
Efficient Beam Tree Recursion

Jishnu Ray Chowdhury Cornelia Caragea
Computer Science

University of Illinois Chicago
jraych2@uic.edu cornelia@uic.edu

Abstract

Beam Tree Recursive Neural Network (BT-RvNN) was recently proposed as an
extension of Gumbel Tree RvNN and it was shown to achieve state-of-the-art length
generalization performance in ListOps while maintaining comparable performance
on other tasks. However, although better than previous approaches in terms of
memory usage, BT-RvNN can be still exorbitantly expensive. In this paper, we
identify the main bottleneck in BT-RvNN’s memory usage to be the entanglement of
the scorer function and the recursive cell function. We propose strategies to remove
this bottleneck and further simplify its memory usage. Overall, our strategies not
only reduce the memory usage of BT-RvNN by 10 − 16 times but also create a
new state-of-the-art in ListOps while maintaining similar performance in other
tasks. In addition, we also propose a strategy to utilize the induced latent-tree node
representations produced by BT-RvNN to turn BT-RvNN from a sentence encoder
of the form f : IRn×d → IRd into a token contextualizer of the form f : IRn×d →
IRn×d. Thus, our proposals not only open up a path for further scalability of
RvNNs but also standardize a way to use BT-RvNNs as another building block in
the deep learning toolkit that can be easily stacked or interfaced with other popular
models such as Transformers and Structured State Space models. Our code is
available at the link: https://github.com/JRC1995/BeamRecursionFamily.

1 Introduction

Recursive Neural Networks (RvNNs) [63] in their most general form can be thought of as a repeated
application of some arbitrary neural function (the recursive cell) combined with some arbitrary
halting criterion. The halting criterion can be dynamic (dependent on input) or static (independent
of the input). From this viewpoint, nearly any neural network encoder in the deep learning family
can be seen as a special instance of an RvNN. For example, Universal Transformers [13] repeat a
Transformer [85] layer block as a recursive cell and adaptively halt by tracking the halting probability
in each layer using some neural function [25, 3]. Deep Equilibrium Models (DEQ) [2] implicitly
“repeat” a recursive cell function using some root-finding method which is equivalent to using the
convergence of hidden states dynamics as the halting criterion. As Bai et al. [2] also showed, any
traditional Transformer - i.e. stacked layer blocks of Transformers with non-shared weights can be
also equivalently reformulated as a recursive repetition of a big sparse Transformer block with the
halting criterion being some preset static upperbound (some layer depth set as a hyperparameter).

A broad class of RvNNs can also be viewed as a repeated application of a Graph Neural Network
(GNN) [68, 91] - allowing iterative message passing for some arbitrary depth (determined by the
halting criterion). Transformer layers can be seen as implementing a fully connected (all-to-all) graph
with sequence tokens as nodes and attention-based edge weights. In natural language processing,
we often encounter the use of stacks of GNNs (weight shared or not) to encourage message-passing
through underlying linguistic structures such as dependency parses, constituency parses, discourse
structures, abstract meaning representations, and the like [80, 39, 47, 59, 11, 90, 94].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/JRC1995/BeamRecursionFamily

In many cases, such models are implemented with some static fixed number of layers or iterations.
However, learning certain tasks in a length-generalizing fashion without prior knowledge of the
sequence length distribution should require a dynamic halting function. For example, consider a
simple arithmetic task: 7×(8+3). It is first necessary to process 8+3 before doing the multiplication
in the next step. A task like this can require structure-sensitive sequential processing where the
sequential steps depend on the input length and nested operators. Although the above example is
simple enough, we can have examples with arbitrary nested operators within arbitrarily complex
parenthetical structures. Datasets like ListOps [57] and logical inference [7], among others, serve as
a sanity check for any model’s ability to perform similar structure-sensitive tasks. Natural language
tasks, on the other hand, can sometimes hide systematic failures because of the distributional
dominance of confounding statistical factors [54]. While, in some algorithmic tasks, Universal
Transformer [13] can perform better than vanilla Transformers, both can still struggle in length
generalization in logical inference or ListOps [71, 84]. This brings us to explore another alternative
family of models—Tree-RvNNs with a stronger inductive bias than Universal Transformer but still
possessing a form of dynamic halt that we discuss below.

Tree Recursive Neural Networks: Tree-RvNNs [79, 63, 77] (more particularly, constituency Tree
RvNNs) treat an input sequence of vectors as the terminal nodes of some underlying latent tree. From
this perspective, Tree-RvNNs sequentially build up the tree nodes in a bottom-up manner. Each
node (terminal or non-terminal) in the tree will represent some span within the sequence (for text
sequences, these would be words, phrases, clauses, and the like). The root node will represent the
whole input sequence and thus can be used as an encoded representation of the whole input (for
sentences, it can be treated as a sentence encoding). The nodes are generally in the form of vectors.

The non-terminal nodes are built bottom-up through the repeated use of some recursive cell composi-
tion function, say rec, starting from height 1 (height 0 being the terminal nodes) all the way up to
the root. When building the representation of some node p at height t, the Tree-RvNN uses the rec
function to take all the immediate child nodes of p (from the previous heights 0 to t − 1) as input
arguments and outputs the representation of p. Typically, we only consider binarized trees so the
number of children as arguments will be a constant (two) for rec. Thus, it can be represented in
the form rec : IRd × IRd → IRd. Generally, we also constrain our consideration to only projective
tree structures.1 This implies that the model enforces only temporally contiguous node pairs be
considered as candidate siblings for any parent node.2 Finally, when the root representation is built
the computation terminates. Therefore, reaching the root is the halting criterion. Since the tree
structure is dependent on the input and the halting is dependent on the tree structure, the halting
mechanism here is dynamic and thus can adapt with input complexity.

This approach has the potential to model mereological (part-whole) structures at different hierarchical
scales in a systematic and dynamic manner.3 As an example, let us consider that we have an input
such as (4× 3) + (7 + (8× 9)). Then, in the ideal case, the Tree-RvNN order of operation would
potentially yield: rec(rec(rec(rec(4,×)3),+), rec(rec(7,+), rec(rec(8,×), 9))). As we can see,
Tree-RvNNs have the potential to model sensitive order of operations considering input hierarchies
which can be botched by unconstrained attention without careful inductive biases [12, 10, 29] or
extensive pre-training4. We present an extended related work review in Appendix D.

Motivation for Tree-RvNNs: Although, at first glance Tree-RvNNs as formalized above may appear
to have too strong of an inductive bias, there are a few reasons to be motivated to empirically explore
the vicinity of these models:

1. Familiar Recurrent Neural Networks (RNNs) [19, 33] are special cases of Tree-RvNNs that
follow an enforced chain-structured tree. So at the very least Tree-RvNNs have more flexibil-
ity than RNNs which have served as a fairly strong general model in the pre-Transformer era;
and even now, optimized linear variants of RNNs [53] are making a comeback out-competing
Transformers in long range datasets [26, 27, 60].

1This is done mainly to simplify the search space but assuming projective structures is also standard fare in
Natural Language Processing (NLP) [41, 96].

2“temporal” refers to the original sequential order. The original order is preserved in every iteration.
3Similar inductive biases can be favorable in computer vision as well [76, 30, 74]
4Overall, Tree-RvNNs, as described above, can be also considered as a special case of DAG-GNN [83]

where similar principles can apply. Exploring bottom-up tree node building through a more flexible space of
DAG-structures can be a direction to consider in the future.

2

2. Often Tree-RvNNs are the core modules behind models that have been shown to productively
length-generalize or compositionally generalize [71, 10, 46, 32, 5, 45, 52] in settings where
other family of models struggle (at least without extensive pre-training).

3. The recursive cell function of Tree-RvNNs can still allow them to go outside their explicit
structural constraints by effectively organizing information in their hidden states if necessary.
The projective tree-structure provides only a rough contour for information flow through
Tree-RvNNs which Tree-RvNNs can learn to go around just as an RNN can [7]. So in
practice some of these constraints can be less concerning than one may think.

Issues: Unfortunately, the flexibility of Tree-RvNNs over RNNs comes at a cost. While in RNNs
we could just follow on the same chain-structure tree (left-to-right or right-to-left) for any input, in
Tree-RvNNs we have to also consider some way to dynamically induce a tree-structure to follow.
This can be done externally—that is, we can rely on human inputs or some external parser. However,
neither of them is always ideal. Here, we are focusing on complete Tree-RvNN setups that do
their own parsing without any ground-truth tree information anywhere in the pipeline. Going this
direction makes the implementation of Tree-RvNNs more challenging because it is hard to induce
discrete tree structures through backpropagation. Several methods have been proposed to either
induce discrete structures [31, 9, 66, 61], or approximate them through some continuous mechanism
[10, 95, 72, 71]. Nevertheless, all these methods have their trade offs - some do not actually work
in structured-sensitive tasks [57, 9, 72], others need to resort to reinforcement learning and an array
of optimizing techniques [31] or instead use highly sophisticated architectures that can become
practically too expensive in space or time or both [51, 71, 10]. Moreover, many of the above models
[10, 31, 9] have been framed and used mainly as a sentence encoder of the form f : IRn×d → IRd (n
being the sequence size). This formulation as sentence encoder limits their applicability as a deep
learning building block - for example, we cannot use them as an intermediate block and send their
output to another module of their kind or some other kind like Transformers because the output of a
sentence encoder will just be a single vector.

Our Contributions: Believing that simplicity is a virtue, we direct our attention to Gumbel-Tree
(GT) RvNN [9] which uses a simple easy-first parsing technique [23] to automatically greedily parse
tree structures and compose sentence representations according to them (we provide a more extended
discussion on related works in Appendix). Despite its simplicity, GT-RvNN relies on Straight-
Through Estimation (STE) [4] which induces biased gradient, and has been shown empirically to
fail in structure-sensitive tasks [57]. Yet, a recent approach - Beam Tree RvNN (BT-RvNN) [66]
- promisingly shows that simply using beam search instead of the greedy approach succeeds quite
well in structure-sensitive tasks like ListOps [57] and Logical Inference [7] without needing STE.
Nevertheless, BT-RvNN can still have exhorbitant memory usage. Furthermore, so far it has been
only tested as a sentence encoder. We take a step towards addressing these issues in this paper:

1. We identify a critical memory bottleneck in both Gumbel-Tree RvNN and Beam-Tree RvNN
and propose strategies to fix this bottleneck (see §3). Our strategies reduce the peak memory
usage of Beam-Tree RvNNs by 10-16 times in certain stress tests (see Table 4).

2. We propose a strategy to utilize the intermediate tree nodes (the span representations) to
provide top-down signals to the original terminal representations using a parent attention
mechanism. This allows a way to contextualize token representations using RvNNs enabling
us to go beyond sentence-encoding (see §4).

3. We show that the proposed efficient variant of BT-RvNN incurs marginal accuracy loss if at
all compared to the original—and in some cases even outperforms the original by a large
margin (in ListOps).

2 Existing Framework

Here we first describe the existing framework used in Choi et al. [9] and Ray Chowdhury and Caragea
[66]. In the next section, we identify its weakness in terms of memory consumption and resolve it.

Task Structure: As in related prior works [9, 10, 71], we start with our focus (although we will
expand - see §4) on exploring the use of RvNNs as sentence encoders of the form: f : IRn×d → IRd.
Given a sequence of n vectors of size d as input (of the form IRn×d), f compresses it into a single
vector (of the form IRd). Sentence encoders can be used for sentence-pair comparison or classification.

3

Components: The core components of this framework are: a scoring function scorer : IRd → IR
and a recursive cell rec : IRd × IRd → IRd. The scorer is implemented as scorer(v) = Wvv where
Wv ∈ IR1×d. The rec(childl, childr) function is implemented as below:

 l,
r,
g,
h

 = GeLU

([
childl;
childr

]
W rec

1 + b1

)
W rec

2 + b2 (1)

p = LN(σ(l)⊙ childl + σ(r)⊙ childr + σ(g)⊙ h) (2)

Here - σ is sigmoid; [;] represents concatenation; p is the parent node representation built from the
children childl and childr, W rec

1 ∈ IR2·d×dcell ; b1 ∈ IRdcell ; W rec
2 ∈ IRdcell×4·d; b2 ∈ IRd, and

l, r, g, h ∈ IRd. LN is layer normalization. dcell is generally set as 4× d. Overall, this is the Gated
Recursive Cell (GRC) that was originally introduced by Shen et al. [71] and has been consistently
shown to be superior [71, 10, 66] to earlier RNN cells like Long Short Term Memory Networks
(LSTM) [33, 80].

Note that these models generally also apply an initial transformation layer to the terminal nodes
before starting up the RvNN. Similar to [71, 10, 66], we apply a single linear transform followed by
a layer normalization as the initial transformation.

Greedy Search Tree Recursive Neural Networks: Here we describe the implementation of Gumbel-
Tree RvNN [9]. Assume that we have a sequence of hidden states of the form (ht

1, h
t
2, ...h

t
n) in

some intermediate recursion layer t. For the recursive step in that layer, first all possible parent node
candidates are computed as:

pt1 = rec(ht
1, h

t
2), p

t
2 = rec(ht

2, h
t
3), . . . , p

t
n−1 = rec(ht

n−1, h
t
n) (3)

Second, each parent candidate node pti is scored as eti = scorer(pti). Next, the index of the top
score is selected as j = argmax(et1:n−1). Finally, now the update rule for the next recursion can be
expressed as:

ht+1
i =

ht
i i < j

rec(ht
i, h

t
i+1) i = j

ht
i+1 i > j

(4)

Note that this is essentially a greedy tree search process where in each turn all the locally available
choices (parent candidates) are scored and the maximum scoring choice is selected. In each iteration,
the sequence size is decreased by 1. In the final step only one representation will be remaining (the
root node). At this point, however, the tree parsing procedure is not differentiable because it purely
relies on an argmax. In practice, reinforcement learning [31], STE with gumbel softmax [9], or
techniques like SPIGOT [61] have been used to replace argmax. Below we discuss another alternative
and our main focus.

Beam Search Tree Recursive Neural Networks (BT-RvNN): Seeing the above algorithm as a
greedy process provides a natural extension through beam search as done in Ray Chowdhury and
Caragea [66]. BT-RvNN replaces the argmax in Gumbel-Tree RvNN with a stochastic Top-K [42]
that stochastically extracts both the K highest scoring parent candidates and the K corresponding
log-softmaxed scores. The process collects all parent node compositions and also accumulates (by
addition) log-softmaxed scores for each selected choices in corresponding beams. With this, the
end result is K beams of accumulated scores and K beams of root node representations. The final
representation is a softmax-based marginalization of the K root nodes:

∑
i

exp(si)∑
j exp(sj)

· bi where bi

is the root node representation of beam i and si is the accumulated (added) log-softmaxed scores
at every iteration for beam i. Doing this enabled BT-RvNN to improve greatly [66] over greedy
Gumbel-Tree recursion [9]. However, BT-RvNN can also substantially increase the memory usage,
which makes it inconvenient to use.

3 Bottleneck and Solution

In this section, we identify a major bottleneck in the memory usage that exists in the above framework
(both for greedy-search and beam-search) that can be adjusted for.

4

Figure 1: Visualization of the contrast between the existing framework (left) and the proposed one
(right). H1, H2, H3 are the input representations in the iteration. The possible contiguous pairs of
them are candidate child pairs for nodes to be built in this iteration. On the left side, we see each pair
is in parallel fed to the recursive cells to create their corresponding candidate parent representations.
Then they are scored and one parent (P1) is selected. On the right side (our approach), each child
pair candidate is directly scored. The faded colored bars in H1, H2, H3 represent sliced away vector
values. The scoring function then selects one child pair. Then only that specific selected child pair is
composed using the recursive cell to create the parent representation (P1) not wasting unnecessary
compute by applying the recursive cell for other non-selected child pairs.

Bottleneck: The main bottleneck in the above existing framework is Eqn. 3. That is, the framework
runs a rather heavy recursive cell (concretely, the GRC function in Eqn. 2) in parallel for every
item in the sequence and for every iteration. In contrast, RNNs could use the same GRC function
but for one position at a time sequentially - taking very little memory. While Transformers also
use similarly big feedforward networks like GRC in parallel for all hidden states - they have fixed
a number of layers - whereas BT-RvNNs may have to recurse for hundreds of layers depending on
the input making this bottleneck more worrisome. However, we think this bottleneck can be highly
mitigated. Below, we present our proposals to fix this bottleneck.

3.1 Efficient Beam Tree Recursive Neural Network (EBT-RvNN)

Here, we describe our new model EBT-RvNN. It extends BT-RvNN by incorporating the fixes below.
We present the contrast between the previous method and our current method visually in Figure 1.

Fix 1 (new scorer): At any iteration t, we start only with some sequence (ht
1, . . . , h

t
n). In the existing

framework, starting from this the function to compute the score for any child-pair will look like:

ei = scorer ◦ rec(hi, hi+1) (5)

This is, in fact, the only reason for which we need to apply rec to all positions (in Eqn. 3) at this
iteration because that is the only way to get the corresponding score; that is, currently the score
computation entangles the recursive cell rec and the scorer. However, there is no clear reason to
do this. Instead we can just replace scorer ◦ rec (in Eqn. 5) with a single new scorer function
(scorernew : IR2×d → IR) that directly interacts with the concatenation of (hi, hi+1) without the
rec as an intermediate step - and thus disentangling it from the scorer. We use a parameter-light
2-layered MLP to replace scorer ◦ rec:

ei = scorernew(hi, hi+1) = GeLU([hi;hi+1]W
s
1 + bs1)W

s
2 + bs2 (6)

Here, W s
1 ∈ IR2·d×ds ,W s

1 2 ∈ IRds×1, bs1 ∈ IRds , bs2 ∈ IR. Since lightness of the scorernew function
is critical for lower memory usage (this has to be run in parallel for all contiguous pairs) we set
ds to be small (ds = 64). In this formulation, the rec function will be called only for the selected
contiguous pairs (siblings) in Eqn. 4.

Fix 2 (slicing): While we already took a major step above in making BT-RvNN more efficient, we
can still go further. It is unclear whether the full hidden state vector size d is necessary for parsing
decisions. Parsing typically hangs on more coarse-grained abstract information - for example, when
doing arithmetic while precise numerical information needs to be stored in the hidden states for future

5

computation, the exact numerical information is not relevant for parsing - only the class of being a
number should suffice. Thus, we assume that we can project the inputs into a low-dimensional space
for scoring. One way to do that is to use a linear layer. However, parallel matrix multiplications
on the full hidden state can be still costly when done for each hidden state in the sequence in every
recursion. So, instead, we can allow the initial transformation or the RvNN itself to implicitly learn
to organize parsing-related information in some sub-region of the vector. We can treat only the first
min(ds, d) (out of d) as relevant for parsing decisions. Then we can simply slice the first min(ds, d)
out before sending the candidate child pairs to the scoring function. Thus, the score computation can
be presented as below:

ei = scorernew(hi[0 : min(ds, d)], hi+1[0 : min(ds, d)]) (7)

So, now W s
1 ∈ IR2·min(ds,d) × ds. As before we keep ds small (ds = 64). Now, the total hidden state

size (d) can be kept as high as needed to preserve overall representation capacity without making the
computation scale as much with increasing d. The model can now just learn through gradient descent
to organize parsing relevant features in the first min(ds, d) values of the hidden states because only
through them will gradient signals related to parsing scores propagate. Note that unlike [31], we are
not running a different rec function for the parsing decisions. The parsing decision in our case still
depends on the output of the same single recursive cell but from the previous iterations (if any).

No OneSoft: Ray Chowdhury and Caragea [66] also introduced a form of soft top-k function
(OneSoft) for better gradient propagation in BT-RvNN. While we still use that as a baseline model,
we do not include OneSoft in EBT-RvNN. This is because OneSoft generally doubles the memory
usage and EBT-RvNN already runs well without it. The combination of EBT-RvNN with OneSoft
can be studied more in the future, but it is a variable that we do not focus on in this study.

None of the fixes here makes any strict asymptotic difference in terms of sequence length but it does
lift a large overhead that can be empirically demonstrated (see Table 1).

4 Beyond Sentence Encoding

As discussed before many of the previous models [9, 10, 31, 66] in this sphere that focus on
competency on structure-sensitive tasks have been framed to work only as a sentence encoder of the
form f : IRn×d → IRd. Taking a step further, we also explore a way to use bottom-up Tree-RvNNs
for token-level contextualization, i.e., to make it serve as a function of the form f : IRn×d → IRn×d.
This allows Tree-RvNNs to be stackable with other deep learning modules like Transformers.

Here, we consider whether we can re-formalize EBT-RvNNs for token contextualization. In EBT-
RvNN5, strictly speaking, the output is not just the final sentence encoding (the root encoding),
but also the intermediate non-terminal tree nodes. Previously, we ignored them after we got the
root encoding. However, using them can be the key to creating a token contextualization out of
EBT-RvNNs. Essentially, what EBT-RvNN will build is a tree structure with node representations -
the terminal nodes being the initial token vectors, the root node being the overall sentence encoding
vector, and the non-terminal nodes representing different scales of hierarchies as previously discussed.

Under this light, one way to create a token contextualization is to contextualize the terminal rep-
resentations based on higher-level composite representations at different scales or hierarchies of
which the terminal representation is a part of. In other words, while we use a bottom-up process of
building wholes from parts during sentence encoding, for token contextualization, we can implement
a top-down process of contextualizing parts from the wholes that it compose.

A similar idea is used by Teng et al. [82] to recursively contextualize child node representations
based on their immediate parent node using another recursive cell starting from the root and ending
up at the terminal node representations. The contextualized terminal node representations can then
become the contextualized token representations. But this idea requires costly sequential operations.

An alternative - that we propose - is to allow the terminal nodes to attend [1] to the non-terminal
nodes to retrieve relevant information to different scales of hierarchies. More precisely, if we want
the terminal nodes to be contextualized by the wholes that they compose then we want to restrict the
attention to only the parents (direct or indirect). This can be done by creating an attention mask based

5The principles discussed here also apply to them Gumbel Tree RvNNs, BT-RvNNs, and the like.

6

on the induced tree structures. In practice, we allow every terminal node as queries to attend to every
node as keys and values but use a mask to allow attention only if the key represents the same node
as that represented by the query or the key represents some parent (direct or indirect) of the node
represented by the query. We also implement a relative positional encoding to bias attention [70] -
using the difference in heights of the nodes as the relative distance. In essence, we are proposing the
use of a form of graph attention network [86]. This attention mechanism can be repeated for iterative
refinement of the token representations through multiple layers of message-passing.

In the case of EBT-RvNNs, we can create separate token representations for each beam and then
marginalize them based on beam scores. We describe our concrete setup briefly below but more
details are presented in Appendix F.

Step 1: First, we begin with beams of representations before they were marginalized. This allows us
to access discrete edges connecting parents for every beam. As a setup, we have some b beams of
tree node representations and their structural information (edge connections).

Step 2: We use Gated Attention Unit (GAU) [36], a modern Transformer variant, as the attention
mechanism block. We use the terminal node representations as queries (Q) and all the non-terminal
nodes as keys (K) and values (V). We use GAU, like a graph attention network [86], by using an
adjacency matrix A as an attention mask. Aij is set as 1 if and only if Qi is a child of Kj based on
our tree extraction. Otherwise Aij is set as 0. Thus attention is only allowed from parents to their
terminal children (direct or indirect).

Step 3: We implement a basic relative positional encoding - similar to that of Raffel et al. [64]. The
only difference is that for us, the relative distances are the relative height distances.

Step 4: The GAU layer is repeated for iterative refinement of terminal node representations. We
repeat for two iterations since this is an expensive step.

Step 5: As before, we marginalize the beams based on the accumulated log-softmax scores after the
terminal node representations are contextualized.

Use Case: In theory, the contextualized terminal node representations that are built up in Step 5 can
be used for any task like sequence labelling or masked language modeling. At this point, we explore
one specific use case - sentence-pair matching tasks (natural language inference and paraphrase
detection). For these tasks we have two input sequences that we need to compare. Previously we
only created sentence encoding for each sequences and made the vectors interact, but now we can
make the whole of two sequences of contextualized terminal-node embeddings interact with each
other through a stack of GAU-based self-attention. This is an approach that we use for some of the
sentence-matching tasks in Natural Language Processing (Table 3). The models are trained end to
end. We discuss the technical details about these architectural setups more explicitly in Appendix F.

5 Experiments and Results

5.1 Model Nomenclature

Sentence Encoder models: Transformer refers to Transformers [85]; UT refers to Universal
Transformers [13]; CRvNN refers to Continuous Recursive Neural Network [10]; OM refers to
Ordered Memory [71]; BT-GRC refers to BT-RvNN implemented with GRC [66]; BT-GRC OS
refers to BT-GRC combined with OneSoft (OS) Top-K function [66]; EBT-GRC refers to our
proposed EBT-RvNN model with GRC; GT-GRC refers to Gumbel-Tree RvNN [9] but with GRC as
the recursive cell; EGT-GRC refers to GT-GRC plus the fixes that we propose.

Sentence Interaction Models: Sequence interaction models refer to the models in the style described
in Section 4. These models use some deeper interaction between contextualized token representations
from both sequences without bottlenecking the interactions through a pair of vectors. We use EBT-
GAU to refer to the approach described in Section 4. EGT-GAU refers to a new baseline which
uses the same framework as EBT-GAU except it replaces the Beam-Tree-Search with greedy STE
gumbel-softmax based selection as in [9]. GAU refers to a plain stack of Gated Attention Units [36]
(made to approximate the parameters of EBT-GAU) that do not use any Tree-RvNNs and is trained
directly on <SEP> concatenated sequence pairs.

7

Table 1: Empirical time and (peak) memory consumption for various models on an RTX A6000. Ran
on 100 ListOps data with batch size 1 and the same hyperparameters as used on ListOps on various
sequence lengths. (-slice) indicates EBT-GRC without slicing from Fix 2, (512) indicates EBT-GRC
with the hidden state dimension (d) set as 512 (instead of 128).(512,-slice) represents EBT-GRC with
512 dimensional hidden state size and without slicing.

.
Sequence Lengths

Model 200− 250 500− 600 900− 1000 1500− 2000

Time Memory Time Memory Time Memory Time Memory
(min) (GB) (min) (GB) (min) (GB) (min) (GB)

OM 8.0 0.09 20.6 0.21 38.2 0.35 76.6 0.68

CRvNN 1.5 1.57 4.3 12.2 8.0 42.79 OOM OOM
GT-GRC 0.5 0.35 2.1 1.95 3.5 5.45 7.1 21.76

EGT-GRC 1 0.07 2.5 0.3 4.3 0.81 8.5 3.15

BT-GRC 1.1 1.71 2.6 9.82 5.1 27.27 OOM OOM
BT-GRC OS 1.4 2.74 4.0 15.5 7.1 42.95 OOM OOM
EBT-GRC 1.2 0.19 3.2 1.01 5.5 2.78 10.5 10.97

− slice 1.2 0.35 3.2 1.95 5.4 5.4 10.3 21.12

(512) 1.2 0.41 3.3 1.29 5.6 3.13 12.1 11.41

(512,− slice) 1.2 1.55 3.3 7.77 5.5 21.02 OOM OOM

5.2 Efficiency Analysis

In Table 1, we compare the empirical time-memory trade offs of the most relevant Tree-RvNN models
(particularly those that are competent in ListOps and logical inference). We use CRvNN in the
no halting mode as [66] because otherwise it can start to halt trivially because of limited training
data. For the splits of lengths 200 − 1000 we use the data shared by Havrylov et al. [31]; for the
1500− 2000 split we sample from the training set of LRA listops [81].

We can observe from the table that EBT-GRC achieves better memory efficiency among all the
strong RvNN contenders (GT-GRC and EGT-GRC fail on ListOps/Logical inference) except for
OM. However, OM’s memory efficiency comes with a massive cost in time, being nearly 8 times
slower than EBT-GRC. Compared to BT-GRC OS’s 43GB peak memory consumption in 900-1000
sequence length from [66], the memory consumption of EBT-GRC is reduced to only 2.8GB. Even
compared to BT-GRC, the reduction is near ten times. EBT-GRC even outperforms the original
greedy GT-GRC used in Choi et al. [9]. Removing the slicing from the full model EBT-GRC (i.e.,
−slice) can substantially increase the memory cost. This becomes most apparent when training with
higher hidden state size (compare (512) vs. (512,−slice)). This shows the effectiveness of slicing.

5.3 Results

Hyperparameters are presented in Appendix G, architecture details are presented in Appendix F, task
details are provided in Appendix B and additional results (besides what is presented below) in logical
inference and text classification are provided in Appendix C.

List Operations (ListOps): The task of ListOps consist of hierarchical nested operations that neural
networks generally struggle to solve particularly in length-generalizable settings. There are only a
few known contenders that achieve decent performance in the task [31, 10, 71, 66]. For this task
we use the original training set [57] with the length generalization splits from Havrylov et al. [31],
the argument generalization splits from Ray Chowdhury and Caragea [66], and the LRA test set
from Tay et al. [81]. The different splits test the model in different out-of-distribution settings (one
in unseen lengths, another in an unseen number of arguments, and another in both unseen lengths
and arguments). Remarkably, as can be seen from Table 2, EBT-GRC outperforms most of the
previous models in accuracy - only being slightly behind OM for some argument generalization splits.
EBT-GRC −Slice represents the performance of EBT-GRC without slicing. It shows that slicing in
fact improves the accuracy as well in this context but even without slicing the model is better than
BT-GRC or BT-GRC OS.

8

Table 2: Accuracy on ListOps. For our models, we report the median of 3 runs. Our models were
trained on lengths ≤ 100, depth ≤ 20, and arguments ≤ 5. * represents results copied from [71].
We bold the best results that do not use gold trees. Subscript represents standard deviation. As an
example, 901 = 90± 0.1

Model near-IID Length Gen. Argument Gen. LRA
(Lengths) ≤ 1000 200-300 500-600 900-1000 100-1000 100-1000 2000

(Arguments) ≤ 5 ≤ 5 ≤ 5 ≤ 5 10 15 10
With gold trees
GoldTreeGRC 99.9.2 99.9.9 99.81 100.5 81.228 79.514 78.529

Baselines without gold trees
Transformer * 57.44 — — — — — —
UT * 71.578 — — — — — —
GT-GRC 754.6 47.78.4 42.72.8 37.5337 50.915 51.416 45.312
EGT-GRC 84.219 51.337 42.935 34.435 44.717 40.816 34.414
OM 99.9.3 99.6.7 92.413 76.313 83.224 76.338 79.318

CRvNN 99.72.8 98.811 97.223 94.949 66.640 43.738 55.3844
BT-GRC 99.42.7 96.810 93.622 88.427 75.228 59.179 63.457
BT-GRC OS 99.65.4 97.235 94.865 92.286 73.364 63.192 66.1101

EBT-GRC 99.90.3 99.72.4 99.51 99.35 82.513 79.68.7 79.36.5

EBT-GRC − Slice 99.73 98.612 98.417 98.614 79.320 74.437 75.525

Logical Inference and Sentiment Classification: We show the results of our models in formal
logical inference (another dataset where only RvNN-like models have shown some success) and
sentiment classification in Appendix C. There we show that our EBT-GRC can easily keep up on
these tasks with BT-GRC despite being much more efficient.

NLI and Paraphrase Detection: As we can see from Table 3, although EBT-GRC does not strictly
outperform BT-GRC or BT-GRC OS, it remains in the same ballpark performance. The sentence
interaction models, unsurprisingly, tend to have higher scores that sentence encoder modes because of
their more parameters and more interaction space. We do not treat them commensurate here. Among
the sequence interaction models, our EBT-GAU generally outperforms both baseline models in its
vicinity - GAU and EGT-GAU. Even when used in conjunction with a Transformer, beam search still
maintains some usefulness over simpler STE-based greedy search (EGT-GAU) and it shows some
potential against pure Transformer stacks as well (GAU).

6 Conclusion

We identify a memory bottleneck in a popular RvNN framework [9] which has caused BT-RvNN
[66] to require more memory than it needs to. Mitigating this bottleneck allows us to reduce the
memory consumption of EBT-RvNN (an efficient variant of BT-RvNN) by 10-16 times without much
other cost and while preserving similar task performances (and sometimes even beating the original
BT-RvNN). The fixes also equally apply to any model using the framework including the original
Gumbel Tree model [9]. We believe our work can serve as a basic baseline and a bridge for the
development of more scalable models in the RvNN family and beyond.

7 Limitations

Although our proposal improves upon the computational trade-offs over some of the prior works
[10, 9, 66, 71], it can be still more expensive than standard RNNs although we address this limitation,
to an extent, in our concurrent work [65]. Moreover, our investigation of utilizing bottom-up Tree-
RvNNs for top-down signal (without using expensive CYK models [15, 16]) is rather preliminary
(efficiency being our main focus). This area of investigation needs to be focused more in the future.
Moreover, although our proposal reduces memory usage it does not help much on accuracy scores
compared with other competitive RvNNs.

9

Table 3: Mean accuracy and standard deviaton on SNLI [6], QQP, and MNLI [89]. Hard represents
the SNLI test set from Gururangan et al. [28], Break represents the SNLI test set from Glockner
et al. [22]. Count. represents the counterfactual test set from Kaushik et al. [38]. PAWSQQP and
PAWSWIKI are adversarial test sets from Zhang et al. [97], ConjNLI is the dev set from Saha et al.
[67], NegM,NegMM,LenM,LenMM are Negation Match, Negation Mismatch, Length Match, Length
Mismatch stress test sets from Naik et al. [56] respectively. Our models were run 3 times on different
seeds. Subscript represents standard deviation. As an example, 901 = 90± 0.1

SNLI Training QQP Training
Models IID Hard Break Count. IID PAWSQQP PAWSWiki

(Sequence Encoder Models)

CRvNN 85.32 70.64 55.317 59.86 84.83 34.87 46.66
OM 85.52 70.63 67.49 59.92 84.60 38.17 45.68
BT-GRC 84.91 705 5114 594 84.75 36.917 46.412
BT-GRC OS 84.91 70.36 53.2910 58.63 84.22 37.18 46.36
EBT-GRC 84.74 69.98 55.620 58.11 84.32 36.95 47.55

(Sequence Interaction Models)

GAU 872 74.24 69.4034 66.42.5 83.61 38.614 47.31
EGT-GAU 87.10 74.84 66.112 66.22 83.54 39.431 49.313

EBT-GAU 87.52 75.73 7026 67.64 83.92 42.335 47.28

MNLI Training
Models Match MM ConjNLI NegM NegMM LenM LenMM

(Sequence Encoder Models)

CRvNN 72.24 72.65 41.710 52.86 53.84.2 6244 63.347
OM 72.53 732 41.74 50.97 51.713 56.533 57.0631
BT-GRC 71.62 72.31 40.76 53.737 54.843 64.76 66.45
BT-GRC OS 71.71 71.92 41.29 53.22 54.25 65.613 66.79

EBT-GRC 72.12 721 40.930 52.3323 53.2822 64.9210 66.410

(Sequence Interaction Models)

GAU 76.43 76.52 53.512 48.211 48.2411 69.620 70.622
EGT-GAU 75.12 75.53 53.14 48.714 48.614 69.813 70.611
EBT-GAU 76.51 76.92 53.318 49.24 493 71.618 72.519

8 Acknowledgments

This research is supported in part by NSF CAREER award #1802358, NSF IIS award #2107518, and
UIC Discovery Partners Institute (DPI) award. Any opinions, findings, and conclusions expressed
here are those of the authors and do not necessarily reflect the views of NSF or DPI. We thank our
anonymous reviewers for their constructive feedback.

References
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473.

[2] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf.

10

http://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf

[3] Andrea Banino, Jan Balaguer, and Charles Blundell. Pondernet: Learning to ponder. ICML
Workshop, abs/2107.05407, 2021. URL https://arxiv.org/abs/2107.05407.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

[5] Ben Bogin, Sanjay Subramanian, Matt Gardner, and Jonathan Berant. Latent compositional
representations improve systematic generalization in grounded question answering. Transactions
of the Association for Computational Linguistics, 9:195–210, 2021. doi: 10.1162/tacl_a_00361.
URL https://aclanthology.org/2021.tacl-1.12.

[6] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal,
September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL
https://aclanthology.org/D15-1075.

[7] Samuel R. Bowman, Christopher D. Manning, and Christopher Potts. Tree-structured compo-
sition in neural networks without tree-structured architectures. In Proceedings of the 2015th
International Conference on Cognitive Computation: Integrating Neural and Symbolic Ap-
proaches - Volume 1583, COCO’15, page 37–42, Aachen, DEU, 2015. CEUR-WS.org.

[8] Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D. Manning,
and Christopher Potts. A fast unified model for parsing and sentence understanding. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1466–1477, Berlin, Germany, August 2016. Association for
Computational Linguistics. doi: 10.18653/v1/P16-1139. URL https://aclanthology.org/
P16-1139.

[9] Jihun Choi, Kang Min Yoo, and Sang-goo Lee. Learning to compose task-specific tree structures.
In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 5094–5101.
AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/16682.

[10] Jishnu Ray Chowdhury and Cornelia Caragea. Modeling hierarchical structures with continuous
recursive neural networks. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 1975–1988. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/chowdhury21a.html.

[11] Caio Corro and Ivan Titov. Learning latent trees with stochastic perturbations and differentiable
dynamic programming. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5508–5521, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1551. URL https://aclanthology.org/
P19-1551.

[12] Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The neural data router: Adaptive
control flow in transformers improves systematic generalization. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=KBQP4A_J1K.

[13] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Uni-
versal transformers. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyzdRiR9Y7.

[14] Gr’egoire Del’etang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot
Catt, Marcus Hutter, Shane Legg, and Pedro A. Ortega. Neural networks and the chomsky
hierarchy. ArXiv, abs/2207.02098, 2022.

11

https://arxiv.org/abs/2107.05407
http://arxiv.org/abs/1308.3432
https://aclanthology.org/2021.tacl-1.12
https://aclanthology.org/D15-1075
https://aclanthology.org/P16-1139
https://aclanthology.org/P16-1139
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16682
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16682
https://proceedings.mlr.press/v139/chowdhury21a.html
https://proceedings.mlr.press/v139/chowdhury21a.html
https://aclanthology.org/P19-1551
https://aclanthology.org/P19-1551
https://openreview.net/forum?id=KBQP4A_J1K
https://openreview.net/forum?id=HyzdRiR9Y7

[15] Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit Iyyer, and Andrew McCallum. Unsuper-
vised latent tree induction with deep inside-outside recursive auto-encoders. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1129–
1141, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1116. URL https://aclanthology.org/N19-1116.

[16] Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen, Tim O’Gorman, Mohit Iyyer, and Andrew
McCallum. Unsupervised parsing with S-DIORA: Single tree encoding for deep inside-outside
recursive autoencoders. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4832–4845, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.392. URL https://
aclanthology.org/2020.emnlp-main.392.

[17] Brian DuSell and David Chiang. Learning context-free languages with nondeterministic stack
RNNs. In Proceedings of the 24th Conference on Computational Natural Language Learning,
pages 507–519, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.conll-1.41. URL https://aclanthology.org/2020.conll-1.41.

[18] Brian DuSell and David Chiang. Learning hierarchical structures with differentiable nonde-
terministic stacks. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=5LXw_QplBiF.

[19] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.
ISSN 0364-0213. doi: https://doi.org/10.1016/0364-0213(90)90002-E. URL https://www.
sciencedirect.com/science/article/pii/036402139090002E.

[20] Hao Fei, Yafeng Ren, and Donghong Ji. Retrofitting structure-aware transformer language
model for end tasks. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2151–2161, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.168. URL https://
aclanthology.org/2020.emnlp-main.168.

[21] Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep
Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, Nitish Gupta, Hannaneh Hajishirzi,
Gabriel Ilharco, Daniel Khashabi, Kevin Lin, Jiangming Liu, Nelson F. Liu, Phoebe Mulcaire,
Qiang Ning, Sameer Singh, Noah A. Smith, Sanjay Subramanian, Reut Tsarfaty, Eric Wallace,
Ally Zhang, and Ben Zhou. Evaluating models’ local decision boundaries via contrast sets. In
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1307–1323,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.117. URL https://aclanthology.org/2020.findings-emnlp.117.

[22] Max Glockner, Vered Shwartz, and Yoav Goldberg. Breaking NLI systems with sentences that
require simple lexical inferences. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 650–655, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2103. URL
https://aclanthology.org/P18-2103.

[23] Yoav Goldberg and Michael Elhadad. An efficient algorithm for easy-first non-directional
dependency parsing. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, pages 742–
750, Los Angeles, California, June 2010. Association for Computational Linguistics. URL
https://aclanthology.org/N10-1115.

[24] C. Goller and A. Kuchler. Learning task-dependent distributed representations by backprop-
agation through structure. In Proceedings of International Conference on Neural Networks
(ICNN’96), volume 1, pages 347–352 vol.1, 1996. doi: 10.1109/ICNN.1996.548916.

[25] Alex Graves. Adaptive computation time for recurrent neural networks. ArXiv, abs/1603.08983,
2016. URL http://arxiv.org/abs/1603.08983.

[26] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

12

https://aclanthology.org/N19-1116
https://aclanthology.org/2020.emnlp-main.392
https://aclanthology.org/2020.emnlp-main.392
https://aclanthology.org/2020.conll-1.41
https://openreview.net/forum?id=5LXw_QplBiF
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://aclanthology.org/2020.emnlp-main.168
https://aclanthology.org/2020.emnlp-main.168
https://aclanthology.org/2020.findings-emnlp.117
https://aclanthology.org/P18-2103
https://aclanthology.org/N10-1115
http://arxiv.org/abs/1603.08983

[27] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

[28] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A. Smith. Annotation artifacts in natural language inference data. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 107–112, New
Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/
N18-2017. URL https://aclanthology.org/N18-2017.

[29] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8:156–171, 2020. doi: 10.1162/tacl_a_00306.
URL https://aclanthology.org/2020.tacl-1.11.

[30] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. Advances in Neural Information Processing Systems, 34:15908–15919, 2021.

[31] Serhii Havrylov, Germán Kruszewski, and Armand Joulin. Cooperative learning of disjoint
syntax and semantics. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1118–1128, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1115. URL https://aclanthology.
org/N19-1115.

[32] Jonathan Herzig and Jonathan Berant. Span-based semantic parsing for compositional gener-
alization. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 908–921, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.74. URL https://aclanthology.org/2021.
acl-long.74.

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9
(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
https://doi.org/10.1162/neco.1997.9.8.1735.

[34] Xiang Hu, Haitao Mi, Zujie Wen, Yafang Wang, Yi Su, Jing Zheng, and Gerard de Melo.
R2D2: Recursive transformer based on differentiable tree for interpretable hierarchical lan-
guage modeling. In Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4897–4908, Online, August 2021. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.379. URL https:
//aclanthology.org/2021.acl-long.379.

[35] Xiang Hu, Haitao Mi, Liang Li, and Gerard de Melo. Fast-R2D2: A pretrained recursive neural
network based on pruned CKY for grammar induction and text representation. In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2809–2821,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
URL https://aclanthology.org/2022.emnlp-main.181.

[36] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 9099–9117. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/hua22a.html.

[37] Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. First quora dataset release: Question pairs.
In Quora, 2017.

[38] Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. Learning the difference that makes a
difference with counterfactually-augmented data. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Sklgs0NFvr.

13

https://aclanthology.org/N18-2017
https://aclanthology.org/2020.tacl-1.11
https://aclanthology.org/N19-1115
https://aclanthology.org/N19-1115
https://aclanthology.org/2021.acl-long.74
https://aclanthology.org/2021.acl-long.74
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/2021.acl-long.379
https://aclanthology.org/2021.acl-long.379
https://aclanthology.org/2022.emnlp-main.181
https://proceedings.mlr.press/v162/hua22a.html
https://openreview.net/forum?id=Sklgs0NFvr

[39] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention networks.
International Conference on Learning Representations, 2017.

[40] Donald E. Knuth. On the translation of languages from left to right. Information and Control, 8
(6):607 – 639, 1965. ISSN 0019-9958.

[41] Lingpeng Kong, Alexander M. Rush, and Noah A. Smith. Transforming dependencies into
phrase structures. In Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 788–
798, Denver, Colorado, May–June 2015. Association for Computational Linguistics. doi:
10.3115/v1/N15-1080. URL https://aclanthology.org/N15-1080.

[42] Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
Gumbel-top-k trick for sampling sequences without replacement. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 3499–3508. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/kool19a.html.

[43] Phong Le and Willem Zuidema. Compositional distributional semantics with long short term
memory. In Proceedings of the Fourth Joint Conference on Lexical and Computational Seman-
tics, pages 10–19, Denver, Colorado, June 2015. Association for Computational Linguistics.
doi: 10.18653/v1/S15-1002. URL https://aclanthology.org/S15-1002.

[44] Phong Le and Willem Zuidema. The forest convolutional network: Compositional distributional
semantics with a neural chart and without binarization. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 1155–1164, Lisbon, Portugal,
September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1137. URL
https://aclanthology.org/D15-1137.

[45] Chenyao Liu, Shengnan An, Zeqi Lin, Qian Liu, Bei Chen, Jian-Guang Lou, Lijie Wen, Nanning
Zheng, and Dongmei Zhang. Learning algebraic recombination for compositional generalization.
In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1129–
1144, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
findings-acl.97. URL https://aclanthology.org/2021.findings-acl.97.

[46] Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen, Zeqi Lin, Yan Gao, Bin Zhou, Nanning
Zheng, and Dongmei Zhang. Compositional generalization by learning analytical expressions.
In Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[47] Yang Liu and Mirella Lapata. Learning structured text representations. Transactions of the
Association for Computational Linguistics, 6:63–75, 2018. doi: 10.1162/tacl_a_00005.

[48] Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. Easy-first POS tagging and dependency
parsing with beam search. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 110–114, Sofia, Bulgaria,
August 2013. Association for Computational Linguistics. URL https://aclanthology.
org/P13-2020.

[49] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pages 142–
150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL
https://aclanthology.org/P11-1015.

[50] Jean Maillard and Stephen Clark. Latent tree learning with differentiable parsers: Shift-reduce
parsing and chart parsing. In Proceedings of the Workshop on the Relevance of Linguistic
Structure in Neural Architectures for NLP, pages 13–18, Melbourne, Australia, July 2018.
Association for Computational Linguistics. doi: 10.18653/v1/W18-2903. URL https://
aclanthology.org/W18-2903.

[51] Jean Maillard, Stephen Clark, and Dani Yogatama. Jointly learning sentence embeddings and
syntax with unsupervised tree-lstms. Natural Language Engineering, 25(4):433–449, 2019. doi:
10.1017/S1351324919000184.

14

https://aclanthology.org/N15-1080
https://proceedings.mlr.press/v97/kool19a.html
https://aclanthology.org/S15-1002
https://aclanthology.org/D15-1137
https://aclanthology.org/2021.findings-acl.97
https://aclanthology.org/P13-2020
https://aclanthology.org/P13-2020
https://aclanthology.org/P11-1015
https://aclanthology.org/W18-2903
https://aclanthology.org/W18-2903

[52] Jiayuan Mao, Freda H. Shi, Jiajun Wu, Roger P. Levy, and Joshua B. Tenenbaum. Grammar-
based grounded lexicon learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=iI6nkEZkOl.

[53] Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=HyUNwulC-.

[54] Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syn-
tactic heuristics in natural language inference. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pages 3428–3448, Florence, Italy,
July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1334. URL
https://aclanthology.org/P19-1334.

[55] Tsendsuren Munkhdalai and Hong Yu. Neural tree indexers for text understanding. In Pro-
ceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 11–21, Valencia, Spain, April 2017. Association for
Computational Linguistics. URL https://aclanthology.org/E17-1002.

[56] Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham Neubig.
Stress test evaluation for natural language inference. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 2340–2353, Santa Fe, New Mexico, USA,
August 2018. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/C18-1198.

[57] Nikita Nangia and Samuel Bowman. ListOps: A diagnostic dataset for latent tree learning.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Student Research Workshop, pages 92–99, New Orleans, Louisiana,
USA, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-4013. URL
https://aclanthology.org/N18-4013.

[58] Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard Socher. Tree-structured attention with
hierarchical accumulation. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=HJxK5pEYvr.

[59] Vlad Niculae, Andre Martins, Mathieu Blondel, and Claire Cardie. SparseMAP: Differentiable
sparse structured inference. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3799–3808, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

[60] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv
preprint arXiv:2303.06349, 2023.

[61] Hao Peng, Sam Thomson, and Noah A. Smith. Backpropagating through structured argmax
using a SPIGOT. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1863–1873, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1173. URL
https://aclanthology.org/P18-1173.

[62] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014. Association for
Computational Linguistics. doi: 10.3115/v1/D14-1162. URL https://aclanthology.org/
D14-1162.

[63] Jordan B. Pollack. Recursive distributed representations. Artificial Intelligence, 46(1):77 –
105, 1990. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(90)90005-K. URL
http://www.sciencedirect.com/science/article/pii/000437029090005K.

15

https://openreview.net/forum?id=iI6nkEZkOl
https://openreview.net/forum?id=iI6nkEZkOl
https://openreview.net/forum?id=HyUNwulC-
https://openreview.net/forum?id=HyUNwulC-
https://aclanthology.org/P19-1334
https://aclanthology.org/E17-1002
https://www.aclweb.org/anthology/C18-1198
https://www.aclweb.org/anthology/C18-1198
https://aclanthology.org/N18-4013
https://openreview.net/forum?id=HJxK5pEYvr
https://aclanthology.org/P18-1173
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
http://www.sciencedirect.com/science/article/pii/000437029090005K

[64] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

[65] Jishnu Ray Chowdhury and Cornelia Caragea. Recursion in recursion: Two-level nested
recursion for length generalization with scalabiliy. In Proceedings of the Neural Information
Processing Systems, 2023.

[66] Jishnu Ray Chowdhury and Cornelia Caragea. Beam tree recursive cells. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages 28768–28791. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/ray-chowdhury23a.html.

[67] Swarnadeep Saha, Yixin Nie, and Mohit Bansal. ConjNLI: Natural language inference over
conjunctive sentences. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8240–8252, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.661. URL https://
aclanthology.org/2020.emnlp-main.661.

[68] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. Trans. Neur. Netw., 20(1):61–80, jan 2009. ISSN 1045-9227.
doi: 10.1109/TNN.2008.2005605. URL https://doi.org/10.1109/TNN.2008.2005605.

[69] M.P. Schützenberger. On context-free languages and push-down automata. Information and
Control, 6(3):246 – 264, 1963. ISSN 0019-9958.

[70] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position rep-
resentations. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pages 464–468, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-2074. URL https://aclanthology.org/N18-2074.

[71] Yikang Shen, Shawn Tan, Arian Hosseini, Zhouhan Lin, Alessandro Sordoni, and Aaron C
Courville. Ordered memory. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 5037–5048. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
8748-ordered-memory.pdf.

[72] Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron Courville. Ordered neurons: Inte-
grating tree structures into recurrent neural networks. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1l6qiR5F7.

[73] Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald Metzler, and Aaron Courville. Struct-
Former: Joint unsupervised induction of dependency and constituency structure from masked
language modeling. In Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7196–7209, Online, August 2021. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.559. URL https:
//aclanthology.org/2021.acl-long.559.

[74] Zhiqiang Shen, Zechun Liu, and Eric Xing. Sliced recursive transformer. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XXIV, pages 727–744. Springer, 2022.

[75] Haoyue Shi, Hao Zhou, Jiaze Chen, and Lei Li. On tree-based neural sentence modeling. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 4631–4641, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1492. URL https://aclanthology.org/D18-1492.

[76] Bing Shuai, Zhen Zuo, Bing Wang, and Gang Wang. Dag-recurrent neural networks for scene
labeling. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3620–3629, 2016.

16

http://jmlr.org/papers/v21/20-074.html
https://proceedings.mlr.press/v202/ray-chowdhury23a.html
https://aclanthology.org/2020.emnlp-main.661
https://aclanthology.org/2020.emnlp-main.661
https://doi.org/10.1109/TNN.2008.2005605
https://aclanthology.org/N18-2074
http://papers.nips.cc/paper/8748-ordered-memory.pdf
http://papers.nips.cc/paper/8748-ordered-memory.pdf
https://openreview.net/forum?id=B1l6qiR5F7
https://aclanthology.org/2021.acl-long.559
https://aclanthology.org/2021.acl-long.559
https://aclanthology.org/D18-1492

[77] Richard Socher, Christopher D. Manning, and Andrew Y. Ng. Learning continuous phrase
representations and syntactic parsing with recursive neural networks. In In Proceedings of the
NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop, 2010.

[78] Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D. Manning.
Semi-supervised recursive autoencoders for predicting sentiment distributions. In Proceedings
of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 151–
161, Edinburgh, Scotland, UK., July 2011. Association for Computational Linguistics. URL
https://aclanthology.org/D11-1014.

[79] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics. URL https://aclanthology.org/D13-1170.

[80] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representa-
tions from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers), pages 1556–1566, Beijing,
China, July 2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-1150. URL
https://aclanthology.org/P15-1150.

[81] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng
Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for
efficient transformers. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=qVyeW-grC2k.

[82] Zhiyang Teng and Yue Zhang. Head-lexicalized bidirectional tree LSTMs. Transactions of the
Association for Computational Linguistics, 5:163–177, 2017. doi: 10.1162/tacl_a_00053. URL
https://aclanthology.org/Q17-1012.

[83] Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=JbuYF437WB6.

[84] Ke Tran, Arianna Bisazza, and Christof Monz. The importance of being recurrent for
modeling hierarchical structure. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 4731–4736, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1503. URL
https://aclanthology.org/D18-1503.

[85] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[86] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

[87] Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen. Tree transformer: Integrating tree
structures into self-attention. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 1061–1070, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1098. URL
https://aclanthology.org/D19-1098.

[88] Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for natural
language sentences. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI’17, page 4144–4150. AAAI Press, 2017. ISBN 9780999241103.

17

https://aclanthology.org/D11-1014
https://aclanthology.org/D13-1170
https://aclanthology.org/P15-1150
https://openreview.net/forum?id=qVyeW-grC2k
https://aclanthology.org/Q17-1012
https://openreview.net/forum?id=JbuYF437WB6
https://openreview.net/forum?id=JbuYF437WB6
https://aclanthology.org/D18-1503
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://aclanthology.org/D19-1098

[89] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana, June
2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1101. URL https:
//aclanthology.org/N18-1101.

[90] Zhaofeng Wu. Learning with latent structures in natural language processing: A survey. arXiv
preprint arXiv:2201.00490, 2022.

[91] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2021. doi: 10.1109/TNNLS.2020.2978386.

[92] Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-transformer: Modelling
long-range context via binary partitioning. arXiv preprint arXiv:1911.04070, 2019.

[93] Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and Wang Ling. Learning to
compose words into sentences with reinforcement learning. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017.

[94] Fabio Massimo Zanzotto, Andrea Santilli, Leonardo Ranaldi, Dario Onorati, Pierfrancesco
Tommasino, and Francesca Fallucchi. KERMIT: Complementing transformer architectures with
encoders of explicit syntactic interpretations. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), pages 256–267, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.18. URL
https://aclanthology.org/2020.emnlp-main.18.

[95] Aston Zhang, Yi Tay, Yikang Shen, Alvin Chan, and SHUAI ZHANG. Self-instantiated
recurrent units with dynamic soft recursion. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 6503–6514. Curran Associates, Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/3341f6f048384ec73a7ba2e77d2db48b-Paper.pdf.

[96] Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang, Guohong Fu, and Min Zhang. Semantic
role labeling as dependency parsing: Exploring latent tree structures inside arguments. In
Proceedings of the 29th International Conference on Computational Linguistics, pages 4212–
4227, Gyeongju, Republic of Korea, October 2022. International Committee on Computational
Linguistics. URL https://aclanthology.org/2022.coling-1.370.

[97] Yuan Zhang, Jason Baldridge, and Luheng He. PAWS: Paraphrase adversaries from word
scrambling. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 1298–1308, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1131. URL https://aclanthology.
org/N19-1131.

[98] Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. Long short-term memory over recursive
structures. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 1604–1612, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/zhub15.html.

[99] Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. DAG-structured long short-term memory
for semantic compositionality. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 917–926, San Diego, California, June 2016. Association for Computational Linguistics.
doi: 10.18653/v1/N16-1106. URL https://aclanthology.org/N16-1106.

18

https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101
https://aclanthology.org/2020.emnlp-main.18
https://proceedings.neurips.cc/paper/2021/file/3341f6f048384ec73a7ba2e77d2db48b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/3341f6f048384ec73a7ba2e77d2db48b-Paper.pdf
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/N19-1131
https://aclanthology.org/N19-1131
https://proceedings.mlr.press/v37/zhub15.html
https://proceedings.mlr.press/v37/zhub15.html
https://aclanthology.org/N16-1106

A Appendix Organization

In Section B, we describe the settings of all the tasks and datasets that we have tested our models on.
In Section C, we provide additional results on logical inference and sentiment classification. Then, in
Section D, we present an extended survey of related works. In Section E, we present the pseudocode
for EBT-RvNN. In Section F, we detail our architecture setup including the sequence-interaction
models. In Section G, we provide our hyperparameters.

B Task Details

ListOps: ListOps was introduced by Nangia and Bowman [57] and is a task for solving nested lists
of mathematical operations. It is a 10-way classification task. Similar to Chowdhury and Caragea
[10], we train our models on the original training set with all samples ≥ 100 sequence lengths filtered
out. We use the original development set for validation. We test on the following sets: the original
test set (near-IID split); the length generalization splits from Havrylov et al. [31] that include samples
of much higher lengths; the argument generalization splits from Ray Chowdhury and Caragea [66]
that involve an unseen number of maximum arguments for each operator; and the LRA split (which
has both higher sequence length and higher argument number) from Tay et al. [81].

Logical Inference: Logical Inference was introduced by Bowman et al. [7] and is a task that involves
classifying fine-grained inferential relations between two given sequences in a form similar to that of
formal sentences of propositional logic. Similar to Tran et al. [84], our models were trained on splits
with logical connectives ≤ 6. We show the results in OOD test sets with logical connections 10-12.
We use the same splits as Shen et al. [71], Tran et al. [84], Chowdhury and Caragea [10].

SST5: SST5 is a fine-grained 5-way sentiment classification task introduced by Socher et al. [79].
We use the original splits.

IMDB: IMDB is a binary sentiment classification task from Maas et al. [49]. We use the same train,
validation, and IID test sets as created in Ray Chowdhury and Caragea [66]. We also use the contrast
set Gardner et al. [21] and counterfactual set Kaushik et al. [38] as additional test splits.

QQP: QQP6 [37] is a task of classifying whether two given sequences in a pair are paraphrases of
each other or not. Following prior works Wang et al. [88], we randomly sample 10, 000 samples for
validation and IID test set such that for each split 5, 000 samples are maintained to be paraphrases and
the other 5, 000 are maintained to be not paraphrases. We also use the adversarial test sets PAWSQQP

and PAWSWIKI form Zhang et al. [97].

SNLI: SNLI [6] is a natural language inference (NLI) task. It is a 3-way classification task to classify
the inferential relation between two given sequences. We use the same train, development, and IID
test set splits as in Chowdhury and Caragea [10]. Any data with a sequence of length≥ 150 is filtered
out from the training set for efficiency. We use also additional test set splits for stress tests. We use
the hard test set split from Gururangan et al. [28], the break test set from Glockner et al. [22], and the
counterfactual test set from Kaushik et al. [38].

MNLI: MNLI [89] is another NLI dataset, which is similar to SNLI in format. We use the original
development sets (match and mismatch) as test sets. We filter out all data with any sequence
length ≥ 150 from the training set. Our actual development set is a random sample of 10, 000
data-points from the filtered training set. As additional testing sets, we use the development set of
Conjunctive NLI (ConjNLI) [67] and a few of the stress sets from Naik et al. [56]. These stress test
sets include - Negation Match (NegM), Negation Mismatch (NegMM), Length Match (LenM), and
Length Mismatch (LenMM). NegM and NegMM add tautologies containing “not" terms - this can
bias the models to classify contradiction as the inferential relation because the training set contains
spurious correlations between existence of “not" related terms and the class of contradiction. LenM
and LenMM add tautologies to artificially increase the lengths of the samples without changing the
inferential relation class.

6https://data.quora.com/First-Quora-Dataset-Release-QuestionPairs

19

https://data.quora.com/First-Quora-Dataset-Release-QuestionPairs

Table 4: Mean accuracy and standard deviation on the Logical Inference [7] for ≥ 10 number of
operations after training on samples with ≤ 6 operations, and on SST5 [79] and IMDB [49]. Count.
represents counterfactual test split from Kaushik et al. [38] and Cont. represents contrast test split
from Gardner et al. [21] The best results are shown in bold. Our models were run 3 times on different
seeds. Subscript represents standard deviation. As an example, 901 = 90± 0.1

Logical Inference SST5 IMDB
Model Number of Operations

10 11 12 IID IID Cont. Count.
GT-GRC 90.3322 88.4318 85.7024 51.678.8 85.1110 70.6321 81.975
EGT-GRC 75.7961 73.3868 69.687.8 51.6314 86.582.7 729.2 81.7614
CRvNN 94.512.9 94.485.6 92.7315 51.7511 91.471.2 77.8015 85.383.5

OM 94.952 93.92.2 93.366.2 52.302.7 91.690.5 76.985.8 83.687.8
BT-GRC 95.042.3 94.293.8 93.362.4 52.324.7 91.291.2 75.0729 82.8623
BT-GRC OS 95.434.5 94.216.6 93.391.5 51.927.2 90.869.3 75.6821 84.7711
EBT-GRC 94.951.5 93.877.4 93.046.7 52.221 91.471.2 76.1617 84.2912

C Additional Results

In Table 4, we show that our EBT-GRC model can keep up fairly well with BT-GRC and BT-GRC OS
on logical inference [7] and sentiment classification tasks like SST5 [79], and IMDB [21] while being
much more computationally efficient as demonstrated in the main paper. Additional comparisons
with other models like Transformers and Universal Transformer in logical inference can be found
in prior works Shen et al. [71], Tran et al. [84]. They underperform RNNs and RvNNs in logical
inference.

D Extended Related Works

RvNN History: Recursive Neural Networks (RvNNs) in the more specified sense of building
representations through trees and directed acyclic graphs were proposed in [63, 24]. Socher et al.
[77, 78, 79] extended the use of RvNNs in Natural Language Processing (NLP) by considering
constituency trees and dependency trees. A few works [98, 80, 43, 99] started adapting Long
Shot-term Memory Networks [33] as a cell function for recursive processing. Le and Zuidema
[44], Maillard et al. [51] proposed a chart-based method for simulating bottom-up Recursive Neural
Networks through dynamic programming. Shi et al. [75], Munkhdalai and Yu [55] explored heuristics-
based tree-structured RvNNs.

RvNNs can also be simulated by stack-augmented recurrent neural networks (RNNs) to an extent
(similar to how pushdown automata can model context-free grammar [69, 40]). There are multiple
works on stack-augmented RNNs [8, 93, 50]. Ordered Memory [71] is one of the more modern such
examples. More recently, DuSell and Chiang [17, 18] explored non-deterministic stack augmented
RNNs and Del’etang et al. [14] explored other expressive models. Wu [90] presented a survey of
latent structure models.

Choi et al. [9] proposed a greedy search strategy based on easy-first algorithm [23, 48] for auto-parsing
structures for recursion utilizing STE gumbel softmax for gradient signals. Peng et al. [61] extended
the framework with SPIGOT and Havrylov et al. [31] extended it with reinforcement learning (RL).
Ray Chowdhury and Caragea [66] extended it with beam search and soft top-k. Chowdhury and
Caragea [10], Zhang et al. [95] introduced different forms of soft-recursion.

Top-down Signal: Similar to us, Teng and Zhang [82] explored bidirectional signal propagation
(bottom-up and top-down). However, they sent top-down signal in a sequential manner which
can be expensive - either it can get slow without parallelization or memory-wise expensive with
parallelization of contextualization of nodes in the same height. Our approach in EBT-GAU also
has some kinship with BP-Transformer [92]. BP-Transformer allows message passing between a
fixed subset of parent nodes and terminal nodes created using a heuristics-based balanced binary tree.
Chart-based models can also create sequence contextualized representations [15, 16] but they can be
quite expensive by default [66] needing their own separate techniques [34, 35].

20

Algorithm 1 Efficient Beam Tree Cell (without slicing)
Input: data X = [x1, x2,xn], k (beam size)
BeamX ← [X]
BeamScores← [0]
while True do

if len(BeamX[0]) == 1 then
BeamX ← [beam[0] for beam in BeamX]
break

end if
if len(BeamX[0]) == 2 then

BeamX ← [cell(beam[0], beam[1]) for beam in BeamX]
break

end if
NewBeamX ← []
NewBeamScores← []

for Beam,BeamScore in zip(BeamX,BeamScores) do
Scores← log ◦ softmax([scorer(beam[i], beam[i+ 1]) for parent in Parents])
Indices← topk(Scores, k)

for i in range(K) do
newBeam← deepcopy(Beam)
newBeam[Indices[i]]← cell(Beam[Indices[i]], Beam[Indices[i] + 1])
Delete newBeam[Indices[i] + 1]
NewBeamX.append(newBeam)
newScore← BeamScore+ Scores[indices[i]]
newBeamScores.append(newScore)

end for
end for
Indices← topk(newBeamScores, k)
BeamScores← [newBeamScores[i] for i in Indices]
BeamX ← [newBeamX[i] for i in Indices]

end while
BeamScores← Softmax(BeamScores)
Return sum([score ∗X for score,X in zip(BeanScores,BeamX)])

Transformers + RvNNs: There have been several approaches to incorporating RvNN-like inductive
biases to Transformers. For instance, Universal Transformer [13] introduced weight-sharing and
dynamic halt to Transformers. Csordás et al. [12] extended on universal transformer with geometric
attention for locality bias and gating. Shen et al. [74] built on weight-shared transformers with high
layer depth and group self-attention. Wang et al. [87], Nguyen et al. [58], Shen et al. [73] added
hierarchical structural biases to self-attention. Fei et al. [20] biased pre-trained Transformers to have
constituent information in intermediate representations. Hu et al. [34] used Transformer as binary
recursive cells in chart-based encoders.

E Pseudocode

We present the pseudocode of EBT-RvNN in Algorithm 1. Note that the algorithms are written as
they are for the sake of illustration: in practice, many of the nested loops are made parallel through
batched operations.

21

F Architecture details

F.1 Sentence Encoder Models

For the sentence encoder models the architectural framework we use is the same siamese dual-encoder
setup as Ray Chowdhury and Caragea [66].

F.2 Sentence Interaction Models

GAU-Block: Our specific implementation of a GAU-block [36] is detailed below. Our GAU-
Block can be defined as GAUBlock(x, p,G). The function arguments are of the following forms:
x ∈ IRn×d, p ∈ IRl×d and G ∈ {0, 1}n×l. x accepts the main sequence of vectors that is to serve as
attention queries; p accepts either the sequence of intermediate node representations created from our
RvNN (for parent attention) or it accepts the same input as x (for usual cases); p serves as keys and
values for attention; G accepts either the adjacency matrix in case of parent attention (where Gij = 1
iff pj is a parent of xi else Gij = 0), otherwise, it accepts just the usual attention mask; either way,
G serves as an attention mask.

x′ = LN(xWinit + binit); p′ = LN(pWinit + binit) (8)

u = SiLU(x′Wu + bu); v = SiLU(p′Wv + bv) (9)

q = zq ⊙ SiLU(x′Wz + bz) + zbq; k = zk ⊙ SiLU(p′Wz + bz) + zbk (10)

A = Softmax(
qkT + pos√

2d
,mask = G) (11)

v′ = Av (12)

o = (u⊙ v′)Wo + bo (13)

g = Sigmoid([o;x]Wgate + bgate) (14)

out = g ⊙ o+ (1− g)⊙ x (15)

Here, Winit ∈ IRd×d;Wz ∈ IRd×dh ,Wu,Wv ∈ IRd×2d, binit, bz, bo ∈ IRd; zq, zbq, zk, zbk ∈
IRdh ; bu, bv ∈ IR2d,Wo,Wgate ∈ IR2d×d. [;] represents concatenation.

LN is layer normalization. pos is calculated using the technique of Raffel et al. [64] using relative
tree height distance for parent attention, or relative positional distance for usual cases.

GAU Sequence Interaction Setup: Let GAUStack represent some arbitrary number of compositions
of GAUBlocks (multilayered GAU block). GAUStack has the same function arguments as GAUBlock.
Given two sequences (x1, x2) and their corresponding attention masks (M1,M2) as inputs where
x1 ∈ IRn1×d, x2 ∈ IRn2×d,M1 ∈ {0, 1}n1×n1 ,M1 ∈ {0, 1}n2×n2 , the GAU setup can be expressed
as:

inp = [CLS + seg1;x1 + seg1;SEP ;CLS + seg2, x2 + seg2] (16)

r = GAUStack(x = inp, p = inp,G = f(M1;M2)) (17)

α = Softmax(GELU(rW1 + b1)W2 + b2) (18)

cls′ =
∑
i

αir (19)

logits = GELU(cls′W logits
1 + blogits1)W logits

2 + blogits2 (20)

Here, CLS, SEP, seg1, seg2 ∈ IR1×d are randomly initialized trainable vectors; seg1, seg2 are
segment embeddings. W1 ∈ IRd×d,W2 ∈ IRd×1; b1, b2, b

logits
1 ∈ IRd; blogits2 ∈ IRc;W logits

1 ∈
IRd×d, W logits

2 ∈ IRd×c. c is the number of classes for the task. f is a function that takes the
attention masks as input and concatenates them while adjusting for the special tokens (CLS, SEP).

EGT-GAU Sequence Interaction Setup: EGT-GAU starts from the same input as above. Let us
also assume we have the EGT-GRC(x) module which takes a sequence of vectors x ∈ IRn×d as
the input to recursively process and outputs (cls, p,G) where cls ∈ IR1×d is the root representation,
p ∈ IRl×d is the sequence of non-terminal representations from the tree, and G ∈ {0, 1}n×l is the

22

adjacency matrix for parent attention (i.e., Gij = 1 iff pj is a parent of xi, else Gij = 0). Technically,
tree height information is also extracted for relative position but we do not express that explicitly for
the sake of brevity. With these elements, EGT-GAU can be expressed as below:

cls1, p1, G1 = EGT-GRC(x = x1); cls2, p2, G2 = EGT-GRC(x = x2) (21)

x′
1 = GAUStack1(x = x1, p = p1, G = G1); x′

2 = GAUStack1(x = x2, p = p2, G = G2) (22)

cls′1 = GELU(cls1W
cls
1 + bcls1)W cls

2 + bcls2 ; cls′2 = GELU(cls2W
cls
1 + bcls1)W cls

2 + bcls2 (23)
inp = [cls′1 + seg1;x

′
1 + seg1;SEP ; cls′2 + seg2, x

′
2 + seg2] (24)

r = GAUStack2(x = inp, p = inp,G = f(M1,M2)) (25)

Everything else after eqn. 25 is the same as eqn. 18 to 20. SEP, seg1, seg2 ∈ IR1×d; seg1, seg2 are
segment embeddings as before. W cls

1 ,W cls
2 ∈ IRd×d; bcls1 , bcls2 ∈ IRd.

EBT-GAU Sequence Interaction Setup: This setup is similar to that of EGT-GAU but with a few
changes. EBT-GAU uses EBT-GRC as a module instead of EGT-GRC. EBT-GAU returns outputs of
the form (cls, bp, bG, s) where cls ∈ IR1×d is the beam-score-weighted-averaged root representation,
bp ∈ IRb×l×d are the beams (beam size b) of sequences of non-terminal representations from the
tree, bG ∈ {0, 1}b×n×l are the beams of adjacency matrices for parent attention, and s ∈ IRb are the
softmax-normalized beam scores. Let NGAUStack represent the same function as GAUStack but
formalized for batched processing of multiple beams of sequences. With these elements, EBT-GAU
can be expressed as:

cls1, bp1, bG1, s1 = EBT-GRC(x = x1); cls2, bp2, bG2, s2 = EBT-GRC(x = x2) (26)
bx1 = repeat(x1, b); bx2 = repeat(x2, b) (27)

bx′
1 = NGAUStack1(bx1, bp1, bG1); bx′

2 = NGAUStack1(bx2, bp2, bG2) (28)

x′
1 =

∑
i

s[i] · bx′
1[i]; x′

2 =
∑
i

s[i] · bx′
2[i] (29)

Everything else after eqn. 29 is the same as the equations 23-25 followed by the equations 18 to 20.
repeat(x, b) changes x ∈ IRn×d to bx ∈ IRb×n×d by batching the same x for b times.

G Hyperparameter details

For sentence encoder models, we use the same hyperparameters as [66] (the preprint of the paper
is available in the supplementary in anonymized form) for all the datasets. The only new hyper-
parameter for EBT-GRC is ds which we set as 64; otherwise the hyperparameters are the same
as that of BT-GRC or BT-GRC OS. We discuss the hyperparameters of the sequence interaction
models next. For EBT-GAU/EGT-GAU, we used a two-layered weight-shared GAU-Blocks for
NGAUStack1/GAUStack1 and a three-layered weight-shared GAU-Blocks for GAUStack2 (for pa-
rameter efficiency and regularization). GAU uses a five-layered GAU-Blocks (weights unshared) for
GAUStack so that the parameters are similar to that of EBT-GAU or EGT-GAU. We use a dropout
of 0.1 after the multiplation with Wo in each GAUBlock layer and a head size dh of 128 (similar
to Hua et al. [36]). For relative position, we set k = 5 (k here corresponds the receptive field for
relative attention in Shaw et al. [70]) for normal GAUBlocks and k = 10 for parent attention (since
parent attention is only applied to higher heights, we do not need to initialize weights for negative
relative distances). Other hyperparameters are kept same as the sentence encoder models. The
hyperparameters of MNLI, SNLI, and QQP are shared. Note that all the natural language tasks are
trained with fixed 840B Glove Embeddings [62] as in Ray Chowdhury and Caragea [66]. All models
were trained in a single Nvidia RTX A6000. The code is available in the supplementary.

23

	Introduction
	Existing Framework
	Bottleneck and Solution
	Efficient Beam Tree Recursive Neural Network (EBT-RvNN)

	Beyond Sentence Encoding
	Experiments and Results
	Model Nomenclature
	Efficiency Analysis
	Results

	Conclusion
	Limitations
	Acknowledgments
	Appendix Organization
	Task Details
	Additional Results
	Extended Related Works
	Pseudocode
	Architecture details
	Sentence Encoder Models
	Sentence Interaction Models

	Hyperparameter details

