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Abstract

We present abstraction augmented Markov models (AAMMs), which are directed
acyclic graphical models that simplify the data representation used by the standard
Markov models (MMs). AAMMs group similar entities to generate more abstract
entities that are organized in an abstraction hierarchy. Abstraction reduces the
MM size and improves the statistical estimates of complex models by reducing the
number of parameters to be estimated from data. We evaluate the AAMMs on two
protein subcellular localization prediction tasks. The results of our experiments
show that: (1) AAMMs can achieve significantly lower model sizes (by 1 to 3
orders of magnitude) for a minor drop in accuracy over the standard MMs, and in
some cases even higher accuracy while simultaneously lowering the model size;
and (2) AAMMs substantially outperforms MMs in settings where only a small
fraction of available data is labeled.

1 Introduction

Many real-world problems can be regarded as sequence classification tasks. For example, in com-
putational biology predicting protein function or protein subcellular localization can be addressed as
sequence classification problems, where the amino acid sequence of the protein is used to classify a
protein in functional or localization classes. Markov models (MMs) are effective sequence models
[3] that capture dependencies between neighboring elements in a sequence and thus provide more
accurate models of the data. In fixed-order MMs the elements of a sequence satisfy the Markov
property: Each element in the sequence directly depends on a fixed number of previous elements,
called parents, and is independent of the rest of the elements in the sequence. Interpolated MMs [5]
combine several fixed-order MMs that capture important sequence patterns that would otherwise be
ignored by a single fixed-order MM.

While dependencies between neighboring elements provide a way to improve the predictive accu-
racy, the number of model parameters increases exponentially with the range of direct dependencies,
thereby increasing the risk of overfitting when the data set is limited in size. We present abstraction
augmented Markov models (AAMMs) aimed at addressing this dificulty by reducing the number of
model parameters through abstraction. AAMMs construct an abstraction hierarchy over the val-
ues of the parents of each element using hierarchical agglomerative clustering [2]. AAMMs extend
the standard MMs by constructing new variables that represent abstractions over the values of the
parents of each element.

We evaluate AAMMs on two protein subcellular localization prediction tasks. The results of our
experiments show that adapting data representation by abstraction makes it possible to construct pre-
dictive models that use substantially smaller number of parameters (by 1 to 3 orders of magnitude)
than standard MMs without sacrificing predictive accuracy. Our results also show that AAMMs
substantially outperform MMs in semi-supervised settings where there exist only a small fraction of
labeled data, but a vast amount of unlabeled data.
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Figure 1: (a) 2nd Order Markov Model; (b) 2nd Order Abstraction Augmented Markov Model

2 From Markov Models To Abstraction Augmented Markov Models

2.1 Markov Models

Let x = x0, · · · , xn−1 be an input sequence over an alphabet X , x ∈ X ∗. An MM represents the
joint probability distribution of x under the Markov assumption. The graphical representation of an
MM is a directed linear-chain graph where the nodes Xi represent random variables corresponding
to the sequence elements xi, i = 0, · · · , n− 1, and the edges represent direct dependencies between
neighboring elements. For a kth order MM, the conditional independencies are:

Xi ⊥⊥ {X0, · · · , Xi−k−1} | {Xi−k, · · · , Xi−1} for i = k, · · · , n− 1

That is, Xi is conditionally independent of X0, · · · , Xi−k−1 given Xi−k, · · · , Xi−1 for any i =
k, · · · , n− 1. Xi−k, · · · , Xi−1 are called the parents of Xi. The joint probability distribution p(X),
where X denotes the set of nodes, can be factorized as follows:

p(X) = p(X0, · · · , Xk−1)
n−1∏

i=k

p(Xi|Xi−k, · · · , Xi−1)

The directed graph for a 2nd order Markov model on a subset of nodes of sequence x,
{Xi−3, · · · , Xi+1}, is shown in Figure 1a.

2.2 Abstraction Augmented Markov Models

Abstraction is the operation of grouping similar entities to generate more abstract entities. Let Si−1

denote the parents Xi−k · · ·Xi−1 of Xi in a standard kth order MM. The values of Si−1 represent
instantiations of Xi−k · · ·Xi−1, i.e., substrings of length k over X , or k-grams. Let S denote the
set of k-grams over X . Hence, the cardinality of S is N = |X |k. To reduce the cardinality of S,
AAMMs construct an abstraction hierarchy over the set of k-grams.

Definition 1 (Abstraction Hierarchy) An abstraction hierarchy T associated with a set of k-grams
S is a rooted tree such that: (1) The root of T corresponds to the abstraction that consists of all
k-grams in S; (2) The tree T has exactly N leaves corresponding to the N k-grams in S; (3) The
internal nodes of T correspond to abstractions over k-grams (i.e., subsets of “similar” k-grams);
(4) The edges of T correspond to partial order relations ≺ between their corresponding nodes.

Definition 2 (m-Cut) An m-cut γm through the abstraction hierarchy T is a subset of m nodes of
T satisfying the following properties: (1) For any leaf si, either si ∈ γm or si is a descendant of a
node aj ∈ γm; and (2) for any two nodes aj , al ∈ γm, aj is neither a descendant nor an ancestor
of al. The set of abstractions A at any given m-cut γm forms a partition of the set of k-grams.

AAMMs extend the graphical structure of the standard MMs by constructing new variables Ai that
represent abstractions over the set of values of Si−1 for i = k, · · · , n − 1. More precisely, the
variables Ai take values in a set of abstractions A = {a1, · · · , am} corresponding to an m-cut γm.
We model the fact that Ai is an abstraction of Si−1 by defining p(Ai = ai|Si−1 = si−1) = 1 if
si−1 ∈ ai, and 0 otherwise, where si−1 ∈ S and ai ∈ A, respectively. Furthermore, in AAMMs,
the node Xi directly depends on Ai instead of being directly dependent on Si−1, as in the standard
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Algorithm 1 Abstraction Construction

Input: A set of sequences D ={xl}, xl ∈ X ∗; the set of k-grams S = {s1, · · · , sN} in D
Output: An abstraction hierarchy T over S
Initialize A = {a1 :{s1}, · · · , aN :{sN}}, and T = {a1 :{s1}, · · · , aN :{sN}}
for w = N + 1 to 2N − 1 do

(umin, vmin) = arg minu,v∈AdD(au, av)
aw = aumin ∪ avmin

A = A\{aumin , avmin} ∪{ aw}
T = T ∪{aw} s.t. par(aumin) = aw, par(avmin) = aw

end for

MMs. We define the conditional distribution of Xi given Ai as p(Xi = xi|Ai = ai) = θ(i)
xa , where

xi ∈ X and ai ∈ A, respectively. The prior distribution of Sk−1 is defined as p(Sk−1) = θs.

The directed graph for a 2nd order AAMM on a subset of variables X ∪A is shown in Figure 1b.
The joint probability distribution over the entire set of variables can be factorized as follows:

p(X,A) = p(Sk−1) ·
n−1∏

i=k

p(Xi|Ai) · p(Ai|Si−1)

In what follows we show how to learn AAMMs from data which involves two steps: learning ab-
straction hierarchies (AHs) and learning model parameters.

2.2.1 Learning Abstraction Hierarchies

The procedure for constructing AHs over the set of k-grams is shown in Algorithm 1. The input of
the algorithm consists of a set D of sequences over X , D = {xl}, xl ∈ X !, and the set S of k-grams
extracted from D. The output of the algorithm is a binary tree T , specifically an AH over S.

The algorithm starts by initializing the set of abstractions A such that each abstraction aj corre-
sponds to a k-gram sj in S, j = 1, · · · , N . For each aj the algorithm creates a node in T . Pairs of
abstractions are recursively merged until one abstraction is obtained. Specifically, N − 1 times, the
algorithm searches for the most “similar” two abstractions aumin and avmin , adds a new abstraction
aw to A by taking the union of their k-grams, and removes aumin and avmin from A. Simulta-
neously, the nodes in T corresponding to aumin and avmin are merged into a newly created node
which is their parent. After N − 1 steps, the algorithm returns the AH T over S, which is stored in
a last-in-first-out (LIFO) stack. For a given choice of the size m of an m-cut through T , the set of
abstractions that define an AAMM is obtained by discarding m− 1 elements from the stack.

To complete the description of our algorithm we need to define the similarity between abstractions.
We define a distance dD(au, av) between the contexts of two abstractions au and av and identify
the most “similar” abstractions as those that have the smallest distance between their contexts (see
below). Since an abstraction is a subset of k-grams, we define the context of such a subset by
aggregating the contexts of its constituent k-grams.

Context of an abstraction. Given a set D = {xl} of sequences, we define the context of a k-gram
sj ∈ S, j = 1, · · · , N , wrt D as follows:

ContextD(sj) := [p(Xi|sj),#sj ] =

[[
#[sj , xi]∑

xi∈X #[sj , xi]

]

xi∈X

,
∑

xi∈X
#[sj , xi]

]

That is, the context of a k-gram sj wrt D is the conditional distribution of Xi given sj , p(Xi|sj)
estimated from D, along with the frequency counts of the k-gram sj in D, #sj .

More generally, we define the context of an abstraction aj = {sj1 , · · · , sjq}, aj ∈ A, as:

ContextD(aj) :=

[
q∑

r=1

πr · p(Xi|sjr ),
q∑

r=1

#sjr

]
where πr :=

#sjr∑q
r=1 #sjr
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Note that if we “abstract out” the difference between all the k-grams in the abstraction aj and
replace their occurrences in D by aj , then #aj =

∑q
r=1 #sjr and #[aj , xi] =

∑q
r=1 #[sjr , xi].

Furthermore, for any xi ∈ V:

p(xi|aj) =
#[aj , xi]

#aj
=

∑q
r=1 #[sjr , xi]∑q

r=1 #sjr

=
q∑

r=1

#sjr∑q
r=1 #sjr

#[sjr , xi]
#sjr

=
q∑

r=1

πr · p(xi|sjr )

Hence, we have shown that ContextD(aj) = [p(Xi|aj),#aj ] . Next, we define a distance between
contexts of two abstractions, motivated by ideas from information theory [1].

Distance between abstractions. Our goal is to find an abstraction (or compression) Ai of the
variable Si−1 and, at the same time, preserve the direct dependency between Ai and Xi as much as
possible. One way to measure the dependency between two variables is to use mutual information
[1]. Hence, we want to construct an abstraction Ai of Si−1 such that the reduction in the mutual
information between Ai and Xi, I(Ai, Xi), is minimized at each step of Algorithm 1.

The reduction in mutual information between a node and its parents (in the graphical model corre-
sponding to an AAMM) due to a single merge of Algorithm 1 can be calculated as follows: Let γm

be an m-cut through the abstraction hierarchy T and γm−1 be the (m−1)-cut through T that results
after one merge {au, av}→ aw. Let Am and Am−1 denote the set of abstractions corresponding to
γm and γm−1, respectively. Furthermore, let πu and πv denote the prior probabilities of au and av

in the set aw, i.e. πu = p(au)
p(au)+p(av) and πv = p(av)

p(au)+p(av) .

Proposition 1: The reduction in the mutual information between each variable Xi and
its parent, due to the above merge is given by δI({au, av} , aw) = (p(au) + p(av)) ·
JSπu,πv (p(Xi|au), p(Xi|av)) ≥ 0, where JSπu,πv (p(Xi|au), p(Xi|av)) represents the weighted
Jensen-Shannon divergence [6] between two probability distributions p(Xi|au) and p(Xi|av) with
weights πu and πv , respectively. (We ignore the proof due to lack of space.)

We define the distance between two abstractions au and av in D, denoted by dD(au, av), as follows:

dD(au, av) = δI({au, av} , aw) where aw = {au ∪ av}

2.3 Learning AAMM Parameters

The AAMM is a completely observed directed graphical model, i.e. there are no hidden variables in
the model. The parameters θ(i)

xa and θs of an AAMM can be estimated using maximum likelihood
estimation. Hence, learning AAMMs reduces to collecting the sufficient statistics #[sj , xi] from
the set of training sequences, for all sj ∈ S and xi ∈ X . Furthermore, for an abstraction aj =
{sj1 , · · · , sjq}, the sufficient statistics #[aj , xi] are

∑q
r=1 #[sjr , xi]. The marginal counts of sj and

aj are obtained by summing out xi. The parameters θs are estimated as in the standard MM.

3 Experimental Results

Experimental Design. We evaluated AAMMs on two protein subcellular localization prediction
tasks. The problem of predicting subcellular localization is important in cell biology, because it can
provide valuable information for predicting protein function and protein-protein interactions, among
others. The data sets used in our experiments are plant and non-plant1, first introduced in [4].

Note that a generative model can be used for classification tasks by learning a model for each class
and selecting the model with the highest posterior probability when classifying new data. We trained
AAMMs with several choices of m, where m is the cardinality of the set of abstractions Am.

We considered two sets of experiments. In our first set of experiments, we compared the performance
of AAMM with that of MM and Naïve Bayes (NB) on classification tasks in a supervised setting,
where each sequence in the training data is associated with a class from a finite set. In this case, we
learned a class-specific AH separately for each class. Furthermore, we learned an AAMM for each
class (based on the class-specific AH for that class).

1Available online at http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
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Figure 2: Comparison of AAMM with MM and NB on plant (a) and non-plant (b), respectively.
An abstraction hierarchy is constructed for each class.

In our second set of experiments, we investigated the effect of abstraction on the performance of
AAMMs in a semi-supervised setting, where only a subset of the training data is labeled and the
rest are unlabeled. We performed experiments with 1%, 10%, and 100% of the training data being
used as labeled data, with the rest being treated as unlabeled data (by ignoring the class). Because
the class is unavailable for a large fraction of data, we learned a single AH from the entire data and
used it to learn an AAMM for each class.

For both sets of experiments, we report the average classification accuracy obtained in a 10-fold
cross-validation experiment as a function of the number m of abstractions used as features in the
classification model, where m ranges from 1 to |S| = N (the number of unique k-grams).

Comparison of AAMMs with MMs and NB. Figures 2a and 2b show the results of the compar-
ison of AAMMs with MMs using 3-grams on plant and non-plant data sets, respectively. On the
plant data set, AAMM substantially outperforms MM over a broad range of choices of m (the size
of the chosen cut through the AH). The performance of AAMM matches that of MM for AAMMs
trained with more than 5285 features (AAMM trained on |S| features is the same as MM). On the
non-plant data set, AAMM achieves performance comparable to that of MM with approximately
2500 features.

Hence, AAMMs can achieve significantly lower model sizes (by 1 to 3 orders of magnitude) than
MMs for comparable classification performance. Figures 2a and 2b also show the comparison of
AAMMs with NB. As expected, for the same number of features used to train the models (20
features), both AAMM and MM (3rd order) are superior in performance to NB (0th order MM).

Evaluation of Abstraction in a Semi-supervised Setting. Figure 3 shows the results of the com-
parison of AAMMs with MMs using 3-grams for 1%, 10%, and 100% of labeled data for both plant
and non-plant data sets, respectively. Note that an MM is trained on the same fraction of labeled
data as its AAMM counterpart. As can be seen in the figure, in the case when only 1% of the data is
labeled, AAMMs substantially outperforms MMs on both data sets. When we increase the number
of labeled data to 10%, AAMMs still have a much higher performance than MMs. In the case when
the entire data set is labeled (100%), the performance of AAMMs is comparable to that of MMs on
both data sets.

Note that Figure 3 shows results obtained with AAMM based on a single class-independent AH. In
contrast, the results shown in Figure 2 correspond to AAMMs that are based on class-specific AHs.
Not surprisingly, comparison of results in Figures 2 and 3 (third column with 100% of the training
data being labeled), AAMMs constructed using class-specific AHs outperform AAMMs constructed
using a single class-independent AH.

4 Summary and Discussion

We have presented AAMMs that simplify the data representation used by the standard MMs. The
results of our experiments have shown that organizing data in a hierarchy using abstraction makes it
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Figure 3: Comparison of AAMM and MM for 1% (first column), 10% (second column), and 100%
(third column) of labeled data for plant (upper row) and non-plant (lower row), respectively. An
abstraction hierarchy T is constructed from all training data, independent of the class variable.

possible to construct predictive models that have significantly smaller size (by 1 to 3 orders of mag-
nitude) as compared to the size of the corresponding MM (which is exponential). The performance
of AAMM is similar, and in some cases better, than that of standard MMs. Moreover, the results
have shown that abstraction allows us to make better use of unlabeled training data.

Segal et al. [7] AHs over classes to inprove classification accuracy. Zhang and Honavar [9] have
used AHs over nominal variables to build compact yet accurate classifiers. Slonim and Tishby
[8] have introduced the so-called agglomerative information bottleneck (IB) methods that perform
model compression by identifyng a set of bottleneck variables. Unlike IB methods, AAMMs exploit
AHs that compress k-grams based on conditional distributions of each element in the sequence given
its parents, rather than class conditional distributions.

Further research includes a thorough comparison of the approach presented here with hidden Markov
models [3] and agglomerative IB approaches [8] on a broad range of sequence classification tasks,
as well as extensions of our model to settings where the data have a richer structure (e.g., images).
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