion, or system.” These also seem to align very well with the kind
of publications selected as being in scope in the dataset. Finally, the
USDA.gov BoW selected features include tokens from research and
technical publications with tokens such as “study, method, research,
result, and effect.” There is more overlap between these tokens in
USDA.gov and the tokens from the UNT.edu dataset. This suggests
that there is some overlap in the kind of content between the two
datasets (confirmed by subject matter experts as well).

Next, we explore the following question: Where are the best
performing selected features located in the documents? To answer
this question, we check the overlap between the best performing
top-N selected features and the best performing BoW that uses
only specific portions of the text of the documents. For all three
datasets, we found that all best performing top-N selected features
are present in the best performing BoW that uses only specific
portions of the document, e.g., on Texas.gov, all top-2000 selected
features occur in the BoW that uses the first-700 + last-700 words
from each of the documents.

5.3 The performance of structural features and
their feature selection

Here, we compare the performance of the 43 structural features
with the performance of different top-N selected structural features
by information gain. Again, Random Forest performs best compared
with any other classifier we experimented with for the structural
features and their feature selection. Figure 4 shows the performance
of the 43 structural features (Str) and the top-N selected features
by information gain, for all three datasets. As can be seen from
the figure, for UNT.edu and Texas.gov, the performance of the Str
classifiers keeps increasing from top-10 features to all 43 features. As
expected, on Texas.gov, the performance of Str classifiers is much
lower compared with that of Str classifiers on UNT.edu. This is

because the Str features are more aligned with academic documents,
whereas Texas.gov covers a more diverse set of documents. On
USDA.gov, the performance of the Str classifiers keeps increasing
from top-10 selected features to top-30 features, and the classifiers
corresponding to top-30 and all 43 features perform the same.

Table 3 shows the top-30 ranked structural features using the
information gain feature selection method on each dataset. Inter-
preting these structural features is similar to the BoW results dis-
cussed above. The UNT.edu shows that the most informative fea-
tures include those that are closely aligned with the scholarly pub-
lications including positionOfThisPaper, refCount, refRatio, and
positionOfReferences. The USDA.gov has similar structural fea-
tures that key off of the content of the publications but also start
to include more generic features such as strLength, pgCount, and
numTok into the most informative features. The Texas.gov is very
different, with the most informative structural features being those
that are very generic such as fileSize, numLines, lnratio, strLength,
and pgCount. This seems to match the content in the datasets where
UNT.edu is well focused on scholarly publications, USDA.gov in-
cludes both scholarly publications as well as technical reports, and
Texas.gov is very broad in the kind of publications included in the
collection. Because of this broad range of publications in Texas.gov,
it appears that the 43 structural features selected are not being used
to their fullest capability for this dataset.

5.4 The performance of the CNN classifiers

Next, we compare the performance of the CNN classifiers when we
consider the text from different portions of the documents.

Figure 5 shows the performance of the CNN classifiers that use
word sequences from various portions of the documents, i.e., first
X words and first-X words combined with last-X words (where
X ∈ {100, 300, 500, 700, 1000}).

On UNT.edu, it can be seen from Figure 5a that the CNN that uses
the first-100 words from each of the documents performs best and
achieves a highest F1-score of 0.79. Also, on UNT.edu, the CNNs
that use words from the beginning and ending of each document
generally outperform the CNNs that use words only from the begin-
ning of the documents (except for 100-length sequences). Moreover,
we notice the drastic performance gap between the performance of
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Figure 5: Performance of the CNN using different portions of the documents on different datasets

Feature Type UNT.edu Texas.gov USDA.gov
Pr Re F1 Pr Re F1 Pr Re F1

BoW-all 0.88 0.74 0.80 0.54 0.86 0.66 0.76 0.86 0.80
BoW-PD 0.90 0.83 0.86 0.67 0.91 0.78 0.82 0.88 0.85
FS-BoW 0.86 0.84 0.85 0.61 0.86 0.71 0.71 0.88 0.79
Str 0.84 0.82 0.83 0.49 0.90 0.64 0.70 0.85 0.76
CNN 0.78 0.80 0.79 0.89 0.61 0.72 0.65 0.75 0.69

Table 4: Performance of different features/models on our datasets.

the CNN that uses the first-100 words and the CNNs that use other
portions of the documents’ text.

On Texas.gov, it can be seen from Figure 5b that the CNN classi-
fier that uses the first-700 words combined with the last-700 words
performs best and achieves an F1-score of 0.72. For Texas.gov, the
CNN classifiers that use words from the beginning and ending por-
tions of documents outperform the CNNs that use words only from
the beginning of documents.

On USDA.gov, we can see from Figure 5c that the CNN classifier
that uses the first-100 words from each document performs best
and achieves a highest F1-score of 0.69. The performance of the
CNN classifiers that use word sequences from the beginning and
ending of documents perform better than those that use only the
beginning of documents for word sequence lengths greater than
500. Comparing the results in Figure 5 with the previous results, we
can notice that the deep learning CNN models perform worse than
the Random Forest classifiers that use BoW from various portion
of the document text.

5.5 Overall comparison

Last, we contrast the performance of different sets of features and
models in terms of all compared measures, precision (Pr), recall
(Re), and F1-score (F1) for the positive class. Table 4 shows the BoW
classifier that uses the full text of each document (BoW-all), the
BoW classifier that uses some portion of the document (BoW-PD),
the best performing top-N selected features from the BoW-all using
information gain (FS-BoW), the 43 structural features (Str), and
the best performing CNN classifier. As feature selection did not

improve the performance of Str features, we do not show the per-
formance of feature selection on Str in Table 4. As we can see from
the table, the BoW-PD (Random Forest) is the highest performing
model across all three datasets in terms of most compared measures.

For example, on UNT.edu, BoW-PD achieves the highest preci-
sion of 0.90 compared with all the other models, at the expense of
a small drop in recall. Str performs better than BoW-all (Random
Forest) and CNN in terms of recall and F1-score, i.e., Str achieves
an F1 of 0.83 as compared with 0.80 and 0.79 achived by BoW-all
and CNN, respectively. Feature selection improves the performance
of BoW-all classifier, i.e., FS-BoW (top-300 features) achieves an F1
of 0.85 as compared with 0.80 achieved by BoW-all.

On Texas.gov, BoW-PD achieves a highest F1 of 0.78whenwe use
the first-700 words combined with last-700 words from each docu-
ment. Similar to UNT.edu, we can see the substantial improvement
in the performance of BoW-all when we do feature selection, i.e.,
FS-BoW (top-2000 features) achieves an F1 of 0.71 as compared with
0.66 achieved by BoW-all. Moreover, the CNN classifier achieves
the highest precision of 0.89. CNN performs better than BoW-all,
FS-BoW and Str, i.e., CNN achieves an F1 of 0.72 as compared with
0.66, 0.71, and 0.64 achieved by BoW-all, FS-BoW, and Str.

On USDA.gov, BoW-PD achieves the highest score across all
the measures when we use the first-2000 words, i.e., it achieves a
highest F1 of 0.85. Unlike the other two datasets, feature selection
on the BoW did not improve the performance of the BoW, i.e., FS-
BoW (top-1000 features) achieves an F1 of 0.79 as compared with
0.80 achieved by BoW-all. However, FS-BoW also achieves a highest
recall of 0.88 similar to BoW-PD.



6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied different types of features and learning
models to accurately distinguish documents of interest for a col-
lection, from web archive data. Experimental results show that
BoW features extracted using only some portions of the documents
outperform BoW features extracted using the entire content of
documents (full text) as well as the top-N selected BoW features,
structural features, top-N selected structural features, and a CNN
classifier. We found that feature selection done using information
gain improved the performance of the BoW classifier. However, our
conclusion is that text from specific portions of documents (e.g.,
the first-X or first-X+last-X number of words from the content of
documents) is more useful than the text from the entire content for
finding documents of interest to a given collection.

Our aimwas to provide interpretable models that are useful for li-
brarians and collectionmanagers to identify publications that match
a given collection. Because of this, many traditional algorithms and
approaches were selected so that we could easily interpret the out-
put and could communicate what is happening within the models
to librarians and collection creators who might not have as strong
of an understanding of machine learning algorithms. In the future
work, other approaches may produce more powerful models that
could be more difficult to interpret or explain. Such models and
in depth explorations of deep learning will be tested in the fu-
ture. Moreover, it would be interesting to explore various dynamic
model combinations that could select the most confident models
for various categories of documents and that could improve the
performance further. Our datasets and code will be made available
to the research community to further research in this area.
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