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ABSTRACT
Keyphrases associated with research papers provide an effective
way to find useful information in the large and growing scholarly
digital collections. However, keyphrases are not always provided
with the papers, but they need to be extracted from their content. In
this paper, we explore keyphrase extraction formulated as sequence
labeling and utilize the power of Conditional Random Fields in
capturing label dependencies through a transition parameter ma-
trix consisting of the transition probabilities from one label to the
neighboring label. We aim at identifying the features that, by them-
selves or in combination with others, perform well in extracting the
descriptive keyphrases for a paper. Specifically, we explore word
embeddings as features along with traditional, document-specific
features for keyphrase extraction. Our results on five datasets of
research papers show that the word embeddings combined with
document specific features achieve high performance and outper-
form strong baselines for this task.

CCS CONCEPTS
• Information systems → Information extraction.

KEYWORDS
Keyphrase extraction, sequence labeling, Conditional Random Fields,
word embeddings, feature representations

ACM Reference Format:
Krutarth Patel and Cornelia Caragea. 2019. Exploring Word Embeddings in
CRF-based Keyphrase Extraction from Research Papers. In Proceedings of the
10th International Conference on Knowledge Capture (K-CAP ’19), November
19–21, 2019, Marina Del Rey, CA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3360901.3364447

1 INTRODUCTION
Keyphrase extraction is the task of automatically extracting a small
set of meaningful words or phrases that can accurately summarize
the topics discussed in a document [24]. Keyphrases therefore pro-
vide a high-level topic description of a document, can allow for
efficient data organization and information processing, and have a
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high impact on document understanding and reading comprehen-
sion. Additionally, keyphrases associated with a document are often
useful in many applications such as document indexing, classifica-
tion, clustering, recommendation, and summarization [1, 4, 48, 54],
contextual advertising [58], and opinion mining [8]. Due to their
high importance, many approaches to keyphrase extraction have
been proposed in the literature. Most of these approaches are either
supervised or unsupervised and work in two steps. First, a set of
candidate words or phrases are formed using certain part-of-speech
(POS) tags (e.g., nouns and adjectives) and patterns (e.g., at least one
noun possibly preceded by adjectives) [27]. Second, the candidate
words or phrases are ranked based on the aggregated “informative-
ness” scores of the individual words comprising a phrase [45, 55]
in unsupervised approaches, or are classified as keyphrases or non-
keyphrases based on a set of linguistic and statistical features such
as tf-idf, POS tags, and the relative position of phrases in documents
[20, 27] in supervised approaches.

More recently, researchers started to address keyphrase extrac-
tion as a sequence labeling task [9, 22, 59]. For example, Gollapalli
et al. [22] formulated keyphrase extraction as sequence labeling
and showed on several datasets of research papers that using Con-
ditional Random Fields (CRFs) can improve the performance over
previous supervised and unsupervised models for this task. The
authors used word features such as “WordIsCapitalized,” “WordIs-
Stopword,” NP-chunking and POS tags, and “WordIsInTitle,” as well
as their combinations, e.g., “WordIsInTitle andWord POS tag=noun.”
However, this approach does not capture the semantics of words
in context that are often hidden in text. We posit that incorporat-
ing word semantics in context in a CRF model has the potential
to further improve the performance of keyphrase extraction from
research papers.

One way to capture word semantics is to use word embeddings
or the distributed vector representations of words, trained on very
large collections of documents in an unsupervised fashion [46].
Along this line, Turian et al. [53] showed on two NLP tasks, chunk-
ing and named entity recognition, that using word embeddings
in existing supervised systems is a simple and general method to
improve their performance. Marujo et al. [42] and Mahata et al. [40]
showed promising results on keyword extraction by incorporat-
ing word embeddings into supervised and unsupervised models.
However, unlike these works, in this paper, we investigate the
discriminative power of word embeddings in sequence labeling
based models. Specifically, we address keyphrase extraction as se-
quence labeling using CRF models and explore word embeddings
as features, by themselves or in combination with other statistical
and linguistic features, to determine their discriminative power in
correctly extracting the descriptive keyphrases for a research paper.
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Our contributions are as follows:
• We propose to incorporate word semantics in CRFmodels for
keyphrase extraction through the use of word embeddings.
We study the sensitivity of CRFs based on word embedding
types, i.e., those pre-trained on Google News as well as those
trained on a large collection of ACM research papers. As
part of our contributions, we will make available the IDs of
our ACM dataset and the word embeddings.1

• We contrast the CRFs that use word embeddings with a
more sophisticated model, Bi-LSTM-CRF [3]. In Bi-LSTM-
CRF, the input and output layers are not directly connected
as in CRF, but instead a Bi-LSTM (Bidirectional Long Short
Term Memory) layer is inserted between them to exploit
the long term dependencies in the text. Through extensive
experiments, we show that directly using word embeddings
in CRF models is a simple and general method to improve
CRFs’ performance and that the non-linearity brought by
the Bi-LSTM layer yields a representation that is not always
useful for the CRF model.

• We experimentally show that the CRF models that use word
embeddings in addition to features extracted from the docu-
ment itself outperform strong baselines and other previous
approaches for keyphrase extraction.

The rest of the paper is organized as follows: In the next section,
we summarize the related work. We describe our sequence labeling
problem and the proposed features in Section 3. In Section 4, we
present the datasets used for evaluation. The experimental setup
and results are discussed in Section 5, followed by conclusions and
future directions of our work in Section 6.

2 RELATEDWORK
Keyphrase extraction has been the focus of many supervised and
unsupervised studies [24]. In the supervised studies, the prediction
is done based on a selection of linguistic and statistical features
extracted from the text of a document, e.g., a word or phrase part
of speech (POS) tags, tf-idf scores, and position information, used
in conjunction with machine learning classifiers such as Naïve
Bayes and Support Vector Machines [20, 27, 47, 51]. These features
were also combined with features extracted from external sources
such as WordNet and Wikipedia [38, 43] or from various document
neighborhoods, e.g., a document’s citation network [11, 12].

Unsupervised studies include phrase scoring methods based on
measures such as tf-idf and topic proportions [6, 37, 61], graph-
based ranking using centrality measures, e.g., PageRank scores
[19, 23, 32, 45, 55], and keyphrase selection from topics detected
using topic modeling [34, 52]. Blank et al. [10] ranked keyphrases
for a target paper using keyphrases from the papers that are cited by
the target paper or that cite at least one paper that the target paper
cites. In the unsupervised context, several extensions of PageRank
have been proposed that make use of a document’s citation network
[21] or that bias the random walk based on the words’ positions
in text [19] or the words’ topic distribution estimated using topic
models [36]. In order to add semantic relatedness between thewords
in a word graph, Martinez-Romo et al. [41] used information from
WordNet. The best performing SemEval 2010 system used term
1The code and data are available upon request.

frequency thresholds to filter out phrases that are unlikely to be
keyphrases, where the thresholds were estimated from the data [17].
The candidate phrases were ranked using tf-idf in conjunction with
a boosting factor that was aimed at reducing the bias towards single
words. Danesh et al. [16] computed an initial weight for each phrase
based on a combination of the tf-idf score and the first position of a
phrase in a document. Phrases and their initial weights were then
incorporated into a graph-based algorithmwhich produces the final
ranking of keyphrases. Adar and Datta [2] extracted keyphrases by
mining abbreviations from scientific literature and built a semantic
hierarchical keyphrase database. Many of the above approaches,
both supervised and unsupervised, are compared and analyzed in
the ACL survey on keyphrase extraction by Hasan and Ng [25]. Fan
et al. [18] used a random-walk method to extract keyphrases using
word embeddings combined with the features of candidate words
and edges from the word graph.

Neural networks and word embeddings have started to be incor-
porated into models for keyphrase extraction. For example, Wang
et al. [56] investigated word embeddings to measure the related-
ness between words in graph-based models. Marujo et al. [42] used
word embeddings in the existing supervised MAUI system [43] to
extract keywords from tweets. Mahata et al. [40] exploited word
and phrase embeddings in an unsupervised topic-biased PageRank
to extract keyphrases from research papers and showed improve-
ments in performance over models that do not use embeddings.
Bennani-Smires et al. [7] explored simple models for keyphrase
extraction based on sentence embeddings. A Recurrent Neural Net-
work (RNN) based approach was proposed by Zhang et al. [60]
to identify keyphrases in Twitter data, using a joint-layer RNN to
capture the semantic dependencies in the input sequence, but did
not address the dependencies in the labels. Ray Chowdhury et al.
[49] extended this joint-layer RNN to capture informal writing in
tweets. Augenstein and Søgaard [5] used multi-task learning to
classify keyphrase boundaries.

Inspired from work in machine translation, Meng et al. [44]
focused on keyphrase generation (rather than keyphrase extraction)
and addressed the task as a sequence to sequence learning problem,
where the sequence of words in a document is used to generate
a sequence of keyphrases. An Encoder-Decoder RNN, originally
proposed by Cho et al. [15], was used to generate the keyphrase
sequences. Several other works focused on keyphrase generation
[13, 14, 57]. Unlike these works, we focus on keyphrase extraction
and not keyphrase generation, which generates words that may or
may not be present in the text. Specifically, we mine the content of
documents to extract keyphrases that are present in their content,
using CRF-based sequence labeling and the power of unsupervised
word embeddings.

Sequence labeling models for keyphrase extraction have shown
promising results in several studies [9, 22, 59]. For example, Golla-
palli et al. [22] trained a CRF to extract keyphrases from scholarly
documents, using features such as tf-idf and POS tags to predict a
label for each token position in a document as being a keyphrase
token (KP) or not (Non-KP). Recently, a sequence labeling frame-
work has been explored on a variety of NLP tasks such as POS
tagging, noun phrase chunking, named entity recognition, and
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Figure 1: Layers in a CRF network.

keyphrase extraction [3, 26, 35, 39] that combines a Bi-LSTM net-
work as the first layer to capture sequential text dependencies with
a second CRF layer to capture label dependencies.

In our work, we explore word embeddings in CRF models as a
simple and general approach for keyphrase extraction from schol-
arly documents, and contrast this with the more sophisticated
model, Bi-LSTM-CRF. To our knowledge, in the context of keyphrase
extraction from scholarly documents, we are the first to directly
use word embeddings as features in CRF-based models and show
improved results over previous models.

3 PROBLEM CHARACTERIZATION
CRF: We formulate keyphrase extraction as sequence labeling us-
ing Conditional Random Fields [31]. CRFs combine the advantages
of graphical modeling and discriminative classification and have
majors advantages over other graphical models, e.g., the ability to
handle a large number of rich features and the ability to avoid the
label bias problem (favoring the states with less outgoing transi-
tion) by using global normalization and accounting for the entire
sequence at once. In CRFs, for an input sequence x = {x1, x2,
· · · , xn }, where each xi represents the feature vector for the ith
wordwi in the sequence, the task is to predict a sequence of labels
y = {y1,y2, · · · ,yn }, where yi is assigned towi . In our CRF model,
each feature vector xi consists of individual or combinations of
two types of features, document specific features and word embed-
dings, described below. Figure 1 shows a simple CRF network. The
features that we use in our CRF models are described below.

Document Specific Features (DOC): We use six features for
each word that are extracted from the target paper: a word’s POS
tag (POS) [27], term frequency-inverse document frequency (tf-
idf) computed based on the target paper [20]; the position of the
first occurrence of a word normalized by the length of the target
paper (in the number of tokens) (relative position) [20, 27]; the
distance of the first occurrence of a word from the beginning of a pa-
per (first position) [12]; a binary feature indicating the presence of
the word in the title (is-in-title) [28, 33]; and a binary feature indi-
cating whether the word was capitalized (is-capitalized) [22]. The
choice of these features was motivated by their good performance
in previous models [12, 20, 27].
Word Embedding Features (EMB): Word embeddings are vector
representations of words as dense vectors. Precisely, using word
embeddings, words are expressed as dense vectors by projecting
each word into a multidimensional vector space. The position of a
word within the vector space or the embedding is learned from the
text by considering the surrounding words from its local context,
and hence, can capture the semantic relations from text. We use the
components of multidimensional word embeddings of each word
as its features.

x1 x2 xn−1 xn

input · · ·

hidden

backward

· · ·
· · ·

forward

output · · ·

y1 y2 yn−1 yn

Figure 2: Layers in a Bi-LSTM-CRF network.

Bi-LSTM-CRF: In order to build a sequence labeling model that
incorporates long distance information over a sequence of input
as well as information on the output sequence, we consider the
Bi-LSTM-CRF network as a more sophisticated and complex model.
The network architecture is shown in Figure 2. As shown in the
figure, the first layer of the model is a Bi-LSTM network with the
purpose of capturing the semantics of the input text sequence.
The output of the Bi-LSTM layer is passed to a CRF layer that
produces a probability distribution over the tag sequence using the
dependencies among labels of the entire sequence.

4 DATASETS
We used five datasets of research papers for evaluation. The first
four datasets are widely used in keyphrase extraction and include
SemEval-2010, Krapivin, Inspec, and NUS. The fifth dataset, called
ACM, is a much larger dataset compared with the previous four
datasets and is created from the collection of research papers pub-
lished by ACM.2 We used the title and abstract of each paper. The
five datasets are described below.

(1) SemEval [29] contains 288 research papers from the ACM
digital library along with author-assigned keyphrases. The
dataset has a train and test split consisting of 188 and 100
papers, respectively.

(2) Krapivin [30] contains 2,304 ACM research papers with full
text and author-assigned keyphrases. Similar to [44], since
the dataset does not have a train-test split, we sampled 400
papers as the test set with the remaining papers being used
as the training set.

(3) Inspec [27] contains abstracts of 2,000 research papers. It
has a train-validation-test split of 1,000, 500 and 500 papers,
respectively. In our experiments, we use the combination of
train and validation sets to train different models.

(4) NUS [47] contains 211 research papers. This dataset does
not have a train and test split and it is relatively small. Hence,
consistent with [44], we performed five-fold cross-validation.

(5) ACM: Since none of the above datasets is very large, we
constructed a new dataset of 30,000 papers published in ACM
conferences. These papers were sampled from the 211,028
papers available in ACM Digital Library and published after
2010. In our experiments, we used 10,000 papers (at random)
as the train set (ACM-10k) and the remaining 20,000 papers
as the test set (ACM-20k). During the dataset construction,
we ensured that there was no overlap between our ACM
dataset and any of the four datasets above.

2https://dl.acm.org/
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Dataset Num. (#)
Papers

Avg. # Keyphrases
Per Paper Number of Keyphrases of Different Lengths

SemEval 288 7.15 #unigrams: 440, #bigrams: 769, #trigrams: 383, # > trigrams:145
Krapivin 2,304 3.03 #unigrams: 1,476, #bigrams: 3,598, #trigrams: 1,210, # > trigrams:328
Inspec 2,000 7.65 #unigrams: 2,153, #bigrams: 7,068, #trigrams: 4,050, # > trigrams:1,955
NUS 211 2.71 #unigrams: 183, #bigrams: 258, #trigrams: 76, # > trigrams:16
ACM-30k 30,000 2.67 #unigrams: 30,658, #bigrams: 36,017, #trigrams: 10,916, # > trigrams:2,489

Table 1: Summary of the keyphrase extraction datasets used for model evaluation.

Dataset Keyphrases

SemEval congestion game, load-dependent failure, identical resource, nash equilibrium, nondecreasing cost function,
potential function, failure probability, load-dependent failure, pure strategy nash equilibrium

Kapivin bessel function, modified Bessel function, order zero and one, vectorized software

Inspec
evolving fuzzy rule-based models, identification, noniterative update, rule-base structure,
incremental unsupervised learning, ranking, informative potential, fuzzy rules, complex processes,
air-conditioning component modeling

NUS Nearest Neighbour Search, TLAESA, Approximation Search
ACM-30k Control abstractions, Data abstractions, Programming languages, Programming methodology

Table 2: Examples of gold standard keyphrases (present in the title + abstract) of a paper randomly selected from each dataset.

Table 1 shows a summary of all five datasets and contains the
number of papers in each dataset, the average number of keyphrases
per paper, and the number of n-gram keyphrases, for n = 1, 2, 3,
and n > 3, for each collection. The gold-standard for each pa-
per contains the author-assigned keyphrases present in a paper
(its title and abstract). For finding gold keyphrases in a paper, we
used the stemmed version of each. Table 2 shows examples of gold
keyphrases (shown for one paper) from each dataset.

As described above and as can be seen from Tables 1 and 2, the
datasets used for evaluation cover a wide variability in terms of
dataset sizes, average number of keyphrases per paper, the length
of keyphrases in the number of words.

5 EXPERIMENTAL DESIGN AND RESULTS
We performed three types of experiments. First, we evaluate the
quality of word embeddings by themselves or combined with docu-
ment specific features and contrast the learned CRFs with the CRFs
that do not use word embeddings. Second, we contrast the CRF
model that uses word embeddings and document features with a
more sophiticated and complex model, Bi-LSTM-CRF. In this exper-
iment, we also study the performance of CRF and Bi-LSTM-CRF
when trained on the ACM-10k dataset and evaluated on the test
set of each of the four datasets, SemEval, Krapivin, Inspec, and
NUS. Third, we compare the CRF against several baselines and
prior works, including supervised, sequence labeling and neural
models. Finally, we show anecdotal evidence that demonstrates the
quality of word embeddings in extracting appropriate keyphrases.

For our sequence labeling task, for model training, we convert
a pair of the paper (title and abstract) and keyphrases pairs such
that each sentence of a paper is a sequence of word tokens, each
token has a positive label (KP) if it occurs in a keyphrase in the
gold-standard, or a negative label (Non-KP), otherwise. Predicted
keyphrases are obtained by combining all consecutive words pre-
dicted as KP (i.e., the longest sequence). We did not impose a con-
straint on the length of keyphrases since, as we can see from Table

1, particularly for Inspec and ACM-30k datasets, the number of
keyphrases with length greater than three is very large.

Evaluation metrics. To evaluate the performance of the CRF
models, we used the following metrics: precision, recall and F1-
score for the positive class since the correct identification of positive
examples (keyphrases) is more important. These metrics are widely
used in previous works [12, 27, 45, 55]. To match the predicted
keyphrases with gold-standard keyphrases, we do exact match
between the stemmed version of each. For the NUS we perform
5-fold cross validation and for the other four datasets we perform a
single train and test (on the train-test split provided by the authors
of each dataset, or our train-test split for ACM). Because NUS is
very small, cross-validation experiments are more appropriate on
this dataset [44]. For the 5-fold cross validation experiments, the
reported values are averaged across all (document level) folds.

5.1 Word Embeddings as Features in CRFs for
Keyphrase Extraction

We contrast CRF models that use embedding features by them-
selves (EMB) and their combination with document specific features
(EMB+DOC). We also contrast these models with the CRF models
that use only document specific features (DOC) to understand the
benefits of word embeddings in accurately predicting keyphrases.
We also study the effect of embedding type (i.e., those trained on
Google News and the ACM collection of research paper) and the
embedding dimension.

We trained word embeddings of different dimension sizes (50,
100, 200, 300) on the ACM Digital Library collection of 211, 028 re-
search papers using theGensim implementation [50] of word2vec [46].
We kept words appearing in at least 5 documents for building the
vocabulary. The full text has around 1.2B tokens and 879K unique
tokens. We compared the ACM word embeddings (denoted “ACM”)
with the pre-trained word2vec embeddings of 300-dimensional vec-
tors on Google News of about 100B words (denoted “GNews”).

Session: Named Entity Recognition and Embedding K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA

40



DOC EMB DOC+EMB
Pr% Re% F1% Emb. Dim. Pr% Re% F1% Dim. Pr% Re% F1%

SemEval 36.18 61.26 45.49 ACM 300 27.02 43.38 33.30 300 33.74 65.14 44.46
GNews 300 28.41 50.28 36.30 300 34.38 68.29 45.73

Krapivin 33.99 54.25 41.79 ACM 300 24.39 37.52 29.56 300 33.62 63.76 44.02
GNews 300 29.69 26.49 28.00 300 38.95 64.64 48.61

Inspec 46.86 74.48 57.52 ACM 300 46.37 64.50 53.95 300 49.36 83.34 62.00
GNews 300 49.64 59.53 54.14 300 51.73 84.91 64.29

NUS 32.44 53.46 40.38 ACM 50 19.09 30.91 23.60 50 25.50 43.75 32.22
GNews 300 18.82 30.08 23.16 300 26.52 49.18 34.46

ACM 37.41 55.00 44.53 ACM 300 27.15 29.28 28.18 300 39.50 63.56 48.72
GNews 300 14.50 8.65 10.83 300 38.40 54.99 45.22

Table 3: CRF performance using word embeddings (EMB), document features (DOC) and DOC+EMB.

Table 3 shows the results of these comparisons using ACM and
GNews with the best performing embedding dimension, for all five
datasets. For SemEval, Krapivin, Inspec, and ACM, we used the
train-test split for model training and evaluation, as described in
Section 4, whereas for NUS, we used five-fold cross-validation.

As can be seen from Table 3, word embeddings alone (EMB)
performworse than the document specific features alone (DOC), for
all datasets, in terms of most compared measures. For example, on
the ACM dataset, EMB achieves an F1-score of 28.19% (using ACM
embeddings) as compared with 44.53% achieved by DOC. When we
add word embeddings to document features (DOC+EMB), we can
see substantial improvements in performance over the individual
features, DOC or EMB alone, for Krapivin, Inspec, and ACM, in
terms of all compared measures, regardless of the embedding type
used, ACM or GNews. For example, on ACM, DOC+EMB achieves
an F1-score of 48.72% (using ACM embeddings), whereas DOC and
EMB alone achieve an F1-score of 44.53% and 28.18%, respectively.
However, on SemEval and NUS, DOC alone performs similarly or
better than DOC+EMB, e.g., on SemEval, DOC achieves an F1-score
of 45.49% as compared to 45.73% achieved by DOC+EMB using
GNews embeddings, whereas on NUS, DOC achieves an F1-score
of 40.38% as compared to 34.46% achieved by DOC+EMB using
GNews embeddings. One potential explanation for this similar or
drop in performance for SemEval and NUS is that both datasets
have a relatively small size (see Table 1), with less than 200 papers
for training in each dataset, that hinders to learn robust parameters
for CRFs when the number of features is large as is the case with
DOC+EMB, as compared with the number of DOC alone (only six
features). These results show that word embeddings combined with
document features help to improve the performance of CRF models
when we have a sufficient amount of training data available.

From Table 3, we can also see that the embeddings trained on
GNews perform similarly or better than those trained on ACM for
DOC+EMB based CRFs on all datasets, except ACM. Also, for ACM
embeddings, an embedding size of 300 generally works best among
all compared sizes.

5.2 CRF vs. Bi-LSTM-CRF for Keyphrase
Extaction

Next, we compare the CRF models with the more sophisticated
Bi-LSTM-CRF models that are able to exploit the long-distance
dependencies in the text. For the Bi-LSTM-CRF models, we used

adam optimizer with learning rate 0.001, 300 cells for Bi-LSTM, and
30 epochs for model training.

Table 4 shows the results of this comparison for all five datasets.
For model training and evaluation in this experiment, we used the
train-test split of ACM, SemEval, Krapivin, and Inspec, and 5-fold
cross-validation for NUS, with the embedding type and dimension
that worked best on each dataset. The input of both CRFs and Bi-
LSTM-CRFs is DOC+EMB. As can be seen from the table, CRFs
consistently outperform the Bi-LSTM-CRFs on all five datasets.
While the difference in F1-score is only 6.8% on ACM, it ranges
between 20% and 40% on SemEval, Krapivin, and Inspec, which
is attributed to the small size of these three datasets. Moreover,
the difference in F1-score on NUS is low compared with the other
datasets (only 1.8%). We believe that both CRF and Bi-LSTM-CRF
are incapable of learning good model parameters due to the very
small size of NUS.

To understand the impact of the training set size on the perfor-
mance of the CRF and Bi-LSTM-CRF models on SemEval, Krapivin,
Inspec, andNUS, and determinewhichmodel is a better for keyphrase
extraction, we performed the following experiment: we trained both
CRFs and Bi-LSTM-CRFs on the ACM-10k training set and evalu-
ated their performance on the test splits of each SemEval, Krapivin,
Inspec, and on the NUS dataset. Table 5 shows the results of this
experiment using ACM word embeddings (300 dimensional).

From Table 5, we can make several observations. First, the per-
formance of Bi-LSTM-CRF increases in terms of all compared mea-
sures on all four datasets when we train the model on a much larger
dataset size, i.e., 10,000 research papers, compared with the rela-
tively small sizes of the training set of each dataset, supporting our
intuition that the Bi-LSTM-CRF model overfits in the experiments
in Table 4. A similar trend is observed on NUS for the CRF model,
suggesting that the small size of NUS hinders both models to learn
robust parameters. Second, the difference in F1-score between the
CRF abd Bi-LSTM-CRF is smaller when we train the models on
ACM-10k. Third, we observe that the F1-score of CRF is higher
than that of Bi-LSTM-CRF on three datasets, SemEval, Krapivin,
and NUS, but is lower on Inspec. Interestingly, on Inspec, Bi-LSTM-
CRF achieves a higher recall as compared with CRF, i.e., 59.4% vs.
31.1%. Inspec has a much higher average number of keyphrases
per paper (≈ 8 vs. 3) and contains a large number of keyphrases
of length greater than 3 (1, 955 n-grams with n > 3). Hence, the
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ACM Semeval Krapivin Inspec NUS
Pr% Re% F1% Pr% Re% F1% Pr% Re% F1% Pr% Re% F1% Pr% Re% F1%

CRF
39.5 63.5 48.7 34.3 68.2 45.7 38.9 64.6 48.6 51.7 84.9 64.2 26.5 49.1 34.4

Bi-LSTM-CRF
36.0 50.0 41.9 23.1 28.3 25.4 22.8 42.3 29.6 27.6 19.6 23.0 24.5 47.8 32.6

Table 4: Contrasting CRF with Bi-LSTM-CRF. The input to both models is DOC+EMB.

Semeval Krapivin Inspec NUS
Train: ACM-10k Pr% Re% F1% Pr% Re% F1% Pr% Re% F1% Pr% Re% F1%
CRF 43.9 49.8 46.7 37.8 58.0 45.7 42.5 31.1 35.9 38.2 67.3 48.7
Bi-LSTM-CRF 32.2 55.4 40.7 27.8 54.1 36.7 36.0 59.4 44.9 26.4 56.4 35.9

Table 5: Performance of DOC+EMB on SemEval, Krapivin, Inspec and NUS while training on ACM-10k.

SemEval Krapivin Inspec NUS ACM
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

CRF on DOC+EMB
34.4 68.3 45.7 39.0 64.6 48.6 51.7 84.9 64.3 26.5 49.2 34.5 39.5 63.6 48.7

Previous Models
Hulth 28.7 10.7 15.6 21.2 8.4 12.1 27.5 70.5 39.6 20.2 12.4 15.4 20.0 14.2 16.6
KEA 25.6 10.0 14.4 22.2 10.1 13.9 26.6 5.1 8.5 25.3 24.2 24.7 22.6 17.0 19.4
Maui 27.4 38.1 31.9 20.0 56.0 29.5 24.2 34.2 28.4 20.3 54.7 29.6 22.0 63.2 32.7
CRF/PR 29.7 54.0 38.3 29.3 15.2 20.1 56.9 35.6 43.8 33.2 61.4 43.1 24.9 13.5 17.5
CopyRNN 24.7 39.5 30.4 17.6 54.2 26.6 29.2 40.9 34.1 26.6 42.1 32.6 17.8 42.2 25.0
Key2Vec 38.6 38.6 38.6 23.0 47.5 31.0 32.8 38.1 35.2 25.4 49.0 33.4 27.4 50.2 35.4

Table 6: The comparison of CRF that uses DOC+EMB with previous works. Performance is shown in %.

Bi-LSTM-CRF model, which exploits the long distance dependen-
cies in the text, is able to accurately cover and identify these longer
keyphrases. A similar result on recall is observed on SemEval (see
Tables 1 and 2 for datasets characteristics and gold keyphrases).

Moreover, on Inspec, the performance of CRF when trained on
ACM-10k (Table 5) is consistently smaller than that of CRF when
trained on Inspec itself (the training portion). We believe this is
due to the distribution of author-assigned keyphrases, which are
different for Inspec and ACM-10k, and the size of Inspec training
set is good enough to train a good CRF model.

5.3 Baseline Comparisons
Last, we compare the performance of CRF DOC+EMB using the
best performing word embeddings and vector dimensions with sev-
eral baseline approaches. Precisely, we compare the CRF DOC+EMB
with six keyphrase extractionmodels: Hulth [27], KEA [20],Maui [43],
the CRF model with posterior regularization (CRF/PR) from Gol-
lapalli et al. [22], CopyRNN [44], and Key2Vec [40]. The choice of
some of these models was motivated by their wide-spread usage as
baselines in other related works [44], their good performance, and
the integration of embeddings in existing systems as in Key2Vec.We
used the implementations of Maui,3 CRF/PR [22],4 and CopyRNN,5
and developed our implementation of Key2Vec.

Hulth uses POS tags, relative position, term frequency, and collec-
tion frequency as features. KEA uses tf-idf and relative position as

3https://github.com/zelandiya/maui
4https://sites.google.com/site/sujathadas/home/pubslist
5https://github.com/memray/seq2seq-keyphrase

features. Maui uses traditional andWikipedia features, e.g., node de-
gree, Wikipedia keyphraseness. The model proposed by Gollapalli
et al. [22] uses CRF with posterior regularization, with three types
of features: word, orthographic, and stopword features; parse-tree
features; and title features, as well as their combinations incorpo-
rated with expert knowledge (i.e., predictions from other supervised
and unsupervised methods). The CRF/PR model is the best perform-
ing model from Gollapalli et al. [22] and uses information solely
from the document itself. CopyRNN uses an encoder-decoder Re-
current Neural Network with a copying mechanism as a generative
model instead of extracting phrases only from the document text.
We run CopyRNN for all five datasets with the parameter settings
mentioned by the authors [44]. Key2Vec is a biased PageRank algo-
rithm. We created a word graph by from nouns and adjectives and
added an edge if two words appear withinw words of each other
in text. A theme vector for each paper was obtained by summing
the embedding of the candidate words from its title. We used the
GNews embeddings (300 dimension), which performed better than
ACM in Key2Vec.

Table 6 shows the results of these comparisons for all five datasets,
using the train-test split available for SemEval, Krapivin, Inspec,
and ACM, and 5-fold cross-validation on NUS. As can be seen from
the table, the DOC+EMB-based CRF that uses word embeddings
in addition to document features substantially outperforms Hulth,
KEA, Maui, CopyRNN, and Key2Vec, in terms of most compared
measures, on four datasets, SemEval, Krapivin, Inspec, and ACM.
For example, DOC+EMB based CRF achieves the highest F1-score of
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Incorporating site-level knowledge to extract structured data from web forums
Web forums have become an important data resource for many web applications, but extracting structured data from unstructured web
forum pages is still a challenging task [...]. In this paper, we study the problem of structured data extraction from various web forum
sites. Our target is to find a solution as general as possible to extract structured data, such as post title, post author, post time, and post
content from any forum site. In contrast to most existing information extraction methods, which only leverage the knowledge inside
an individual page, we incorporate both page-level and site-level knowledge and employ Markov logic networks (MLNs) [...]. The
experimental results on 20 forums show a very encouraging information extraction performance, and demonstrate the ability of the
proposed approach on various forums. [...]

Incorporating site-level knowledge to extract structured data from web forums
Web forums have become an important data resource for many web applications, but extracting structured data from unstructured
web forum pages is still a challenging task [...]. In this paper, we study the problem of structured data extraction from various web
forum sites. Our target is to find a solution as general as possible to extract structured data, such as post title, post author, post time, and
post content from any forum site. In contrast to most existing information extraction methods, which only leverage the knowledge
inside an individual page, we incorporate both page-level and site-level knowledge and employ Markov logic networks (MLNs) [...]. The
experimental results on 20 forums show a very encouraging information extraction performance, and demonstrate the ability of the
proposed approach on various forums. [...]

Human-input keyphrases: Web forums, Structured data, Information extraction, Site level knowledge, Markov logic networks

Predicted keyphrases:Web forums, Information extraction,Markov logic networks, Extracting structured data, Data, Knowledge, Data
extraction, Web, Forum site, Web forum sites

Figure 3: The title, abstract, human-input keyphrases and predicted keyphrases of an ACM paper. The phrases marked with
cyan in the title and abstract shown on the top of the figure are gold keyphrases, whereas the words and phrases marked with
dark blue in the title and abstract shown on the bottom of the figure are predicted keywords/keyphrases.

64.3% on Inspec. Interestingly, on NUS, CRF/PR achieves the highest
F1-score of 43.1% among all models. Moreover, CRF/PR achieves the
highest precision on Inspec dataset, and the highest value among
all measures on NUS. Key2Vec achieves the highest precision of
38.6% on SemEval. It is worth noting that the DOC+EMB based
CRFmodels yield improvements in performance over more complex
deep learning model, CopyRNN, on all five datasets.

5.4 Anecdotal Evidence
To see the quality of predicted phrases by the best EMB+DOC
based CRF, we randomly selected a paper from our ACM dataset
and evaluated the CRF model on it. Note that this selected paper
belongs to the test portion of the dataset. We manually inspected
the CRF predictions and contrasted themwith the author-annotated
(gold) keyphrases. The title, abstract, human annotated keyphrases
and predicted keyphrases for this paper are shown in Figure 3.
Specifically, the cyan bold phrases shown in the text on the top
of the figure represent author-assigned keyphrases, whereas the
dark blue bold phrases shown in the text on the bottom of the
figure represent the positively predicted phrases using the CRF
trained on DOC+EMB features. It can be seen from the figure that
the predicted keyphrases cover three out of five author assigned
keyphrases, and for the remaining two author assigned keyphrases
the CRF model predicted one super-string and one substring.

We can also observe that the model was not able to predict
“structured data” nor “site level knowledge” even though both these
gold keyphrases appear in the title of the document. However, for
the two gold keyphrases missed by the model, the model predicted
“extracting structured data”, “data”, and “knowledge” as keyphrases
which are a super-string or substring of them. Moreover, predicted
keyphrases “web”, “forum site”, and “web forum sites” are related

to one of the author-assigned keyphrase “web forums,” which was
correctly predicted by the DOC+EMB CRF model. As there exist a
semantic relation between “data” and “information,” DOC+EMB is
able to predict “data extraction,” which is similar with the author-
assigned keyphrase “information extraction”.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we explored keyphrase extraction as sequence labeling
using CRFs and studied the benefits of using word embeddings in
conjunction with document specific features in order to capture the
semantics of words in context. Our results showed interesting per-
formance variability, according to training set sizes, the number of
keyphrases per document, and their length in the number of words,
but clearly highlighted the benefits of using word embeddings as
features in CRFs along with document specific features. Our results
also showed improvements in performance over complex models
including more sophisticated deep learning models.

In the future, it would be interesting to integrate posterior regu-
larization in the word embeddings based CRF models. It would also
be interesting to explore keyphrase extraction from research papers
from other fields in Computer Science such as Computational Lin-
guistics, as well as other scientific domains, such as Biology, Social
Science, Political Science, and Material Sciences. Moreover, since
these scientific domains do not generally have author-annotated
keyphrases, developments of domain adaptation and transfer learn-
ing techniques should also be investigated.
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