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Markov model (MM) and Näıve Bayes (NB) on psortNeg (a), plant

(b), and non-plant (c), respectively. The x axis shows the number

of abstractions m, used as “features” in the classification model, on a

logarithmic scale. In this experiment, an abstraction hierarchy Tj is

constructed for each class yj ∈ Y, where Y is the set of all possible

classes (class-specific abstraction hierarchies). . . . . . . . . . . . . . . 60

Figure 3.4 Comparison of AAMMs with MMs for 1% (first row), 10% (second row),

25% (third row), and 100% (fourth row) of labeled data for psortNeg

(left column), plant (center column), and non-plant (right column),

respectively. The x axis shows the number of abstractions m, used as

“features” in the classification model, on a logarithmic scale. In this

experiment, an abstraction hierarchy T is constructed from all training

data, independent of the class variable (class-independent abstraction

hierarchy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 3.5 Comparison of the abstraction augmented Markov model clustering al-

gorithm with the Agglomerative Information Bottleneck on psortNeg

(a), plant (b), and non-plant (c), respectively. . . . . . . . . . . . . . 64

Figure 3.6 Amino acid distributions (on the non-plant data set) induced (a) by

an abstraction, a681, randomly chosen from the cut γ1000 through the

AH T0 (corresponding to class 0), and by two 3-grams, “ELV” and

“ILS”, randomly chosen from a681; (b) by “ELV” and “ILS” and by

their abstractions, a652 and a76, respectively, on the cut γ1000 through

the AH T1 (corresponding to class 1); (c) by “ELV” and “ILS” and by

their abstraction, a2 on the cut γ10 through the AH T0; (d) by “ELV”

and “ILS” and by their abstractions, a5 and a1, respectively, on the cut

γ10 through the AH T1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



x

Figure 4.1 (a) A simple schema corresponding to a bibliographic domain (the fig-

ure is adapted from Getoor et al. (b) A sample instantiation graph

corresponding to the schema in (a). The nodes xi represent Article

instances, i.e., xi ∈ Article, while the edges (xi, xj) represent Cites

instances, i.e., (xi, xj) ∈ Cites. . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.2 Two fragments of abstraction hierarchies (AHs) over the values of at-

tributes Article.Topic and Article.Words corresponding to a biblio-

graphic domain are shown in (a) and (b), respectively. The dash curves

represent different cuts. The set {DM, ML, NLP} represents a cut or

level of abstraction γ3 in (a). {DM, NN, GA, CB, PM, T, RL, NLP}

is a finer cut γ8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.3 A fragment of an AH associated with the attribute methodology. The

term lexical classification is at the same time under-specified (wrt se-

mantic content analysis) and over-specified (wrt methodology) in the

same document. Its cumulative frequency counts are computed from

its own frequency counts, term frequency counts coming from all its

descendants, and a percentage term frequency counts coming from all

its ancestors. The participating nodes are dashed. . . . . . . . . . . . . 82

Figure 4.4 a) Comparison of the ROC curves of the link-based Näıve Bayes classi-
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ABSTRACT

Many applications e.g., biomolecular sequence analysis, image classification, text classifi-

cation, social network analysis, among others require classification of topologically structured

data, i.e. data whose topology reflects intrinsic dependencies between the constituent elements

that make up the data. Hence, there is a growing need for automated methods for building

predictive models from topologically structured data. Machine learning offers a promising ap-

proach to the design of algorithms for training computer programs to efficiently and accurately

classify topologically structured data.

One of the main challenges in learning from topologically structured data has to do with

the representation of the data that is presented to a learner. The representation has to be rich

enough to capture distinctions that are relevant from the standpoint of learning, but not so

rich as to make the task of learning harder due to overfitting.

Against this background, we present an abstraction-based probabilistic approach to learn-

ing accurate and, at the same time, compact predictive models from topologically structured

data with applications to biological sequence and text data. Specifically, we address the prob-

lem of simplifying the data representation used by a learner on sequence classification tasks

in two settings: (i) the setting in which sequences are independent and identically distributed

and (ii) the setting in which sequences are not independent (e.g., as in the case of protein

sequences that are linked by function). Our abstraction-based approach exploits the comple-

mentary strengths of super-structuring (constructing complex features by combining existing

features) and abstraction (grouping similar features to generate more abstract features). Super-

structuring provides a way to increase the predictive accuracy of the learned models by enrich-

ing the data representation (hence, super-structuring increases the complexity of the learned
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models), whereas abstraction helps reduce the number of model parameters by simplifying the

data representation.

Furthermore, we introduce and study abstraction augmented Markov models (AAMMs).

AAMMs are directed acyclic graphical models that capture dependencies between variables

and, at the same time, allow for compact representations of conditional probability tables. More

precisely, AAMMs simplify the data representation used by the standard MMs by grouping

similar entities to generate more abstract entities that are organized in an abstraction hierarchy.

Experimental results on text document classification tasks and protein subcellular local-

ization prediction tasks demonstrate the feasibility of the proposed approach: the results show

that simplifying data representation by combining super-structuring and abstraction makes

it possible to construct predictive models that use substantially smaller number of features

(by one to three orders of magnitude) than those obtained using super-structuring alone

(whose size grows exponentially with the length of direct dependencies). Super-structuring

and abstraction-based models are competitive with and, in some cases, outperform, models

that use only super-structuring.

Collectively, the techniques developed in this thesis advance the current state of the art

in terms of algorithms for building accurate and concise predictive models from topologically

structured data.
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CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

Recent technological advances have resulted in large amounts of data. Examples of such

data include text, images, biological sequences, social networks, etc. One important character-

istic that these types of data share is the structured topology that they present, i.e., a topology

that reflects intrinsic dependencies between the constituent elements of the data. Any discrete

topology can be represented as a graph, where the nodes represent random variables corre-

sponding to the constituent elements, and the edges represent direct dependencies between

neighboring elements, i.e., dependencies between adjacent elements in the data. For example,

in the case of biological sequence data, the neighborhood of an element (a residue) is given by

the elements to its left and to its right in the sequence (called, a “window” around the residue

of interest). In the case of image data, the neighborhood is given by the eight adjacent pixels

in the image.

While the task of classifying a topologically structured object, for example a text document,

can be performed with little or no effort by people, this task remains difficult for computers.

Hence, there is a growing need for automated methods for classifying topologically structured

data. Machine learning [Bishop, 2006], [Duda et al., 2001], [Mitchell, 1997] currently offers one

of the most cost-effective approaches to constructing predictive models in applications where

representative training data are available.

One of the main challenges in learning from topologically structured data has to do with

the choice of features that are used to describe the data presented to a learner, and the level of

detail at which they describe the data. The feature representation can have a major impact on

the difficulty of learning, and the accuracy, complexity, and comprehensibility of the learned
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predictive model [Valiant, 1984]. It has to be rich enough to capture distinctions that are

relevant from the standpoint of learning, but not so rich as to make the task of learning harder

due to overfitting.

This thesis attempts to address this problem. We present an abstraction-based approach

to learning classifiers from topologically structured data with applications to biological se-

quence and text data. Specifically, we address the problem of adapting the data representation

used by a learner on sequence classification tasks. Our approach exploits the comple-

mentary strengths of super-structuring (constructing complex features by combining exist-

ing features) and abstraction (grouping similar features to generate more abstract features).

Super-structuring provides a way to increase the predictive accuracy of the learned models

by enriching the data representation (and hence, it increases the complexity of the learned

models), whereas abstraction helps reduce the number of model parameters by simplifying the

data representation.

1.2 Supervised Sequence Classification

We introduce the framework of supervised sequence classification in two settings: the setting

in which sequences in a data set are independent and identically distributed, and the setting in

which sequences in a data set are highly inter-connected.

1.2.1 Independent and Identically Distributed Sequence Data

The supervised learning problem [Duda et al., 2001] can be formally defined as follows:

Given a training set D of i.i.d. ( i.e., independent and identically distributed) labeled instances

(xi, yi)i=1,···,n, where xi ∈ Rd and yi ∈ Y (Y is the discrete set of all possible class labels), and

a hypothesis space H (i.e., all functions h, h : Rd → Y), the task of a learning algorithm L

reduces to searching the hypothesis space H for a hypothesis (or classifier) h that optimizes a

performance criterion P , e.g., maximizes accuracy on the training set D.

Supervised sequence classification is an example of supervised learning problem, where xi

represents an input sequence over a finite alphabet (or vocabulary) X , xi ∈ X ∗. X ∗ is the
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space of all input sequences over X (e.g., protein sequences) and Y is the discrete space of all

possible outputs for sequences in X ∗ (e.g., protein functions). A classifier h ∈ H is a function

from the input space X ∗ of sequences to the output space Y, h : X ∗ → Y.

Sequence data contain intrinsic dependencies between their constituent elements. For ex-

ample, in English, sequences of words form sentences under the grammar constraints rather

than random sequences of words. In biology, sequences of nucleic or amino acids form DNA or

protein sequences rather than random sequences of letters. Consequently, an input sequence

x = (x0, · · · , xt−1) ∈ X ∗ has a chain-like structure that can be represented by a directed

linear-chain graph where the nodes Xi in the graph are random variables corresponding to the

sequence elements xi, i = 0, · · · , t − 1, and the edges represent direct dependencies between

neighboring elements.

The input sequence x is refered to as structured input or structured object [Taskar et al.,

2005]. The elements xi in the input sequence are atomic elements, e.g., nucleic or amino acids,

words.

Examples of applications that involve sequence classification include: text classification

(assigning a topic to each document in a corpus) [McCallum and Nigam, 1998], [Kang et al.,

2005]; protein function prediction (classifying a protein in functional classes) [Andorf et al.,

2004], [Borgwardt et al., 2005], [Noble and Ben-Hur, 2007].

The sequence classification problem is strongly related to another problem refered to as

the structured prediction problem [Taskar, 2004]. In the structured prediction problem, a

labeled instance is a pair of input/output sequences (x,y), x = (x0, x1, · · · , xt−1) and y =

(y0, y1, · · · , yt−1), where yj in the output sequence is the label for xj in the input sequence,

j = 0, · · · , t − 1. The labels yj in the output sequence take values in a discrete set Y. The

output sequence y ∈ Y∗ is refered to as structured output [Taskar et al., 2005].

Examples of applications that involve labeling sequence data include: part-of-speech tag-

ging (labeling each word in a sentence with its part-of-speech, e.g., noun, verb) [Lafferty et

al., 2001]; named-entity recognition (identifying proper names in text) [Sutton and McCal-

lum, 2006]; RNA-protein interface prediction (identifying RNA-binding residues in a protein
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sequence) [Terribilini et al., 2006], [Caragea et al., 2009e]; protein secondary structure pre-

diction (classifying each residue in a protein sequence in one of the three classes: helix (H),

strand (E) or coil (C)) [Qian and Sejnowski, 1988]; post-translational modification site pre-

diction (identifying residues in a protein sequence that undergo different post-translational

modifications) [Blom et al., 2004], [Caragea et al., 2007b].

In many sequence classification tasks, the choice of appropriate features used to encode

sequences is crucial for the performance of the learning algorithm. Hence, an important chal-

lenge in sequence classification is to capture relevant “structures” in the data (i.e., identify

“features”) that are discriminative with respect to the target variable.

Feature construction methods that build complex features by combining existing features

[Honavar and Uhr, 1989a], [Honavar, 1992], [Uhr and Vossler, 1961], [Uhr, 1972], [Srinivasan

and King, 1999], [Rendell and Seshu, 2007], [Honavar and Uhr, 1989b], [Pazzani, 1996], [Pira-

muthu and Sikora, 2008], [Silvescu and Honavar, 2001], [Silvescu et al., 2004], [Pietra et al.,

1997], [Jonyer et al., 2004] aim to increase the richness of the representation (see [Liu and

Motoda, 1998a] for a survey).

One common approach to feature construction on sequence data is to consider contiguous

subsequences of a certain length k (i.e., k-grams) and use them to encode sequences in D (“bag

of k-grams” representation) [Andorf et al., 2004], [Wang and McCallum, 2005]. We refer to this

approach of constructing complex features by combining existing features as super-structuring.

Super-structuring corresponds to considering higher order moments [Casella and Berger, 2002],

[Mardia et al., 1979] in the particular case of multivariate statistics.

While super-structuring provides a way to improve predictive accuracy, the number of pa-

rameters of the learned models increases exponentially with the length k, resulting in complex

models that may not generalize well, that is, models that may work well on training data, but

poorly on test data, due to overfitting (e.g., memorize training data and give random outputs

on other data).

Abstraction, on the other hand, helps simplify the data representation by grouping “similar”

features to generate more abstract features. Thus, abstraction reduces the model input size and
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b r a c e

Figure 1.1: An example from handwriting recognition.

can potentially improve the statistical estimates of complex models by reducing the number of

parameters that need to be estimated from data.

These two operations, super-structuring and abstraction, are detailed in what follows.

Super-structuring As already mentioned, sequence data contain intrinsic dependencies

between their constituent elements. Given a sequence x = (x0, · · · , xt−1) over X , x ∈ X ∗, the

dependencies between neighboring elements can be modeled using super-structuring in order

to identify “relevant” structures (i.e., complex features) of x that are discriminative for the

task at hand. Super-structuring is the operation of generating all the contiguous (potentially

overlapping) sub-sequences of a certain length k from x, (xi−k, · · · , xi−1) for all i = k, · · · , t,

k > 1, called “super-structures”, a.k.a. k-grams (see e.g., [Charniak, 1993] for more details).

Super-structuring aims to increase the richness of the representation [Liu and Motoda, 1998a].

To see how super-structuring captures the dependencies between neighboring elements, con-

sider the following example from bioinformatics: in N-linked glycosylation, the oligosaccharide

chain (a.k.a. glycan) is attached to the amide nitrogen of asparagine (Asp, N ), which is part

of the characteristic sequence motifs N-X-T (very often), N-X-S (often) or N-X-C (very rare),

where X can be any residue except proline [Gavel and von Heijne, 1990]. Super-structuring

identifies these sequence motifs (i.e., super-structures) in order to determine if an Asp residue

serves as an acceptor site for glycan attachment. Seeing the N site of the super-structure

N-{P}-[T |S|C] in isolation makes it difficult to determine if N is acceptor site or not ({P}

means any residue except proline, [T |S|C] means either T, S, or C ).

Consider now another example from handwriting recognition where the task is to identify

handwritten characters (as shown in Figure 1.1 adapted from [Taskar, 2004]). Correctly pre-

dicting the fourth letter as the character “c” is very difficult if we see it in isolation from the
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Supervised Unsupervised Semi-supervised

Machine learning algorithms

Support Vector Machines Decision Tree Learning Naive Bayes

Figure 1.2: A fragment of an ISA hierarchy over the terms in a corpus that consists of Machine
Learning research articles.

other letters (it appears to be similar to the handwritten letter “r”). However, predicting the

character “c” becomes much easier if we condition on the super-structure “bra”.

In text classification, if “George Bush” is encountered in a text document, then most likely

that the topic of the document is politics. However, seeing “George” and “Bush” in isolation,

it would be more complicated to predict the topic of the document.

Hence, super-structuring provides a way to improve predictive accuracy, but the number

of parameters of the resulting models increases exponentially with the length k of super-

structures.

Abstraction Many real world data, and in particular sequence data, can be organized in

abstraction hierarchies that capture the content of the data and their relations. Consider, for

example, the bibliographic domain that consists of Machine Learning research articles. The

terms (i.e., words) in the corpus can be aranged in an ISA hierarchy, where the more general

terms are situated at a smaller depth of the hierarchy than the more specific terms. Figure

1.2 shows a fragment of an ISA hierarchy over the terms in the corpus: Machine learning

algorithms term is more general than Supervised, Unsupervised, and Semi-supervised terms;

Support Vector Machines, Decision Tree Learning, and Naive Bayes are more specific than

Supervised.

Abstraction is the operation of grouping “similar”, existing entities (e.g., features) to gen-

erate more abstract entities. Given a set S of N features that are used to describe a set of

sequences (xi)i=1,···,n over X , xi ∈ X ∗, abstraction assumes that all N features contain informa-
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tion that is useful for making accurate predictions. Instead of removing redundant/irrelevant

features, abstraction partitions the set S of features into m (m ≤ N) non-overlapping subsets

A = {a1 : S1, · · · , am : Sm}, where ai denotes the i-th abstraction and Si denotes the subset of

features that are grouped together into the i-th abstraction based on some similarity measure.

Note that S1 ∪ · · · ∪ Sm = S and ∀1 ≤ i, j ≤ m, Si ∩ Sj = ∅.

Our algorithm for constructing m abstractions (i.e., for finding an m-partition of S) is a

greedy agglomerative procedure. It starts by initializing the set of abstractions A such that

each abstraction ai corresponds to a feature in S. Next, the algorithm recursively groups pairs

of abstractions until m abstractions are obtained. More precisely, N −m times the algorithm

searches for the most “similar” two abstractions aimin and ajmin , adds a new abstraction au to

the set of abstractions A by taking the union of their features, and removes aimin and ajmin

from A. Finally, after N − m such steps the algorithm returns m abstractions as the final

result.

Note that we can construct the entire abstraction hierarchy over the set S of features which

is returned by our algorithm after N − 1 steps and store the resulting abstraction hierarchy T

in a last-in-first-out (LIFO) stack. For a given choice of the size m of an m-partition through

T , we can easily extract the set of abstractions A, by discarding m− 1 elements from the top

of the stack.

Definition 1 (Abstraction Hierarchy) An abstraction hierarchy T associated with a

set of features S is a rooted tree such that: (1) The root of T corresponds to the abstraction

that consists of all features in S; (2) The tree T has exactly N leaves corresponding to the

N features in S; (3) The internal nodes of T correspond to abstractions over features (i.e.,

subsets of “similar” features); (4) The edges of T correspond to partial order relationships ≺

(e.g., ISA relationships) between their corresponding nodes.

Figure 2.1 shows an example of an abstraction hierarchy T produced by our algorithm on

a set S = {s1, · · · , s9} of 2-grams over an alphabet of size 3.

Definition 2 (m-Cut) An m-cut γm (or level of abstraction) through the abstraction

hierarchy T is a subset of m nodes of T satisfying the following properties: (1) For any leaf si,
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a1(s1) a2(s2) a3(s3) a4(s4) a5(s5) a6(s6) a7(s7) a8(s8) a9(s9)

a10
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Figure 1.3: An abstraction hierarchy T on a set S = {s1, · · · , s9} of 2-grams over an alphabet
of size 3. The abstractions a1 to a9 correspond to the 2-grams s1 to s9, respectively. The
subset of nodes {a15, a6, a14} represents a 3-cut γ3 through T .

either si ∈ γm or si is a descendant of a node aj ∈ γm; and (2) for any two nodes aj , al ∈ γm,

aj is neither a descendant nor an ancestor of al. The set of abstractions A at any given m-cut

γm forms a partition of the set S of features.

In Figure 2.1, the subset of nodes {a15, a6, a14} represents a 3-cut γ3 through T .

Our criterion for establishing similarity between features and, thus, deriving useful abstrac-

tions is based on the following observation: similar features occur within similar contexts. In

our case, we define the context of a feature as the conditional probability of a target (i.e., “rel-

evance) variable given the feature, where the target variable can be either the class variable or

the element following the feature in the sequence. Since an abstraction is a set of features, the

context of an abstraction is obtained by aggregating the contexts of its elements. We identify

the most “similar” abstractions as those that have the smallest Jensen-Shannon divergence be-

tween their contexts. JS divergence provides a natural way to compute the distance between

two probability distributions that represent contexts of two abstractions.

Abstraction aims to control the level of detail in the data. By simplifying the data repre-

sentation, abstraction helps maintain comprehensible, and at the same time, accurate models

(i.e., can potentially provide better statistical estimates of model parameters).
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Figure 1.4: (a) A simple schema corresponding to a bibliographic domain (the figure is adapted
from Getoor et al., 2002). (b) A sample instantiation graph corresponding to the schema in
(a). The nodes xi represent Article instances, i.e., xi ∈ Article, while the edges (xi, xj)
represent Cites instances, i.e., (xi, xj) ∈ Cites.

1.2.2 Relational Sequence Data

In a more general setting, sequence data can be highly inter-connected. For example,

research articles cite related research articles; proteins interact with other proteins, DNAs or

RNAs in order to properly perform their functions. We refer to such data as relational or

network data.

A schema S of a relational data source describes a set of concepts X = {X1, · · · , Xt}, and

the relations between them, R(Xi, Xj). An instance of a concept Xi is a structured object,

e.g. a string, a document, or an image. These instances can be described by features such as

a set of attributes, a histogram of words, or features from spatially contiguous elements of an

image. An attribute A of a concept Xi, denoted by Xi.A takes values in a set V(Xi.A). A

relation R(Xi, Xj) corresponds to a set defined as xi.R = {xj ∈ Xj s.t. xj is related to xi

through R}, where xi is an instance of the concept Xi. A tuple (xi, xj) is an instance of the

relation R. A data set D that specifies a set of instances and the relations between them is

an instantiation I(S) of a schema S. It can be represented as an instantiation graph in which

nodes denote instances and edges denote relations between instances [Getoor et al., 2002].

Figure 1.4a shows a simple schema of a bibliographic domain which consists of the Article
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concept and the Cites relation. Note that this schema consists of only one concept and the

relation is to itself. Figure 4.1b shows a sample instantiation graph corresponding to the

relational schema in Figure 1.4a. The nodes xi in the graph represent research articles (i.e.,

Article instances, xi ∈ Article) and the edges (xi, xj) represent the “citation” relation

between articles (i.e., (xi, xj) ∈ Cites). Note that each instance can have a variable number

of related instances and therefore, a variable number of features [Neville et al., 2003].

In the relational learning framework [Getoor et al., 2007], it is common to encode the current

object (i.e., sequences in our case) using relevant features of the related objects in the network

in addition to its own features [Lu and Getoor, 2003]. Transformations of the original problem

into one that can be handled by a traditional machine learning method involve operations,

e.g., aggregation, to handle multisets of feature values. However, such transformations result

in loss of information that can not be recovered [Neville et al., 2003], [Perlich and Provost,

2003].

1.3 Semi-supervised Sequence Classification

Semi-supervised learning lies at the intersection of unsupervised and supervised learning

[Chapelle et al., 2006].

Unsupervised learning problem The unsupervised learning problem [Duda et al.,

2001] can be formally defined as follows: Given a dataset D of unlabeled instances (xi)i=1,···,m,

xi ∈ Rd, and a similarity measure (a distance function) defined on pairs of instances, the

learning algorithm L partitions the data into dissimilar clusters of similar instances. The

dissimilarity between different clusters and the similarity within each cluster are measured by

the predefined distance function. A new instance xtest is assigned to one of the closest clusters.

Hierarchical clustering is an example of unsupervised learning problem, in which clusters

contain subclusters that can further contain other subsubclusters, being most often represented

as a tree-like structure, e.g. kingdom biological hierarchy. Hierarchical clustering attempts to

uncover the hidden structure that exists in the unlabeled data.
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Semi-supervised learning problem Unlike supervised and unsupervised learning prob-

lems, semi-supervised learning problem [Duda et al., 2001] uses both labeled and unlabeled

instances to construct a classifier h from the input space to the output space. As mentioned

before, experimental determination of labeled instances is an expensive and laborious process,

while the unlabeled data are readily available and often provide valuable information. Thus,

given a relatively small amount of labeled data in many domains, and a vast amount of unla-

beled data, the semi-supervised learning has recently become an attractive approach to various

classification tasks. Formally, the semi-supervised learning problem can be defined as follows:

Given a dataset D = (Dl,Du) of labeled and unlabeled instances, Dl = (xi, yi)i=1,···,n, xi ∈ Rd

and yi ∈ Y, and Du = (xi)i=n+1,···,n+m, respectively, a hypothesis space H, and a performance

criterion P , a learning algorithm L outputs a classifier h ∈ H that optimizes P . If m = 0, the

problem reduces to the supervised learning; if n = 0, it reduces to the unsupervised learning.

The input xi can represent sequences over the finite alphabet (or vocabulary) X , xi ∈ X ∗.

Incorporating evolutionary information through the means of Position Specific Scoring

Matrices (PSSMs) when building a predictive model represents an example of semi-supervised

learning problem. The PSSMs are obtained by aligning a target labeled sequence with unla-

beled sequences from large databases.

We have studied the use of abstraction hierarchies for learning semi-supervised sequence

classifiers from scarcely labeled data.

Our approach to learning abstraction hierarchies over the values of the parents of each

node in a sequence is based on a hierarchical agglomerative clustering algorithm. The values

of the parents of a node are grouped together based on the similarity between the conditional

distributions of the node given its parents, independent of the class variable. This approach is

especially appealing as it allows to incorporate information available in the unlabelled sequence

data in order to improve the performance of classifiers trained in a semi-supervised setting.

It is worth noting the difference between semi-supervised and transductive learning.

Transductive learning Transductive learning is a special case of semi-supervised learn-

ing. Given a set of labeled instances Dl = (xi, yi)i=1,···,n, xi ∈ Rd and yi ∈ Y, and a set of
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unlabeled instances Du = (xi)i=n+1,···,n+m, a learning algorithm L assigns a label to the unla-

beled instances (rather than learning a function for classifying unseen test examples). Thus,

transductive learning is considered to be simpler than semi-supervised learning.

Hence, our abstraction-based approach can be applied not only in the special case of trans-

ductive learning, but also in the more general setting of semi-supervised learning.

1.4 Related Approaches

1.4.1 Generating compact data representations

Feature selection Feature selection is a traditional approach to reducing a feature set

S of size Nto a desired number of features m [Liu and Motoda, 1998a], [Guyon and Elisseeff,

2003]. Feature selection selects a subset F of features from the entire set S, F ⊆ S, |F| = m

and m ≤ N , based on some chosen criterion. The features are ranked according to a scoring

function Score and the top m best ranked features are selected. Mutual information [Cover

and Thomas, 1991] between the probability of the class variable and the probability of a feature

which measures how dependent the two variables are can be used as the scoring function Score.

Mutual information between random variable X and Y is given by:

I(X,Y ) = KL(p(X,Y )||p(X)p(Y )) =
∑

x∈X,y∈Y

p(x, y) log
(
p(x, y)
p(x)p(y)

)

Agglomerative Information Bottleneck Agglomerative Information Bottleneck (AIB)

[Slonim and Tishby, 1999] is a data organization method where the goal is to find a compression

of a variable X while preserving as much information as possible about a target (or relevance)

variable Y . This has a variational formulation which yields exact solutions. In AIB, data is

organized in an AH based on the similarity of the class conditional distributions. Specifically,

AIB has been applied to cluster words in a given text document data set based on the similarity

of the conditional distributions of the document topics.

The algorithm starts with one word per cluster and recursively merges pairs of sets of

words, in a greedy fashion, to generate an AH. A merge that minimizes the loss in the mutual

information between the intermediate clustering and the class variable is performed at each
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step of the algorithm. The AIB method captures the information that one variable (e.g., a

word) contains about another variable (e.g., the topic of a document).

Sequential Information Bottleneck Sequential Information Bottleneck (sIB) [Slonim

et al., 2002] is a clustering algorithm that provides improvement over AIB both in the quality

of the clusters found and in time and space complexity. However, one limitation of sIB is that

the tree structure returned by AIB is lost. The number of clusters K is given as input to the

sIB algorithm, and, in general, the value of K is not known in advance. The sIB is similar to

the K-means algorithm [Mitchell, 1997]. The main difference between them is that in sIB the

updates are performed sequentially, while in K-means, the updates are performed in parallel.

The sIB algorithm starts with a random partition of a set of objects X into K clusters,

{c1, · · · , cK}. At each step, an object x in X is drawn from its current cluster and assigned

to a newly constructed cluster, cK+1. The cluster cK+1 is merged with cj ∈ {c1, · · · , cK} such

that the cost of merging cK+1 and cj is minimized. The process is repeated until there are no

more updates in the data.

Dimensionality reduction Dimensionality reduction is the problem of representing

high dimensional data in a lower dimensional space. It is widely used both in unsupervised

learning for visualization, compression, etc., and in supervised learning to reduce the input

size presented to a learner. This problem of “embedding” high dimensional objects into a

lower dimensional space has received much attention in the literature [Globerson et al., 2007],

[Globerson and Tishby, 2003], [Tenenbaum et al., 2000], [Roweis and Saul, 2000], [Hinton and

Roweis, 2002].

Spectral clustering methods fall within the category of graph partitioning algorithms that

partition the data into disjoint clusters by exploiting the eigenstructure of a similarity matrix.

In general, to find an optimal graph partitioning is NP complete. Shi and Malik [Shi and Malik,

2000] proposed an approximate spectral clustering algorithm that optimizes the normalized cut

(NCut) objective function. It is a divisive, hierarchical clustering algorithm that recursively

bi-partitions the graph until some criterion is reached, producing a tree structure.
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In this context, it is also worth noting that kernel methods (e.g., kernel PCA) project

data into higher (possibly infinite) dimensional feature spaces and then project it back to the

original space. Kernel PCA [Mika et al., 1999] is a generalization of linear principal component

analysis (PCA).

1.4.2 Sequence Models

Markov Models In fixed-order Markov models (MMs) [Durbin et al., 2004], [Duda et al.,

2001], the elements of a sequence satisfy the Markov property : Each element in the sequence

directly depends on a fixed number of previous elements, called parents, and is independent of

the rest of the elements in the sequence.

Let x = (x0, x1, · · · , xn−1) be an input sequence over an alphabet X , x ∈ X ∗. An MM

represents the joint probability distribution of x under the Markov assumption. The graphical

representation of an MM is a directed linear-chain graph where the nodes Xi represent random

variables corresponding to the sequence elements xi, i = 0, · · · , n− 1, and the edges represent

direct dependencies between neighboring elements. For a kth order MM, the conditional inde-

pendencies are:

Xi ⊥⊥ {X0, · · · , Xi−k−1} | {Xi−k, · · · , Xi−1} for i = k, · · · , n− 1

That is, Xi is conditionally independent of X0, · · · , Xi−k−1 given Xi−k, · · · , Xi−1 for any i =

k, · · · , n − 1. Xi−k, · · · , Xi−1 are called the parents of Xi. The joint probability distribution

p(X), where X denotes the set of nodes, can be factorized as follows:

p(X) = p(X0, · · · , Xk−1)
n−1∏
i=k

p(Xi|Xi−k, · · · , Xi−1)

The directed graph for a first-order Markov model on the nodes of the input sequence x,

{X0, X1, · · · , Xn−1}, is shown in Figure 1.5a.

Interpolated Markov Models Interpolated MMs (IMMs) [Jelinek and Mercer, 1980]

combine several fixed-order MMs that capture important sequence patterns that would other-

wise be ignored by a single fixed-order MM. IMMs are potentially more powerful than MMs

and can produce more accurate results [Salzberg et al., 1999].
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Figure 1.5: (a) First-Order Markov Model; (b) First-Order Hidden Markov Model

Hidden Markov Models Hidden Markov Models (HMMs) [Duda et al., 2001], [Durbin

et al., 2004], [Rabiner, 1989] are a class of well-studied generative graphical models that are used

for modeling sequence data. HMMs augment the graphical structure of MMs with unobservable

(or hidden) variables and, thus are more expressive than MMs. The hidden variables control

the dependency of the current element in an observable sequence on the previous elements.

More specifically, an HMM consists of a set of states Y, a set of transition probabilities

between states, and an alphabet X of emission symbols. An HMM generates a sequence

x = (x0, x1, · · · , xn−1) by transitioning between states and emitting a symbol in each state. In

an HMM, x is the observable sequence, while the sequence of states y = (y0, y1, · · · , yn−1) that

have produced x is hidden.

The directed graph for a first-order HMM on the pair of sequences (x,y) is shown in Figure

1.5b. Its joint probability distribution p(X,Y), can be factorized as follows:

p(X,Y) = p(Y0)
n−2∏
i=0

p(Yi+1|Yi)
n−1∏
i=0

p(Xi|Yi)

Learning HMMs reduces to estimating the model parameters, i.e., transition probabilities,

p(Yi+1|Yi), and emission probabilities p(Xi|Yi), from the training data. This involves an EM-

like algorithm, called the Forward-Backward algorithm.

1.5 Contributions

In this thesis, we address the problem of learning abstraction-based models in order to

accurately classify biological sequence and text data. Abstraction helps reduce the model
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input size and, at the same time, can potentially improve the statistical estimates of complex

models by reducing the number of parameters that need to be estimated from data (hence

reducing the risk of overfitting). However, one limitation of our abstraction-based approach is

that, while it provides simpler models, the simplicity is achieved by losing some information

through abstraction. The challenge is to trade off the complexity of the model against its

predictive accuracy.

In what follows, we briefly discuss the context of our work and point out the contributions

of this thesis. We start with the setting in which the sequences in a data set are independent

and identically distributed.

1.5.1 Independent and identically distributed sequence data

Silvescu [Silvescu, 2008] has introduced an approach to exploiting the complementary

strengths of super-structuring and abstraction or super-structuring and feature selection to

adapt the data representation used by a learner on sequence data. We refer to the approach

of combining super-structuring and abstraction by SS-A. In SS-A, Näıve Bayes classifiers have

been trained to predict protein subcellular localization. The constructed abstraction hierarchies

group “similar” k-grams based on the class conditional distributions that the k-grams induce.

This work is similar in spirit to the agglomerative information bottleneck (AIB) method of

Slonim and Tishby [Slonim and Tishby, 1999]. However, AIB requires an interative process to

estimate parameters for the bottleneck variables, whereas SS-A requires only a simple weighted

aggregation of the existing parameters. Although AIB has been applied to cluster words in a

given text data set, it can also be used to cluster k-grams.

• We have extended SS-A to text classification (Chapter 2). The results of our

experiments show that:

– The performance of classifiers trained using super-structuring representation was

worse than that of classifiers trained using a “bag of words” feature representation

which is consistent with the work of Dumais et al. [Dumais et al., 1998].
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– We compared Näıve Bayes trained using an abstraction-based representation with

Näıve Bayes trained using a “bag of words” representation, and with Näıve Bayes

trained using feature selection-based representation. Consistent with the results

obtained using SS-A, the abstraction-based representations result in better per-

forming models than those based on feature selection, and in similar performing

models compared to the “bag of words” representations.

– Although feature selection and abstraction are seemingly antagonistic, we found that

better value can be derived by using them sequentially whereas feature selection is

used in order to remove irrelevant features followed by abstraction that can further

reduce feature redundancy.

• We have explored Support Vector Machine (SVM) classifiers in the SS-A

framework on protein subcellular localization prediction tasks (Chapter 2).

Specifically, we have compared SVMs using the combination of super-structuring and ab-

straction as the feature representation with their counterparts trained using a unigram

representation of sequences, super-structuring representation, and super-structuring fol-

lowed by feature selection representation. The results show that:

– The combination of super-structuring and abstraction results in better performing

models than that of super-structuring and feature selection.

– Unlike Näıve Bayes classifiers, SVMs trained on super-structuring followed by ab-

straction representation substantially outperform those trained on super-structuring

representation. Hence, abstraction can be seen as a regularizer for SVM classifiers

which are sensitive to overfitting.

Markov models are effective sequence models [Durbin et al., 2004] that capture dependencies

between neighboring elements in a sequence and thus provide more accurate models of the data.

While dependencies between neighboring elements provide a way to improve the predictive

accuracy, the number of model parameters increases exponentially with the range of direct

dependencies, thereby increasing the risk of overfitting when the data set is limited in size.
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Hence, learning Markov models accurately can be difficult in practice (e.g., for 2nd and 3rdorder

Markov models, there are 202+1 = 8, 000 and 203+1 = 160, 000 parameters, respectively, that

need to be estimated from data).

• We have introduced and studied Abstraction Augmented Markov Models

(AAMMs) (Chapter 3), which are coherent directed acyclic graphical models that

simplify the data representation used by standard Markov models (the directed graphs

for a 2nd order MM and for a 2nd order AAMM are shown in Figures 1.6a and 1.6b):

– We have shown how to represent and learn AAMMs. Specifically, the

graphical structure of AAMMs extends that of the standard MMs by constructing

new variables that represent abstractions over the values of the parents of each node

(i.e., k-grams). Learning AAMMs from sequence data involves two steps: learning

abstraction hierarchies and learning model parameters. We have learned AAMMs

on protein subcellular localization prediction tasks.

– The quality of our classifiers that use as input abstract features highly depends on the

quality of the abstraction hierarchies, just as the quality of a classical classifier de-

pends on the quality of the data (i.e., noisy data may result in very poor classifiers).

Hence, we have designed a clustering algorithm that produces suitable ab-

straction hierarchies for AAMMs, and hence, well performing AAMMs. Our

clustering algorithm is an extension of the Agglomerative Information Bottleneck

(AIB). The primary difference between our AAMM clustering algorithm and AIB

is in the similarity used to cluster k-grams together, i.e., in AAMM, the k-grams

are clustered based on the similarity between the conditional distributions of the

next letter in the sequence rather than based on the class conditional distributions

induced by the k-grams as in AIB. More precisely, the AIB method captures the

information that one variable (e.g., a word) contains about another variable (e.g.,

the topic of a document), while our method captures the information that a k-gram

contains about the next element in a sequence, independent of the class.
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Figure 1.6: (a) 2nd Order Markov Model; (b) 2nd Order Abstraction Augmented Markov Model

– With the explosion in the amount of sequence data in recent years, sequence annota-

tions do not keep pace with the available sequence data. We have shown how to

produce more accurate models compared to the standard MMs in a semi-

supervised setting (i..e., in a setting where there are relatively small amounts of

labeled data, but rather plentiful unlabeled data that would be very expensive to be

labeled). Our idea was to incorporate information available in the unlabeled data

into the constructed abstraction hierarchy, information that is ignored by MMs.

– An AAMM can be simulated by an appropriately constructed Hidden Markov Model

(HMM) [Durbin et al., 2004] where the number of hidden states is equal to the

number of abstractions (i.e., clusters) in the AAMM. However, as a state corresponds

to a cluster (i.e., a set of k-grams) over the observable variables, the state is not

really “hidden”. Although AAMMs are less expressive models than HMMs, we

have shown that they are easier to learn models compared to HMMs.

• The results of our experiments show that:

– Abstraction-based Markov models substantially outperform the standard Markov

models in both supervised and semi-supervised settings.

– The AAMM clustering algorithm helps produce more suited abstraction hierarchies

than agglomerative information bottleneck for abstraction-based Markov models.
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1.5.2 Relational sequence data

Next, we discuss the context of our work and point out the contributions of this thesis in

the setting where the data are highly inter-connected (i.e., relational or network data).

Lu and Getoor [Lu and Getoor, 2003], Neville et al. [Neville et al., 2003] and Taskar et

al. [Taskar et al., 2002] (among others) have learned classifiers from relational data. Zhang

et al. [Zhang et al., 2006] (among others) have proposed an approach to learning classifiers

from partially specified data over nominal attributes. McCallum et al. [McCallum et al., 1998]

(among others) have used shrinkage in a hierarchy of classes to improve classification.

• We have described an Expectation-Maximization algorithm for learning link-

based Näıve Bayes classifiers from relational data that are organized in ab-

straction hierarchies associated with both the input (i.e., sequence data) and

the output (i.e., class variable) (Chapter 4).

– We have evaluated our classifiers on bibliographic data that is a special case of

relational data, which consists of Article concept and Cites relation.

• We have provided a solution to the problem of dealing with partially specified

data (Chapter 4) that inevitably results from choosing a level of abstraction (when a

multinomial model is assumed as the underlying generative model for text data). Our

solution is based on a statistical approach, called shrinkage.

• Results of experiments show that:

– more abstract levels can yield better performing classifiers

– incorporating partially specified data using shrinkage yields better estimates of

model parameters

Kargupta and Chan [Kargupta and Chan, 2000] and Caragea et al. [Caragea et al., 2005]

(among others) have learned classifiers from semantically heterogeneous distributed data that

are annotated with relevant meta data.
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• We have described a strategy for learning link-based Näıve Bayes classifiers

from a collection of semantically heterogeneous, distributed, relational data

sources that are annotated with relevant meta data (Chapter 4):

– Our strategy exploits mappings between a user ontology and data source ontologies

to gather the necessary statistics needed for learning classifiers.

– The classifiers are learned without centralized access to data and are provably exact

with respect to their centralized counterparts, i.e. the hypothesis produced in the

distributed setting is identical to that produced in the centralized setting when there

is no overlap between the distributed data sources (the data sources are integrated

according to a user view, via mappings).

1.6 Thesis Outline

In what follows, we summarize the rest of the chapters in the thesis. Each chapter is self-

contained and corresponds to a paper. Some of the work presented in this thesis has been

already published in conference proceedings, is under review, or is in preparation (see below).

Chapter 2 presents our approach to adapting the data representation used by a learner

on sequence classification tasks. The approach that exploits the complementary strengths of

super-structuring (constructing complex features by combining existing features) and feature

abstraction (grouping of similar features to generate more abstract features), yields smaller

and, at the same time, accurate models. Super-structuring provides a way to increase the

predictive accuracy of the learned models by enriching the data representation (and hence, it

increases the complexity of the learned models) whereas feature abstraction helps reduce the

number of model parameters by simplifying the data representation.

Chapter 3 presents abstraction augmented Markov models (AAMMs), which are directed

acyclic graphical models that simplify the data representation used by the standard Markov

models (MMs). AAMMs group similar entities to generate more abstract entities that are

organized in an abstraction hierarchy. Abstraction reduces the Markov model size and improves



22

the statistical estimates of complex models by reducing the number of parameters that need

to be estimated from data.

Chapter 4 addresses the problem of learning classifiers from structured relational data

that are annotated with relevant meta data. Specifically, in Chapter 4, we show how to

learn classifiers at different levels of abstraction in a relational setting, where the structured

relational data are organized in an abstraction hierarchy that describes the semantics of the

content of the data. We show how to cope with some of the challenges presented by partial

specification in the case of structured data, that unavoidably results from choosing a particular

level of abstraction. Our solution to partial specification is based on a statistical method, called

shrinkage.

Furthermore, in this chapter, we address the problem of learning predictive models from

multiple large, distributed, autonomous, and hence almost invariably semantically disparate,

relational data sources from a user’s point of view. We show under fairly general assumptions,

how to exploit data sources annotated with relevant meta data in building predictive models

from a collection of distributed relational data sources, without the need for a centralized data

warehouse, while offering strong guarantees of exactness of the learned classifiers relative to

their centralized relational learning counterparts.

Chapter 5 concludes the thesis, and provides a summary of contributions and directions

for further research.

Published work

• Chapter 2 on combining super-structuring and abstraction on sequence classification

has been published in ICDM 2009 conference proceedings with experiments on protein

subcellular localization prediction using Näıve Bayes and SVM classifiers [Silvescu et

al., 2009]. A journal version of the work in this chapter is under preparation and will

contain additional experiments on data set size variation, experiments using SVM on

text classification, statistical significance tests, comparisons of abstraction-based methods

with more sophisticated feature selection methods, etc.
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• Chapter 3 on abstraction augmented Markov models is currently under review at SDM

2010 (joint work with Adrian Silvescu, Doina Caragea and Vasant Honavar) [Caragea et

al., 2009c]. However, preliminary results obtained using AAMMs on protein subcellular

localization prediction has been accepted for presentation by Machine Learning for Com-

putational Biology NIPS Workshop 2009 [Caragea et al., 2009d]. A journal version

of the work in this chapter is also under preparation and will contain experiments using

SVM on biological sequence classification tasks, comparisons of AAMMs with HMMs

and IMMs, etc.

• Chapter 4 on learning link-based classifiers from ontology-extended textual data has

been published in ICTAI 2009 conference proceedings with experiments on text classi-

fication [Caragea et al., 2009a]. An extension of this problem to the distributed setting,

i.e., learning link-based Näıve Bayes classifiers from ontology-extended distributed data

has been published in ODBASE 2009 conference proceedings with experiments on text

classification [Caragea et al., 2009b].

Other published work (not included in the thesis)

• Using Global Sequence Similarity to Enhance Biological Sequence Labeling,

In: BIBM 2008 (joint work with Jivko Sinapov, Drena Dobbs, and Vasant Honavar)

[Caragea et al., 2008]. Identifying functionally important sites from biological sequences,

formulated as a biological sequence labeling problem, has broad applications ranging

from rational drug design to the analysis of metabolic and signal transduction networks.

In this paper, we present an approach to biological sequence labeling that takes into ac-

count the global similarity between sequences. Our approach combines unsupervised and

supervised learning techniques. Given a set of sequences and a similarity measure defined

on pairs of sequences, we learn a mixture of experts model by using spectral clustering

to learn the hierarchical structure of the model and by using bayesian approaches to

combine the predictions of the experts. We evaluate our approach on two important bi-

ological sequence labeling problems: RNA-protein and DNA-protein interface prediction
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problems. Experimental results show that global sequence similarity can be exploited to

improve performance of classifiers trained to label biological sequence data.

• Assessing the Performance of Macromolecular Sequence Classifiers, In: BIBE

2007 (joint work with Jivko Sinapov, Drena Dobbs, and Vasant Honavar) [Caragea et al.,

2007a]. Machine learning approaches offer some of the most cost-effective approaches to

building predictive models (e.g., classifiers) in a broad range of applications in computa-

tional biology. Comparing the effectiveness of different algorithms requires reliable proce-

dures for accurately assessing the performance (e.g., accuracy, sensitivity, and specificity)

of the resulting predictive classifiers. The difficulty of this task is compounded by the

use of different data selection and evaluation procedures and in some cases, even differ-

ent definitions for the same performance measures. We explore the problem of assessing

the performance of predictive classifiers trained on macromolecular sequence data, with

an emphasis on cross-validation and data selection methods. Specifically, we compare

sequence-based and window-based cross-validation procedures on three sequence-based

prediction tasks: identification of glycosylation sites, RNA-Protein interface residues, and

Protein-Protein interface residues from amino acid sequence. Our experiments with two

representative classifiers (Naive Bayes and Support Vector Machine) show that sequence-

based and windows-based cross-validation procedures and data selection methods can

yield different estimates of commonly used performance measures such as accuracy,

Matthews correlation coefficient and area under the Receiver Operating Characteristic

curve. We argue that the performance estimates obtained using sequence-based cross-

validation provide more realistic estimates of performance than those obtained using

window-based cross-validation.

• Learning from Large Autonomous Data Sources using Sufficient Statistics, In:

WI 2008 (joint work with Neeraj Koul, Vikas Bahirwani, Doina Caragea, and Vasant

Honavar) [Koul et al., 2008]. In this paper we introduce a framework to learn from

autonomous data sources using sufficient statistics to focus on challenges such as massive

data size as well as lack of access to underlying data due to constraints such as privacy
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or the cost of moving the massive data set to a centralized location. We address the

important steps in machine learning such as data ltering and dealing with missing values

in this setting where access to the underlying data is not possible. We introduce the

concept of query complexity as the number and the number of queries required to get the

sufficient statistics and analyze various algorithms in terms of their query complexities.

Finally we present a system where the autonomous data source is assumed to be an

RDBMS and the sufficient statistic queries can be see as SQL count queries.

• Striking Similarities in Diverse Telomerase Proteins Revealed by Combining

Structure Prediction and Machine Learning Approaches, In: PSB 2008 (joint

work with Jae-Hyung Lee, Michael Hamilton, Colin Gleeson, Peter Zaback, Jef Sander,

Xue Li, Feihong Wu, Michael Terribilini, Vasant Honavar, and Drena Dobbs) [Lee et

al., 2008]. Telomerase is a ribonucleoprotein enzyme that adds telomeric DNA repeat

sequences to the ends of linear chromosomes. The enzyme plays pivotal roles in cellular

senescence and aging, and because it provides a telomere maintenance mechanism for

≈ 90% of human cancers, it is a promising target for cancer therapy. Despite its impor-

tance, a high-resolution structure of the telomerase enzyme has been elusive, although a

crystal structure of an N-terminal domain (TEN) of the telomerase reverse transcriptase

subunit (TERT) from Tetrahymena has been reported. In this study, we used a com-

parative strategy, in which sequence-based machine learning approaches were integrated

with computational structural modeling, to explore the potential conservation of struc-

tural and functional features of TERT in phylogenetically diverse species. We generated

structural models of the N-terminal domains from human and yeast TERT using a com-

bination of threading and homology modeling with the Tetrahymena TEN structure as

a template. Comparative analysis of predicted and experimentally verified DNA and

RNA binding residues, in the context of these structures, revealed significant similarities

in nucleic acid binding surfaces of Tetrahymena and human TEN domains. In addition,

the combined evidence from machine learning and structural modeling identified several

specific amino acids that are likely to play a role in binding DNA or RNA, but for which
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no experimental evidence is currently available.

• Machine Learning in Computational Biology, In: Encyclopedia of Database Sys-

tems (with Vasant Honavar) [Caragea and Honavar, 2009]. Advances in high throughput

sequencing and omics technologies and the resulting exponential growth in the amount

of macromolecular sequence, structure, gene expression measurements, have unleashed a

transformation of biology from a data-poor science into an increasingly data-rich science.

Despite these advances, biology today, much like physics was before Newton and Leibnitz,

has remained a largely descriptive science. Machine learning currently o?ers some of the

most cost-e?ective tools for building predictive models from biological data, e.g., for an-

notating new genomic sequences, for predicting macromolecular function, for identifying

functionally important sites in proteins, for identifying genetic markers of diseases, and

for discovering the networks of genetic interactions that orchestrate important biological

processes. Advances in machine learning e.g., improved methods for learning from highly

unbalanced datasets, for learning complex structures of class labels (e.g., labels linked by

directed acyclic graphs as opposed to one of several mutually exclusive labels) from richly

structured data such as macromolecular sequences, 3-dimensional molecular structures,

and reliable methods for assessing the performance of the resulting models, are critical

to the transformation of biology from a descriptive science into a predictive science.

• Mixture of experts models to exploit global sequence similarity on biomolecu-

lar sequence labeling, In: BMC Bioinformatics (joint work with Jivko Sinapov, Drena

Dobbs, and Vasant Honavar) [Caragea et al., 2009e]. This article has been invited for

publication in BMC Bioinformatics as an extension of the BIBM 2008 conference paper.

• Struct-NB: Predicting Protein-RNA Binding Sites Using Structural Features,

In: International Journal of Data Mining and Bioinformatics (joint work with Fadi

Towfic, David Gemperline, Drena Dobbs, and Vasant Honavar) [Towfic et al., 2009].

We explore whether protein-RNA interfaces differ from non-interfaces in terms of their

structural features and whether structural features vary according to the type of the
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bound RNA (e.g., mRNA, siRNA, etc.), using a non-redundant dataset of 147 protein

chains extracted from protein-RNA complexes in the Protein Data Bank. Furthermore,

we use machine learning algorithms for training classifiers to predict protein-RNA inter-

faces using information derived from the sequence and structural features. We develop

the Struct-NB classifier that takes into account structural information. We compare the

performance of Näıve Bayes and Gaussian Näıve Bayes with that of Struct-NB classifiers

on the 147 protein-RNA dataset using sequence and structural features respectively as

input to the classifiers. The results of our experiments show that Struct-NB outperforms

Näıve Bayes and Gaussian Näıve Bayes on the problem of predicting the protein-RNA

binding interfaces in a protein sequence in terms of a range of standard measures for

comparing the performance of classifiers.

• Glycosylation site prediction using ensembles of Support Vector Machine clas-

sifiers, In: BMC Bioinformatics (joint work with Jivko Sinapov, Adrian Silvescu, Drena

Dobbs, and Vasant Honavar) [Caragea et al., 2007b]. Glycosylation is one of the most

complex post-translational modifications (PTMs) of proteins in eukaryotic cells. Glyco-

sylation plays an important role in biological processes ranging from protein folding and

subcellular localization, to ligand recognition and cell-cell interactions. Experimental

identification of glycosylation sites is expensive and laborious. Hence, there is significant

interest in the development of computational methods for reliable prediction of glycosyla-

tion sites from amino acid sequences. We explore machine learning methods for training

classifiers to predict the amino acid residues that are likely to be glycosylated using in-

formation derived from the target amino acid residue and its sequence neighbors. We

compare the performance of Support Vector Machine classifiers and ensembles of Support

Vector Machine classifiers trained on a dataset of experimentally determined N-linked,

O-linked, and C-linked glycosylation sites extracted from O-GlycBase version 6.00, a

database of 242 proteins from several different species. Experimental results show that

the ensembles of Support Vector Machine classifiers outperform single Support Vector

Machine classifiers on the problem of predicting glycosylation sites in terms of a range of
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standard measures for comparing the performance of classifiers. The resulting methods

have been implemented in EnsembleGly, a web server for glycosylation site prediction.
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CHAPTER 2. COMBINING SUPER-STRUCTURING AND

ABSTRACTION ON SEQUENCE CLASSIFICATION

We present an approach to adapting the data representation used by a learner on se-

quence classification tasks. Our approach that exploits the complementary strengths of super-

structuring (constructing complex features by combining existing features) and feature ab-

straction (grouping of similar features to generate more abstract features), yields smaller and,

at the same time, accurate models. Super-structuring provides a way to increase the predictive

accuracy of the learned models by enriching the data representation (and hence, it increases

the complexity of the learned models) whereas feature abstraction helps reduce the number of

model parameters by simplifying the data representation. The results of our experiments on

several data sets drawn from macromolecular sequence and text classification applications show

that adapting data representation by combining super-structuring and abstraction, makes it

possible to construct predictive models that use significantly smaller number of features (by

one to three orders of magnitude) than those that are obtained using super-structuring alone,

without sacrificing predictive accuracy. Our experiments also show that simplifying data repre-

sentation using abstraction yields better performing models than those obtained using feature

selection.

2.1 Introduction

Sequence classification arises in many real-world problems. For example, in computational

biology, predicting protein function or subcellular localization can be formulated as sequence

classification tasks, where the amino acid sequence of the protein is used to classify the protein

in functional and localization classes [Baldi and Brunak, 2001]. In text classification, predict-
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ing the topic of a document based on its sequence of words can also be seen as a sequence

classification task.

Representational commitments, i.e., the choice of features or attributes that are used to

describe the sequence data presented to a learner, and the level of detail at which they describe

the data, can have a major impact on the difficulty of learning, and the accuracy, complexity,

and comprehensibility of the learned predictive model [Valiant, 1984]. The representation has

to be rich enough to capture distinctions that are relevant from the standpoint of learning, but

not so rich as to make the task of learning harder due to overfitting.

Sequence data contain intrinsic dependencies between their constituent elements. Given

a sequence x = (x0, · · · , xt−1) over a finite alphabet X , x ∈ X ∗, the dependencies between

neighboring elements can be modeled using super-structuring. Super-structuring involves

generating all the contiguous (potentially overlapping) sub-sequences of a certain length k,

(xi−k, · · · , xi−1), i = k, · · · , t, k > 1, called super-structures, a.k.a. k-grams (see e.g., [Char-

niak, 1993] for more details). Super-structuring aims to increase the richness of the represen-

tation [Liu and Motoda, 1998a]. While super-structuring provides a way to improve predictive

accuracy, the number of parameters of the resulting models increases exponentially with the

length k of super-structures.

Traditional feature selection methods [Liu and Motoda, 1998a], [Guyon and Elisseeff, 2003]

select a subset of the available features based on some chosen criteria. On a sequence classifi-

cation task, selecting a subset of super-structures by feature selection can substantially reduce

the number of model parameters. However, this approach of combining super-structuring and

feature selection may not capture important sequence patterns (motifs, in the case of biological

sequences) that are removed during the selection process.

Feature abstraction methods [Zhang et al., 2006], [Kang et al., 2004], on the other hand,

group “similar”, existing features to generate more abstract features. These methods aim to

control the level of detail in the data representation. We present an approach to adapting

the data representation used by a learner that exploits the complementary strengths of super-

structuring and feature abstraction. Specifically, we propose an algorithm to construct new



31

features in a sequence classification scenario by combining super-structuring and abstraction.

Super-structuring improves classification performance at the expense of increasing the model

size, and abstraction reduces the model size and improves the statistical estimates of complex

models (especially when data is sparse) by reducing the number of parameters to be estimated

from data.

We evaluate our approach on two protein subcellular localization data sets and two text

classification data sets. The problem of predicting subcellular protein localization is important

in cell biology, because it can provide valuable information for predicting protein function and

protein-protein interactions, among others. Also, with the exponential increase in the amount

of online text data, problems such as classifying web pages and filtering e-mail have become

very important.

The results of our experiments show that adapting the data representation by combining

super-structuring and abstraction makes it possible to construct predictive models that use

significantly smaller number of features (by one to three orders of magnitude) than those that

are obtained using super-structuring independently without sacrificing predictive accuracy.

The results also show that, for the same number of features, models obtained using abstraction

substantially outperform those obtained using feature selection.

The rest of the paper is organized as follows. We begin by describing our approach of

combining super-structuring and abstraction in Section 2. Next we discuss the alternative

approach of combining super-structuring and feature selection in Section 3. In Section 4, we

present the experimental design and provide results on four sequence classification tasks. We

conclude in Section 5.

2.2 Combining Super-structuring and Abstraction

Let D = (xl, yl)l=1,···,N be a data set of sequences xl over a finite alphabet X along with

their associated class labels yl from a finite set Y. Our approach to feature construction that

combines super-structuring and abstraction is illustrated in Algorithm 3. The input of the

algorithm is: the data set D; the length k of the super-structures; and a number m of features
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Algorithm 1 Feature Construction

Input: D =(xl, yl)l=1,···,N , xl ∈ X ∗, yl ∈ Y; k = length of super-structures; m = number of
features to construct
Output: A transformed data set DS+A

S ← Generate-Super-structures(D)
DS ← Encode(D,S)
A ← Construct-Abstractions(DS ,m)

DS+A ← Encode(DS ,A)

to construct. The output of the algorithm is a transformed data set DS+A of instances encoded

with the newly constructed features.

The algorithm starts by generating a set S = {s1, · · · , sn} of (complex) unique features (i.e.,

super-structures or k-grams) from the sequences in D. Specifically, the k-grams are substrings

of length k over X that are generated by sliding a window of length k over sequences in

D. The cardinality of S is |S| = n ≤ |X |k (note that if a k-gram does not appear in D,

it is not considered as a feature1). In the next step of the algorithm, the original data set

D is transformed into a data set DS as follows: each instance (xl, yl) in D is encoded by

([s1 : #sl1], · · · , [sn : #sln], yl) where [si : #sli], i = 1, · · · , n represents frequency counts for the

k-gram si in xl. This representation is also known as “bag of features (k-grams)” [McCallum

and Nigam, 1998].

With the transformed data set DS where each instance consists of a bag of k-grams over the

set S and its associated class label, the algorithm proceeds to reduce the feature set S to the

desired number of features m. The reduction is accomplished by constructing new features or

abstractions over the k-grams inside the procedure Construct-Abstractions(DS ,m). Specifi-

cally, the set of k-grams is partitioned into m non-overlapping sets A = {a1 : S1, · · · , am : Sm}

where ai denotes the i-th abstraction and Si denotes the subset of k-grams that are grouped

together into this i-th abstraction. Thus, an abstraction is identified with the collection of

k-grams/features that are grouped together. Note that S1 ∪ · · · ∪ Sm = S and ∀1 ≤ i, j ≤
1The number of all unique k-grams is exponential in k. However, for large values of k, many of the k-grams

may not appear in the data (consequently, the counts for such k-grams are zero). Note that the number of
unique k-grams is bounded by the cardinality of the multiset of k-grams.
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Algorithm 2 Construct-Abstractions

Input: DS = ([s1 : #sl1], · · · , [sn : #sln], yl), m = number of abstractions to construct
Output: A set of abstractions A, such that |A| = m

Initialize A = {a1 :{s1}, · · · , an :{sn}}
for u = n+ 1 to 2n−m do

(imin, jmin) = arg mini,jdist(ai, aj)
au = aimin ∪ ajmin

A = A\{aimin , ajmin} ∪ {au}
end for

m, Si ∩ Sj = ∅.

Finally, the algorithm transforms the data set DS into another data set DS+A where each

instance is now represented by m features (aside from the class label) as follows: given the

set of m abstractions A = {a1 : S1, · · · , am : Sm}, where Si ⊆ S,∀1 ≤ i ≤ m, an instance

([s1 : #sl1], · · · , [sn : #sln], yl) from DS is transformed into an instance ([a1 : #al1], · · · , [am :

#alm]}, yl) where

#ali =
∑
sq∈Si

#slq, ∀1 ≤ i ≤ m

The advantage of this approach is that the resulting representation of sequences can be used

with any learning algorithm. In this study we used Naive Bayes Multinomial [Mitchell, 1997]

and Support Vector Machines [Burges, 1998] with linear kernel. In the next subsection we

present the Construct-Abstractions(DS ,m) procedure of Algorithm 3.

2.2.1 Constructing Abstractions

The procedure for constructing abstractions is illustrated in Algorithm 2. The input of

the algorithm is a data set where each instance consists of a bag of k-grams and a class label,

DS = ([s1 : #sl1], · · · , [sn : #sln], yl)l=1,···,N , and a number m ≤ n that represents the reduced

number of abstractions that is desired. The output is a set of abstractions A over the k-grams

such that |A| = m.

The algorithm, that is a greedy agglomerative procedure, starts by initializing the set of

abstractions A such that each abstraction ai corresponds to a k-gram si in S. Next, the
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algorithm recursively groups pairs of abstractions until m abstractions are obtained. More

precisely, n − m times the algorithm searches for the most “similar” two abstractions aimin

and ajmin , adds a new abstraction au to the set of abstractions A by taking the union of their

k-grams, and removes aimin and ajmin from A. Finally, after n −m such steps the algorithm

returns m abstractions as the final result.

Note that we can construct the entire abstraction hierarchy over the set S of k-grams which

is returned by Algorithm 2 after n− 1 steps.

Definition 1 (Abstraction Hierarchy) An abstraction hierarchy T associated with a

set of k-grams S is a rooted tree such that: (1) The root of T corresponds to the abstraction

that consists of all k-grams in S; (2) The tree T has exactly n leaves corresponding to the

n k-grams in S; (3) The internal nodes of T correspond to abstractions over k-grams (i.e.,

subsets of “similar” k-grams); (4) The edges of T correspond to partial order relationships ≺

(e.g., ISA relationships) between their corresponding nodes.

Figure 2.1 shows an example of an abstraction hierarchy T on a set S = {s1, · · · , s9} of

2-grams over an alphabet of size 3.

Definition 2 (m-Cut) An m-cut γm through the abstraction hierarchy T is a subset of

m nodes of T satisfying the following properties: (1) For any leaf si, either si ∈ γm or si

is a descendant of a node aj ∈ γm; and (2) for any two nodes aj , al ∈ γm, aj is neither a

descendant nor an ancestor of al. The set of abstractions A at any given m-cut γm forms a

partition of the set S of k-grams.

In Figure 2.1, the subset of nodes {a15, a6, a14} represents a 3-cut γ3 through T .

We can store the resulting abstraction hierarchy T in a last-in-first-out (LIFO) stack. For a

given choice of the size m of an m-cut through T , we can easily extract the set of abstractions

A, by discarding m− 1 elements from the top of the stack.

In order to complete the description of Algorithm 2, we need to define the similarity between

two abstractions. Our general criterion for establishing similarity between items and, thus,

deriving useful abstractions is based on the following observation: similar items occur within

similar contexts. In our case, we define the context of a k-gram as probability of the class
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a1(s1) a2(s2) a3(s3) a4(s4) a5(s5) a6(s6) a7(s7) a8(s8) a9(s9)

a10

a11

a12

a15

a16

a13

a14

a17

Figure 2.1: An abstraction hierarchy T on a set S = {s1, · · · , s9} of 2-grams over an alphabet
of size 3. The abstractions a1 to a9 correspond to the 2-grams s1 to s9, respectively. The
subset of nodes {a15, a6, a14} represents a 3-cut γ3 through T .

variable given the k-gram (see next subsection). Since an abstraction is a set of k-grams,

the class context of an abstraction will be obtained by aggregating the class contexts of its

elements. Next, we define a distance dist(ai, aj) between the class contexts of two abstractions

ai and aj and identify the most “similar” abstractions as those that have the smallest distance

between their class contexts.

2.2.1.1 Class Context for Abstractions

Given a transformed data set DS = ([s1 : #sl1], · · · , [sn : #sln], yl)l=1,···,N of D, we define

the class context of a k-gram si in S with respect to D as follows:

CContextD(si) := [p(Y |si),#si] =

[ #[si, yj ]∑
yj∈Y #[si, yj ]

]
yj∈Y

,
∑
yj∈Y

#[si, yj ]


That is, the class context of a k-gram si is the conditional probability distribution of the class

variable Y given the k-gram si, p(Y |si) estimated from D, along with the frequency counts

of the k-gram si in D, #si. The variable Y takes values yj ∈ Y. The counts # [si, yj ] can

be computed from DS by summing #sli over all instances that belong to the class yj in Y.

Intuitively, p(Y |si) represents the context, while the frequency counts #si represent a weight

that is used to aggregate the “contexts” of two or more k-grams appropriately.

More generally, we define the class context of an abstraction ai = {si1,...,siq} as follows:

CContextD({si1,···,siq}) :=

[
q∑
r=1

πrp(Y |sir),
q∑
r=1

#sir

]
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where πr :=
#sir∑q
r=1 #sir

If we “abstract out” the difference between all the k-grams {si1,···,siq} in the abstraction ai

and replace each of their occurrences in D by ai, then #ai =
∑q

r=1 #sir and #[ai, yj ] =∑q
r=1 #[sir , yj ]. Furthermore, for any yj ∈ Y:

p(yj |ai) =
#[ai, yj ]

#ai
=
∑q

r=1 #[sir , yj ]∑q
r=1 #sir

=
q∑
r=1

#sir∑q
r=1 #sir

#[sir , yj ]
#sir

=
q∑
r=1

πrp(yj |sir)

Hence, we have shown that:

CContextD(ai) = [p(Y |ai),#ai] =

[
q∑
r=1

πrp(Y |sir),
q∑
r=1

#sir

]
= CContextD({si1,···,siq})

This is a natural definition of an abstraction based on “abstracting out” the difference between

the k-grams {si1,···,siq} and considering them as being a single feature ai. Note that we have

also shown that
∑q

r=1 πrp(Y |sir) is actually a probability distribution over Y because it is the

same as p(Y |ai). Next, we define a distance between the class contexts of two abstractions,

motivated by ideas from information theory [Cover and Thomas, 1991].

2.2.1.2 Distance Between Abstractions

Our goal is to obtain compact, yet accurate models. If we denote by A a random variable

that takes values in a set of abstractions A = {a1, · · · , am}, our goal reduces to constructing

the set A of abstractions such that the dependency between A and the class variable Y is

preserved as much as possible. One way to measure the dependency between two variables is

to use mutual information [Cover and Thomas, 1991]. Hence, we want to construct A such

that the reduction in the mutual information between A and the class variable Y , I(A, Y ), is

minimized at each step of Algorithm 2.

The reduction in the mutual information between A and Y due to a single merge of Al-

gorithm 2 can be calculated as follows: Let Am and Am−1 denote the sets of abstractions

corresponding to two consecutive steps of Algorithm 2, or equivalently, corresponding to two

cuts γm and γm−1 through the abstraction hierarchy T , respectively. Let {ai, aj} → au de-

note the merge that produced Am−1 from Am. Furthermore, let πi and πj denote the prior

probabilities of ai and aj in the set au, i.e. πi = p(ai)
p(ai)+p(aj)

and πj = p(aj)
p(ai)+p(aj)

.
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Proposition 1: The reduction in the mutual information between A and Y , due to the

above merge is given by δI({ai, aj} , au) = (p(ai) + p(aj)) ·JSπi,πj (p(Y |ai), p(Y |aj)) ≥ 0, where

JSπi,πj (p(Y |ai), p(Y |aj)) represents the weighted Jensen-Shannon divergence between two prob-

ability distributions p(Y |ai) and p(Y |aj) with weights πi and πj, respectively. (See Appendix

A for a proof.)

The weighted Jensen-Shannon divergence between two probability distributions pi and

pj with weights πi and πj, is given by: JSπi,πj (pi, pj) = πiKL(pi||p̄) + πjKL(pj ||p̄), where

p̄ = πipi + πjpj , and KL(pi||p̄) represents the Kullback-Leibler divergence between pi and p̄.

The weighted Jensen-Shannon divergence is a generalization of the Jensen-Shannon divergence

between two probability distributions that allows for an asymmetry in the consideration of the

two elements (in the case of standard Jensen-Shannon divergence w1 = w2 = 1
2) [Lin, 1991].

Hence, we define the distance between two abstractions ai and aj , denoted by dist(ai, aj),

as follows:

dist(ai, aj) = δI({ai, aj} , au) where au = {ai ∪ aj}

= (p(ai) + p(aj)) · JS(CContextD(ai), CContextD(aj))

2.2.2 Algorithm Analysis

Recall that S = {s1, · · · , sn} is the set of unique k-grams in D, n = |S|, and that A =

{a1, · · · , am} is the set of constructed abstractions, m = |A|. We start with the analysis of

Algorithm 2 for constructing abstractions. The algorithm is a greedy procedure that searches

for the most “similar” two abstractions at each step based on the “similarity” between the

probability distributions of the class variable given the abstractions. The computation of

dist(ai, aj) takes O(|Y|) time. At each step of the algorithm, for each Au = {a1 : S1, · · · , au :

Su}, u = n, · · · ,m + 1, there are u(u−1)
2 possible pairs of abstractions, and for each pair we

need to compute dist(ai, aj). The computation time can be reduced by a factor of n by

initially computing the distances dist(ai, aj) between any two abstractions ai and aj in An

(the trivial set of abstractions) and then, at each step, updating only the distances between

pairs containing aimin and ajmin . Thus, the time complexity of Algorithm 2 is O(n2|Y|).
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Now we return to the analysis of Algorithm 3. After each round of adaptation of the data

representation (which consists of super-structuring, performed by Generate-Super-structures(D),

followed by feature abstraction, performed by Construct-Abstractions(DS ,m)), the data in-

stances are encoded in using the features resulting from this change in representation (as a

result of Encode(D,S) and Encode(DS ,A) steps of Algorithm 3). All the procedures of the

algorithm except Construct-Abstractions(DS ,m) maintain the “one pass through the data”

property and take O(
∑n

i=1 #si) time (#si represents the frequency counts of the k-gram si in

D). Hence the time complexity of Algorithm 3 is given by the maximum between O(
∑n

i=1 #si)

and O(n2|Y|).

2.3 Feature Selection

In this section we discuss an alternative approach, i.e., feature selection, to reducing the

feature set S of super-structures to a desired number of features m. Feature selection is

performed by selecting a subset F of features (super-structures or k-grams) from the entire

set S, F ⊆ S such that |F| = m and m ≤ n. The features are ranked according to a scoring

function Score and the top m best ranked features are selected.

We used mutual information [Cover and Thomas, 1991] between the probability of the class

variable p(Y ) and the probability of the feature si, which measures how dependent the two

variables are. More exactly, let DS = ([s1 : #sl1], ..., [sn : #sln], yl)l=1,···,N be a transformed

data set of D, let Y be the class variable that takes values yj ∈ Y, and let si ∈ {s1, · · · , sn} be

a feature. We define a scoring function Score of the feature si as follows:

ScoreD(si) = KL(p(si, Y )||p(si)p(Y ))

where p(si, Y ) is estimated from counts gathered from D and p(si) and p(Y ) are obtained

by marginalization from p(si, Y ). As before, these counts can be computed from DS . The

ScoreD(si) is also known as information gain because KL(p(si, Y )||p(si)p(Y )) = H(p(Y )) −

H(p(Y |si)|p(Y )) where H(p(Y )) = −
∑

yj
p(yj) log p(yj) is the Shannon’s entropy.

The data set DS is transformed into another data set DS+F where each instance is rep-

resented by m features (besides the label) as follows: given the selected set of features F =
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{si1 , · · · , sim}, an instance ([s1 : #sl1], · · · , [sn : #sln], yl) from DS is transformed into an in-

stance ([si1 : #sli1 ], ..., [sim : #slim ], yl) in DS+F .

2.4 Experiments and Results

We proceed to describe two sets of experiments. In our first set of experiments, we compare

Näıve Bayes (NB) and Support Vector Machine (SVM) classifiers trained using the combina-

tion of super-structuring and abstraction as the feature representation with their counterparts

trained using a unigram representation of sequences, super-structuring representation, and

super-structuring followed by feature selection representation. We show results of these com-

parisons on two protein subcellular localization data sets: plant and non-plant. Furthermore,

in our second set of experiments, we compare NB trained using abstraction with NB trained

using a bag of unigrams representation, and with NB trained using feature selection in a do-

main where the number of primary features is very large, i.e., text categorization, and show

results on two data sets: 20 Newsgroups and WebKB.

For the plant, non-plant, and 20 Newsgroups data sets we report the average clas-

sification accuracy obtained in a 5-fold cross-validation experiment. For the WebKB data

set we report the average classification accuracy obtained during 4 runs of a cross-validation

experiment, each run using the pages from a university for testing and the pages from the

remaining three universities plus the misc collection for training the classifier.

2.4.1 Data Sets

The plant and non-plant data sets2, were first introduced in [Emanuelsson et al., 2000].

The class associated with each protein sequence represents the subcellular compartment where

the protein is located in the cell. The plant data set consists of 940 examples belonging to

one of the following four classes: chloroplast, mitochondrial, secretory pathway/signal peptide

and other. The non-plant data set consists of 2, 738 examples, each in one of the following

three classes: mitochondrial, secretory pathway/signal peptide, and other. For both plant and
2Available at http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
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non-plant data sets, the size of the alphabet is 22, that is |X | = 22 (20 amino acids plus two

special characters inserted at the beginning and at the end of each sequence).

The 20 Newsgroups data set3 contains 20, 000 UseNet articles collected by Ken Lang from

20 different discussion newsgroups [Joachims, 1997]. The task is to predict the newsgroup an

article was posted to. While processing the data set, we skipped the UseNet headers, thus

skipping the subject line. We then removed punctuation and words that contain numbers, and

performed stemming and removal of stop words and words that occur only once in the whole

collection. The vocabulary size is 46, 524.

The WebKB data set4 [Craven et al., 1998] contains web pages collected from computer

science departments of various universities. The web pages are classified into seven categories:

student, faculty, staff, department, course, project, and other. In this study, we used the same

subset of the data set as in [McCallum and Nigam, 1998] containing 4, 199 web pages classified

into one of the four categories: student, faculty, course, and project. We skipped the MIME

headers and the html tags and performed stemming and removal of words that occur only once.

Consistent with the results reported in [McCallum and Nigam, 1998], we found that removing

stop words decreases performance of classifiers, hence we did not remove the stop words. The

vocabulary size is 21, 618.

2.4.2 Experimental Design and Results

The first set of experiments. The feature representations used to train the NB and

SVM classifiers on plant and non-plant data sets are as follows:

• unigrams: a bag of letters representation of protein sequences, no super-structuring,

abstraction or feature selection (UNIGRAM);

• super-structuring: a bag of k-grams (k = 3) representation of protein sequences (SS);

• super-structuring and feature selection: a bag of m k-grams (k = 3) chosen using feature

selection from the bag of k-grams obtained by super-structuring (See Section 3 for details)
3Available at http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
4Available at http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
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(SS+FSEL);

• super-structuring and abstraction: a bag of m abstractions over k-grams (k = 3) obtained

using the combination of super-structuring and abstraction (See Section 2 for details)

(SS+ABS).

For plant and non-plant data sets the number of 3-grams is 8293 and 8404, respectively.

Note that these represent the numbers of 3-grams that occur in the data. For both data sets,

the number of unigrams is 22.

Figures 2.2a and 2.2b show the results of the comparison of SS+ABS with UNIGRAM,

SS, and SS+FSEL on the plant data set using NB and SVM with linear kernel, respectively.

Figures 2.2c and 2.2d show similar results on the non-plant data set. The average classification

accuracy is shown as a function of the number of features used in the classification model,

ranging from 1 to n = |S| (the number of unique k-grams). The x axis of Figure 2.2 shows the

number of features on a logarithmic scale.

Comparison of SS+ABS with UNIGRAM. Figure 2.2 shows that, for any choice of

the number of features, classifiers trained using SS+ABS outperform those trained using UN-

IGRAM. For example, on the plant data set, with 22 features, NB and SVM achieve 74.36%

and 70.74% accuracy (respectively) using SS+ABS, as compared to 59.46% and 63.08% (re-

spectively) obtained using UNIGRAM. Similarly, on the non-plant data set, with 22 features,

NB and SVM achieve 77.24% and 77.61% accuracy (respectively) using SS+ABS, whereas NB

and SVM achieve 67.42% and 73.59% (respectively) using UNIGRAM.

Comparison of SS+ABS with SS. As can be seen in Figure 2.2, SS+ABS matches the

performance of SS with substantially smaller number of features. Specifically, the performance

of SS-based NB and SVM classifiers trained using more than 8000 3-grams is matched by

SS+ABS-based classifiers trained using only 22 and 8 features (respectively) on the plant

data set, and only 270 and 2 features (respectively) on the non-plant data set. We conclude

that SS+ABS can match the performance of SS using substantially (by one to three orders of

magnitude) more compact classifiers.
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The performance of SVM on SS is worse than that of NB on SS on both data sets, and

also worse than that of SVM on UNIGRAM (Figure 2.2). This could be due to overfitting (see

[Vapnik, 1998] for a theoretical analysis of overfitting for the SVM algorithm). It is interesting

to note that, for many choices of the number of features, SS+ABS substantially outperforms

SS in the case of SVM on both data sets (Figures 2.2b and 2.2d). Thus, SS+ABS can help

avoid overfitting by providing more robust estimates of model parameters.

Comparison of SS+ABS with SS+FSEL. As can be seen from Figure 2.2, SS+ABS

outperforms SS+FSEL over a broad range of choices for the number of features. For example,

with only 10 features on the plant data set, NB using SS+ABS achieves an accuracy of

71.06% as compared to NB using SS+FSEL which achieves an accuracy of only 38.40%. On

the same data set with only 10 features, SVM using SS+ABS achieves an accuracy of 67.87%

as compared to 41.06% achieved by SVM using SS+FSEL.

The second set of experiments. The feature representations used to train the NB

classifiers on 20 Newsgroups and WebKB data sets are as follows:

• unigrams: a bag of words representation of the text sequences, where feature selection is

initially performed to reduce the original set of words to a smaller size set (UNIGRAM);

• feature selection: a bag of m words chosen using feature selection from the bag of uni-

grams (FSEL);

• abstraction: a bag of m abstractions over unigrams obtained by abstraction (ABS).

On text data, we found that selecting a subset of features as input for abstraction yields better

performing models. To reduce the vocabulary size, we performed feature selection on each

fold of cross-validation to select a set of 10, 000 features and 196 features with the highest

information gain with the class variable for 20 Newsgroups and WebKB, respectively.

Similar to the work of Dumais et al. [Dumais et al., 1998], we found that the performance of

classifiers trained using SS was worse than that of classifiers trained using UNIGRAM. Hence,

we compare ABS with FSEL and UNIGRAM (but no SS) on text data. Figures 2.3a and 2.3b
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Figure 2.2: Comparion of super-structuring and abstraction (SS+ABS) with super-structuring
alone (SS), super-structuring and feature selection (SS+FSEL) and UNIGRAM on the plant
and non-plant data sets using Näıve Bayes (NB), (a) and (c) respectively, and Support Vector
Machines (SVM) with linear kernel (b) and (d), respectively. The plots show the accuracy as a
function of the number of features used in the classification model, ranging from 1 to ≈ 8, 000
on both data sets. The x axis shows the number of features on a logarithmic scale.

show the results on the 20 Newsgroups and WebKB, respectively, using NB [McCallum

and Nigam, 1998].

Comparison of ABS with FSEL and UNIGRAM. As can be seen in Figure 2.3,

for the same number of features, classifiers trained using ABS outperform those trained using

FSEL on both data sets. For example, on 20 Newsgroups, with only 100 features, NB

achieves 74% accuracy using ABS, as compared to 51% obtained using FSEL. On WebKB,

with only 20 features, NB using ABS achieves 83.18% accuracy, whereas NB using FSEL

achieves 71.75%. NB using ABS approaches the performance of NB using UNIGRAM with



44

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

log10(Number of Features)

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

UNIGRAM
ABS
FSEL

(a) 20 Newsgroups

0 0.5 1 1.5 2 2.5
45

50

55

60

65

70

75

80

85

90

log10(Number of Features)

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

UNIGRAM
ABS
FSEL

(b) WebKB

Figure 2.3: Comparion of abstraction (ABS) with feature selection (FSEL) and UNIGRAM
on the 20 Newsgroups (a) and WebKB (b) data sets using Näıve Bayes. The plots show
the accuracy as a function of the number of features used in the classification model, ranging
from 1 to 10, 000 on 20 Newsgroups and from 1 to 196 on WebKB. The x axis shows the
number of features on a logarithmic scale.

smaller numbers of features, more precisely, 3, 000 features (78.96% vs. 79.59% accuracy) on

20 Newsgroups, and 35 features (85.11% vs. 85.78% accuracy) on WebKB. Hence, the

performance of ABS can approach that of UNIGRAM with a reduction of model complexity

by one order of magnitude.

2.4.3 Analysis of Abstractions

To gain some insight into the data representation generated by the combination of super-

structuring and abstraction, we took a closer look at the k-grams that are grouped into a

particular abstraction. Let us consider that abstraction is performed (after super-structuring)

to reduce the number of features (or abstractions) from 8, 293 to 10 on the plant data set. Fig-

ure 2.4a shows the class distribution induced by one of the 10 abstractions, namely a1, and the

class distributions induced by three 3-grams sampled from the abstraction a1, namely “VFV”,

“SSS”, “PSF”. Note that the class distribution induced by the abstraction a1 is very similar

to those induced by the individual 3-grams (the average number of 3-grams per abstraction is

829). Hence, the individual 3-grams can be replaced by their abstraction a1 without significant

reduction in the accuracy of the resulting classifiers (67.87% accuracy for SS+ABS with 10
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Figure 2.4: Class probability distributions induced by one of the m abstractions, namely ai,
and by three 3-grams, namely “VFV”, “SSS”, and “PSF”, on the plant data set, where (a)
m = 10 and i = 1; and (b) m = 100 and i = 3. The three 3-grams are initially sampled from
a3 (when m = 100). The number of classes in the data set is 4.

features vs. 69.36% for SS using SVM). In contrast, selecting a subset of 10 features by feature

selection (after super-structuring) decreases classification performance (41.06% accuracy for

SS+FSEL with 10 features vs. 67.87% for SS+ABS also with 10 features using SVM).

When we performed a similar analysis to reduce the number of abstractions from 8, 293

to 100 on the same data set, we found (as expected) that the class distributions induced by

the same three 3-grams, “VFV”, “SSS”, “PSF”, are more similar to the class distribution

induced by their abstraction, namely, a3 (Figure 2.4b) (the average number of 3-grams per

abstraction is 83). Going from a coarser to a finer set of abstractions (e.g., 10 to 100), the class

distributions induced by individual 3-grams become more and more similar to that induced

by their abstraction (until convergence). We conclude that SS+ABS provides better estimates

of the model parameters than SS+FSEL. For example, SS+ABS achieves 75.63% accuracy

with 100 features using SVM, whereas SS achieves 69.36%. of abstractions increases, the

performance of SS+ABS drops (64.14% accuracy with 1000 features using SVM).

2.5 Summary and Discussion

We have presented an approach to feature construction in a sequence classification sce-

nario to trade off the predictive accuracy of the learned model against its complexity. Our
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approach combines super-structuring with abstraction. Super-structuring involves generating

all the contiguous (potentially overlapping) subsequences of a certain length k, a.k.a. k-grams.

Abstraction involves constructing more abstract features by grouping “similar” features.

The results of our experiments on two protein subcellular localization data sets and two

text categorization data sets show that adapting data representation by combining super-

structuring and abstraction makes it possible to construct predictive models that use signifi-

cantly smaller number of features (by one to three orders of magnitude) than those obtained

using super-structuring alone (whose size can grow exponentially with k). Moreover, combin-

ing super-structuring and abstraction yields models whose performance is similar and, in some

cases, even better compared to that obtained by using super-structuring alone. In this case,

abstraction can be seen as a regularizer. The results also show that simplifying data repre-

sentation using abstraction yields better performing models than those obtained by feature

selection.

2.5.1 Related Work

Segal et al. [Segal et al., 2002] and McCallum et al. [McCallum et al., 1998] have used

abstraction hierarchies over classes to improve classification accuracy. Zhang et al. have

used abstraction hierarchies over nominal variables to build compact, yet accurate decision

tree [Zhang and Honavar, 2003] and Näıve Bayes [Zhang et al., 2006] classifiers. In contrast,

we have learned abstraction hierarchies from sequence data, that is a type of topologically

constrained data. Our abstraction hierarchies group “similar” k-grams based on the class

conditional distributions that the k-grams induce.

Our work is similar in spirit to the agglomerative information bottleneck (AIB) method of

Slonim and Tishby [Slonim and Tishby, 1999]. However, AIB requires an iterative process to

estimate parameters for the bottleneck variables, whereas our method requires only a simple

weighted aggregation of the existing parameters.

Feature construction methods aim to increase the richness of the data representation [Ren-

dell and Seshu, 2007], [Piramuthu and Sikora, 2008] (see [Liu and Motoda, 1998a] for a survey).
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Super-structuring corresponds to considering higher order moments [Mardia et al., 1979] in the

particular case of multivariate statistics. Feature selection (or extraction) methods that select

a subset of the available features based on some chosen criteria [Liu et al., 2008], [Yu and

Liu, 2004] [Peng et al., 2005], [Koller and Sahami, 1996] (see [Liu and Motoda, 1998b] for a

survey) and feature abstraction methods that group similar features to generate more abstract

features [Kang et al., 2004], [Slonim and Tishby, 1999], [Baker and McCallum, 1998] aim to

control the level of detail in the representation. With the exception of Jonyer et al. [Jonyer et

al., 2004] who have described an algorithm for Context-Free Graph Grammar Induction that

combines in effect super-structuring and abstraction (although not explicitly, and not aimed at

predicting a target class variable), there has been relatively limited exploration of techniques

that sequentially combine super-structuring with feature abstraction or feature selection in

adapting the data representation used for training predictive models to obtain accurate and,

at the same time, comprehensible classifiers.

2.5.2 Discussion

Super-structuring is used to enrich the data representation, and hence increase the per-

formance of learned models. In this study, we have focused on super-structuring in the case

of sequence data. However, in general, any topology that reflects the interactions between

elements of structured data can be used to guide super-structuring. For example, in the case

of image data, this involves generating features from spatially contiguous elements of an image.

Feature selection or abstraction simplify the data representation, and hence help maintain-

ing comprehensible models. Although these two approaches to reducing model complexity are

seemingly antagonistic, better value can be derived by using them sequentially whereas feature

selection is used in order to reduce an initial large set of features to a medium size set followed

by abstraction that can further reduce the size with minor or no loss in predictive accuracy.

Possible directions for further research include extensions of the methods developed here

for sequence classification to settings where the data instances have a richer structure (e.g.,

multi-modal data consisting of images and text, and combination of audio and visual data).
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2.6 Appendix

Lemma 1: Let X and Z be two random variables such that Z can take on k possible

values. Let p (zi) be the prior probability of zi and p (x|zi) be the conditional distribution of

X given zi for i = 1, · · · , k. Then:

JSp(z1),···,p(zk) (p(x|z1), · · · , p(x|zk)) = H

(
k∑
i=1

p(zi)p(x|zi)

)
−

k∑
i=1

p(zi)H (p(x|zi)) = I(X;Z)

where H(·) is the Shannon’s entropy [Lin, 1991].

Proof of Proposition 1: Without loss of generality, let us assume that the merge is

{a1, a2} → a.

Let δI({a1, a2} , a) = I(A(Am), Y ) − I(A(Am−1), Y ) denote the reduction in the mutual

information I(A;Y ), where A(Am) represents the variable A that takes values in the set Am =

{a1, · · · , am}. We use the above lemma. Hence,

δI({a1, a2} , a)

= JSp(a1),p(a2),···,p(am) [p(y|a1), p(y|a2), · · · , p(y|am)]− JSp(a),···,p(am) [p(y|a), · · · , p(y|am)]

= H

(
m∑
i=1

p(ai)p(y|ai)

)
−

m∑
i=1

p(ai)H (p(y|ai))−H

(
p(a)p(y|a) +

m∑
i=3

p(ai)p(y|ai)

)

+p(a)H (p(y|a)) +
m∑
i=3

p(ai)H (p(y|ai))

= H

(
m∑
i=1

p(ai)p(y|ai)

)
−

2∑
i=1

p(ai)H (p(y|ai))−H

(
p(a)

1
p(a)

2∑
i=1

p(y, ai) +
m∑
i=3

p(ai)p(y|ai)

)
+p(a)H (p(y|a))

= p(a)H (p(y|a))−
2∑
i=1

p(ai)H (p(y|ai))

= p(a)H

(
1

p(a)

2∑
i=1

p(y, ai)

)
−

2∑
i=1

p(ai)H (p(y|ai))

= p(a)

(
H

(
2∑
i=1

p(ai)
p(a)

p(y|ai)

)
−

2∑
i=1

p(ai)
p(a)

H (p(y|ai))

)
= (p(a1) + p(a2)) · JSπ1,π2(p(Y |a1), p(Y |a2)).
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CHAPTER 3. ABSTRACTION AUGMENTED MARKOV MODELS

We present abstraction augmented Markov models (AAMMs), which are directed acyclic

graphical models that simplify the data representation used by the standard Markov models

(MMs). AAMMs group similar entities to generate more abstract entities that are organized

in an abstraction hierarchy. Abstraction reduces the Markov model size and improves the

statistical estimates of complex models by reducing the number of parameters to be estimated

from data. We evaluate the AAMMs on three protein subcellular localization prediction tasks.

The results of our experiments show that: (1) AAMMs can achieve significantly lower model

sizes (by 1 to 3 orders of magnitude) for a minor drop in accuracy over the standard MMs,

and in some cases even higher accuracy while simultaneously lowering the model size; and (2)

AAMMs substantially outperforms MMs in settings where only a small fraction of available

data is labeled.

3.1 Introduction

Many real-world problems can be regarded as sequence classification tasks. For example,

in computational biology predicting protein function or protein subcellular localization can be

addressed as sequence classification problems, where the amino acid sequence of the protein

is used to classify a protein in functional or localization classes [Baldi and Brunak, 2001]. Se-

quence data contain intrinsic dependencies between their constituent elements. Hence, effective

sequence models need to incorporate these dependencies.

Markov models (MMs) are examples of such sequence models [Durbin et al., 2004]. They

capture dependencies between neighboring elements in a sequence and thus provide more ac-

curate models of the data. In fixed-order MMs which are special cases of directed probabilistic
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graphical models, the elements of a sequence satisfy the Markov property : Each element in

the sequence directly depends on a fixed number of previous elements, called parents, and is

independent of the rest of the elements in the sequence. MMs have been successfully applied

in many applications including natural language processing [Charniak, 1993] and molecular

sequence classification [Durbin et al., 2004]. Interpolated MMs [Jelinek and Mercer, 1980]

combine several fixed-order MMs that capture important sequence patterns that would other-

wise be ignored by a single fixed-order MM.

While dependencies between neighboring elements provide a way to improve the predictive

accuracy, the number of model parameters increases exponentially with the range of direct

dependencies, thereby increasing the risk of overfitting when the data set is limited in size. We

present abstraction augmented Markov models (AAMM) aimed at addressing this difficulty by

reducing the number of model parameters through abstraction. AAMMs construct an abstrac-

tion hierarchy over the values of the parents of each node using a hierarchical agglomerative

clustering algorithm. The AAMM clustering algorithm groups the values of the parents of a

node based on the similarity between the conditional distributions of the node given the par-

ents. The graphical structure of AAMMs extends that of the standard MMs by constructing

new variables that represent abstractions over the values of the parents of each node.

We evaluate AAMMs on three protein subcellular localization prediction tasks. The results

of our experiments show that adapting the data representation by abstraction makes it possible

to construct predictive models that use substantially smaller number of parameters (by 1 to 3

orders of magnitude) than standard MMs without sacrificing predictive accuracy. Our results

also show that AAMM substantially outperforms MMs in settings where there exist only a small

fraction of labeled data, but a vast amount of unlabeled data. Furthermore, the results show

that organizing the sequence data in an abstraction hierarchy using the AAMM clustering

algorithm produces more suitable abstraction hierarchies for AAMMs than Agglomerative

Information Bottleneck [Slonim and Tishby, 1999], which is an alternative approach used to

construct abstraction hierarchies.

The rest of the paper is organized as follows. In Section 2, we review the higher order
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Figure 3.1: (a) 2nd Order Markov Model; (b) 2nd Order Abstraction Augmented Markov Model

Markov models and present our abstraction augmented Markov model. We present the experi-

mental design and results on three sequence classification tasks in Section 3. Section 4 provides

an analysis of abstractions obtained using the AAMM clustering algorithm. We conclude in

Section 5 with a summary, discussion and future directions.

3.2 From Markov Models To Abstraction Augmented Markov Models

3.2.1 Markov Models

Let x = x0, · · · , xn−1 be an input sequence over an alphabet X , x ∈ X ∗. A Markov Model

represents the joint probability distribution of x under the Markov assumption. The graphical

representation of a Markov model is a directed linear-chain graph where the nodes Xi in the

graph are random variables corresponding to the sequence elements xi, i = 0, · · · , n − 1, and

the edges represent direct dependencies between neighboring elements. The directed graph for

a 2nd order Markov model on a subset of nodes of sequence x, {Xi−3, · · · , Xi+1}, i.e., one that

assumes 3rd order dependencies, is shown in Figure 3.1a. The conditional independencies

implied by the graph are:

Xi ⊥⊥ {X0, · · · , Xi−3} | {Xi−2, Xi−1} for i = 2, · · · , n− 1

That is, Xi is conditionally independent of X0, · · · , Xi−3 given Xi−2 and Xi−1 for any i =

2, · · · , n − 1. More generally, for a kth-order Markov model, the conditional independencies

implied by the graph are:

Xi ⊥⊥ {X0, · · · , Xi−k−1} | {Xi−k, · · · , Xi−1} for i = k, · · · , n− 1
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Thus, a node Xi in the graph depends on its k preceding nodes Xi−k, · · · , Xi−1 and is in-

dependent of the other preceding nodes X0, · · · , Xi−k−1. The k preceding nodes are called

the parents of Xi. For a kth-order Markov model, the conditional distribution of a node Xi,

i = k, · · · , n− 1, is:

p(Xi|X0, · · · , Xi−1) = p(Xi|Xi−k, · · · , Xi−1)

The joint probability distribution p(X), where X denotes the set of nodes, can be factorized

as:

p(X) = p(X0, · · · , Xk−1)
n−1∏
i=k

p(Xi|Xi−k, · · · , Xi−1)

3.2.2 Abstraction Augmented Markov Models

Abstraction is the operation of grouping similar entities to generate more abstract entities.

Let Si−1 denote the parents Xi−k · · ·Xi−1 of Xi in a standard kth order Markov model. The

values of Si−1 represent instantiations of Xi−k · · ·Xi−1 for i = k, · · · , n−1. These instantiations

are substrings of length k over the finite alphabet X , a.k.a. k-grams. We denote by S the set

of k-grams over X . Thus, the cardinality of S is N = |X |k. To reduce the cardinality of the set

S, abstraction augmented Markov models (AAMMs) construct an abstraction hierarchy over

the set S of k-grams.

Definition 1 (Abstraction Hierarchy) An abstraction hierarchy T associated with a

set of k-grams S is a rooted tree such that: (1) The root of T corresponds to the abstraction

that consists of all k-grams in S; (2) The tree T has exactly N leaves corresponding to the

N k-grams in S; (3) The internal nodes of T correspond to abstractions over k-grams (i.e.,

subsets of “similar” k-grams); (4) The edges of T correspond to partial order relationships ≺

(e.g., ISA relationships) between their corresponding nodes.

Figure 3.2 shows an example of an abstraction hierarchy T on a set S = {s1, · · · , s9} of

2-grams over an alphabet of size 3.

Definition 2 (m-Cut) An m-cut γm through the abstraction hierarchy T is a subset of

m nodes of T satisfying the following properties: (1) For any leaf si, either si ∈ γm or si

is a descendant of a node aj ∈ γm; and (2) for any two nodes aj , al ∈ γm, aj is neither a
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a1(s1) a2(s2) a3(s3) a4(s4) a5(s5) a6(s6) a7(s7) a8(s8) a9(s9)

a10

a11

a12

a15

a16

a13

a14

a17

Figure 3.2: An abstraction hierarchy T on a set S = {s1, · · · , s9} of 2-grams over an alphabet
of size 3. The abstractions a1 to a9 correspond to the 2-grams s1 to s9, respectively. The
subset of nodes {a15, a6, a14} represents a 3-cut γ3 through T .

descendant nor an ancestor of al. The set of abstractions A at any given m-cut γm forms a

partition of the set S of k-grams.

In Figure 3.2, the subset of nodes {a15, a6, a14} represents a 3-cut γ3 through T .

AAMMs extend the graphical structure of the standard Markov models by constructing

new variables Ai that represent abstractions over the set of values of the variables Si−1 for

i = k, · · · , n − 1. More precisely, the variables Ai take values in a set of abstractions A =

{a1, · · · , am} corresponding to an m-cut γm. We model the fact that Ai is an abstraction of

Si−1 by defining p(Ai = ai|Si−1 = si−1) = 1 if si−1 ∈ ai, and 0 otherwise, where si−1 ∈ S

and ai ∈ A represent instantiations of variables Ai and Si−1, respectively. Furthermore, in the

AAMMs, the node Xi directly depends on Ai instead of being directly dependent on Si−1, as

in the standard Markov models. We define the conditional distribution of the node Xi induced

by Ai as p(Xi = xi|Ai = ai) = θ
(i)
xa , where xi ∈ X and ai ∈ A represent instantiations of

variables Xi and Ai, respectively. The prior distribution of Sk−1 is defined as p(Sk−1) = θs.

The directed graph for a 2nd order AAMM on a subset of variables X ∪ A is shown in

Figure 3.1b. The joint probability distribution over the entire set of variables can be factorized

as follows:

p(X,A) = p(Sk−1) ·
n−1∏
i=k

p(Xi|Ai) · p(Ai|Si−1)

In what follows we show how to learn AAMMs from data which involves two steps: learning

abstraction hierarchies (AHs) and learning model parameters.
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3.2.2.1 Learning Abstraction Hierarchies

The procedure for constructing AHs over the set S of k-grams (values that any Si−1 can

take) is shown in Algorithm 3. The input of the algorithm consists of the set S and a set D

of sequences over the finite alphabet X , D = {xl}, xl ∈ X ?. The output of the algorithm is a

binary tree T , specifically an AH over the set S.

The algorithm starts by initializing the set of abstractions A such that each abstraction

aj corresponds to a k-gram sj in S, j = 1, · · · , N . For each k-gram sj , or equivalently for

each abstraction aj , the algorithm creates a node in the tree T . Pairs of abstractions are then

recursively merged until one abstraction is obtained. Specifically, N − 1 times, the algorithm

searches for the most “similar” two abstractions aumin and avmin , adds a new abstraction aw to

A by taking the union of their k-grams, and removes aumin and avmin from A. Simultaneously,

the nodes in the tree corresponding to aumin and avmin are merged into a newly created node

which is their parent. After N − 1 steps, the algorithm returns the AH T over the set S of

k-grams. We store the resulting AH T in a last-in-first-out (LIFO) stack. For a given choice

of the size m of an m-cut through T , we can easily extract the set of abstractions that define

an AAMM, by discarding m− 1 elements from the top of the stack.

To complete the description of our algorithm we need to define the similarity between

abstractions. We define a distance dD(au, av) between the contexts of two abstractions au

and av and identify the most “similar” abstractions as those that have the smallest distance

between their contexts. The context of an abstraction is defined as the conditional probability

of a node Xi (that takes values in X ) given the abstraction (see below). Since an abstraction

is a set of k-grams, we define the context of such a set by aggregating the contexts of its

constituent elements.
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Algorithm 3 Abstraction Construction

Input: A set of k-grams S = {s1, · · · , sN}; a set of sequences D ={xl}, xl ∈ X ∗
Output: An abstraction hierarchy T over S
Initialize A = {a1 :{s1}, · · · , aN :{sN}}, and T = {a1 :{s1}, · · · , aN :{sN}}
for w = N + 1 to 2N − 1 do

(umin, vmin) = arg minu,v∈AdD(au, av)
aw = aumin ∪ avmin

A = A\{aumin , avmin} ∪ {aw}
T = T ∪{aw} s.t. par(aumin) = aw, par(avmin) = aw

end for

Context of an abstraction

Given a set D = {xl} of sequences, we define the context of a k-gram sj ∈ S, j = 1, · · · , N ,

with respect to D as follows:

ContextD(sj) := [p(Xi|sj),#sj ] =

[ #[sj , xi]∑
xi∈X #[sj , xi]

]
xi∈X

,
∑
xi∈X

#[sj , xi]


That is, the context of a k-gram sj wrt D is the conditional distribution of Xi given sj , p(Xi|sj)

estimated from D, along with the frequency counts of the k-gram sj in D, #sj . Intuitively,

p(Xi|sj) represents the context, while the frequency counts #sj represent a weight that is used

to aggregate the “contexts” of two or more k-grams appropriately.

More generally, we define the context of an abstraction aj = {sj1 , · · · , sjq}, aj ∈ A, as:

ContextD(aj) :=

[
q∑
r=1

πr · p(Xi|sjr),
q∑
r=1

#sjr

]
where πr :=

#sjr∑q
r=1 #sjr

.

Note that if we “abstract out” the difference between all the k-grams in the abstraction aj and

replace their occurrences in D by aj , then #aj =
∑q

r=1 #sjr and #[aj , xi] =
∑q

r=1 #[sjr , xi].

Furthermore, for any xi ∈ X :

p(xi|aj) =
#[aj , xi]

#aj
=
∑q

r=1 #[sjr , xi]∑q
r=1 #sjr

=
q∑
r=1

#sjr∑q
r=1 #sjr

#[sjr , xi]
#sjr

=
q∑
r=1

πr · p(xi|sjr)

Hence, we have shown that ContextD(aj) = [p(Xi|aj),#aj ] .Next, we define a distance between

contexts of two abstractions, motivated by ideas from information theory [Cover and Thomas,

1991].
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Distance between abstractions

Our goal is to find an abstraction (or compression) Ai of the variable Si−1 and, at the

same time, preserve the direct dependency between Ai and Xi as much as possible. One way

to measure the dependency between two variables is to use mutual information [Cover and

Thomas, 1991]. Hence, we want to construct an abstraction Ai of Si−1 such that the reduction

in the mutual information between Ai and Xi, I(Ai, Xi), is minimized at each step of Algorithm

3.

The reduction in mutual information between a node and its parents (in the graphical

model corresponding to an AAMM) due to a single merge of Algorithm 3 can be calculated

as follows: Let γm be an m-cut through the AH T and γm−1 be the (m − 1)-cut through T

that results after one merge {au, av} → aw. Let Am and Am−1 denote the set of abstractions

corresponding to γm and γm−1, respectively. Furthermore, let πu and πv denote the prior

probabilities of au and av in the set aw, i.e. πu = p(au)
p(au)+p(av)

and πv = p(av)
p(au)+p(av)

.

Proposition 1:

The reduction in the mutual information between each variable Xi and its parent, due to the

above merge is given by δI({au, av} , aw) = (p(au) + p(av)) · JSπu,πv(p(Xi|au), p(Xi|av)) ≥ 0,

where JSπu,πv(p(Xi|au), p(Xi|av)) represents the weighted Jensen-Shannon divergence between

two probability distributions p(Xi|au) and p(Xi|av) with weights πu and πv, respectively [Lin,

1991].

We define the distance between two abstractions au and av in D, denoted by dD(au, av),

as follows:

dD(au, av) = δI({au, av} , aw) where aw = {au ∪ av}.

The effect of a single merge step of Algorithm 3 on the log likelihood of the data is given by

the following proposition.
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Proposition 2:

The reduction in the log likelihood of the data due to the merge {au, av} → aw is given

by δLL({au, av} , aw) = M · (p(au) + p(av)) · JSπu,πv(p(Xi|au), p(Xi|av)) ≥ 0, where M is the

cardinality of the multiset of (k + 1)-grams. The likelihood function is given by L(x,a) =∏
|D| p(x0 · · ·xk−1) ·

∏n−1
i=k p(xi|ai) = p(x0 · · ·xk−1)#[x0···xk−1] ·

∏
xi∈X ,ai∈Am

p(xi|ai)#[ai,xi]. (See

Appendix section for the proof sketch of Propositions 1 and 2.)

Algorithm Analysis

Recall that S = {s1, · · · , sN} is the set of unique k-grams in D, N = |S|, and that

A = {a1, · · · , am} is the set of constructed abstractions, m = |A|. Our algorithm is a greedy

procedure that searches for the most “similar” two abstractions at each step based on the

“similarity” between the probability distributions of an element in the alphabet X given the

abstractions. The computation of dD(au, av) takes O(|X |) time. At each step of the algorithm,

for each Aw = {a1 : S1, · · · , aw : Sw}, w = N, · · · ,m + 1, there are w(w−1)
2 possible pairs of

abstractions, and for each pair we need to compute dD(au, av). The computational time can

be reduced by a factor of N by initially computing the distances dD(au, av) between any two

abstractions au and av in AN (the trivial set of abstractions) and then, at each step, updating

only the distances between pairs containing aumin and avmin . Thus, the time complexity of

Algorithm 3 is O(N2|X |).

3.2.3 Learning AAMM Parameters

The AAMM is a completely observable directed graphical model, i.e. there are no hidden

variables in the model. Because the joint probability distribution of the model is written as

a product of local conditional probabilities of each node given its parents, the parameters θ(i)
xa

can be estimated independently of each other using maximum likelihood estimation [Casella

and Berger, 2002]. Learning AAMMs reduces to collecting the sufficient statistics #[sj , xi]

from the set of training sequences, for all sj ∈ S and xi ∈ X . Furthermore, for an abstraction

aj = {sj1 , · · · , sjq}, the sufficient statistics #[aj , xi] are
∑q

r=1 #[sjr , xi]. The marginal counts
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of sj and aj are obtained by summing out xi. The parameter θs is estimated as in the standard

Markov model. We used Laplace correction to avoid zero probabilities.

Given a new sequence x = x0, · · · , xn−1 and an m-cut γm through T , the joint probability

p(x) can be computed as follows: parse the sequence from left to right. For each k-gram

xi−k, · · · , xi−1 find the abstraction aj ∈ γm it belongs to and retrieve the parameters associated

with that abstraction. Multiply p(xi|aj) for i = k, · · · , n− 1.

3.2.4 Using AAMMs for Classification

The AAMMs can be used for classification tasks by learning a model for each class and

selecting the model with the highest posterior probability when classifying new data. In an

AAMM, when the training data set is fully labeled, a class-specific AH can be constructed

separately for each class. When the training data set is unlabeled, or only partially labeled,

one AH can be constructed from the entire data set.

3.3 Experiments and Results

3.3.1 Experimental Design

We proceed to describe three sets of experiments that are designed to explore the effective-

ness of AAMMs in generating simple and accurate sequence models.

In our first set of experiments, we compared the performance of AAMM with that of MM

and Näıve Bayes on classification tasks in a setting where each sequence in the training data

set is labeled with a class. In this case, we trained an AAMM for each class (based on the

class-specific AH for that class).

In our second set of experiments, we investigated the effect of abstraction on the perfor-

mance of AAMMs in settings where only a subset of the training data is labeled and the rest

are unlabeled. We performed experiments with 1%, 10%, 25%, and 100% of the training data

set being used as labeled instances, with the rest being treated as unlabeled instances (by

ignoring the class labels). To obtain the subsets of 1%, 10%, and 25% of labeled instances,

we sampled instances, using a uniform distribution, from the training set. Because the class
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labels are unavailable for a large fraction of the training data, we constructed a single AH T

from both labeled and unlabeled data and used it to train an AAMM for each class (from the

labeled sequences).

Furthermore, in our third set of experiments, we investigated how the clustering algorithm

affects the quality of the predictions made by an AAMM. In particular, we compared our

AAMM clustering algorithm with agglomerative information bottleneck (AIB) introduced by

Slonim and Tishby in [Slonim and Tishby, 1999]. The AIB was used to cluster words in a given

text data set. However, it can be used to cluster k-grams. The primary difference between

our AAMM clustering algorithm and AIB is in the similarity used to cluster k-grams together,

i.e., in AAMM, the k-grams are clustered based on the similarity between the conditional

distributions of Xi induced by k-grams, p(Xi|k-gram), where Xi takes values in X ; in AIB,

the k-grams are clustered based on the similarity between the class conditional distributions

induced by k-grams, p(Y |k-gram), where Y is the class variable that takes values in a set Y

(the probabilities are estimated from the training data).

In this set of experiments, we constructed AHs from the sequences in the training set as

follows: (i) a class-specific AH separately for each class (from sequences belonging to that

class); (ii) a class-independent AH (from all training sequences); and (iii) an AH using the

AIB (from all training sequences). In each case, because the class labels are available for all

sequences, we trained an AAMM for each class (from sequences in that class).

We performed our experiments on the problem of predicting subcellular localization which

is important in cell biology, because it can provide valuable information for predicting protein

function and protein-protein interactions, among others. We show results of the experiments

on three protein subcellular localization data sets: psortNeg, plant, and non-plant.

For all three data sets, we trained AAMMs for values of m that range from 1 to N , where

m is the cardinality of the set of abstractions Am used as “features” in the classification model,

and N is the number of unique k-grams. We report the average classification accuracy obtained

in a 5-fold cross-validation experiment as a function of m. Note that the x axis of all figures

presented in the Results subsection shows the number of abstractions m on a logarithmic scale.
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Figure 3.3: Comparison of abstraction augmented Markov model (AAMM) with Markov model
(MM) and Näıve Bayes (NB) on psortNeg (a), plant (b), and non-plant (c), respectively.
The x axis shows the number of abstractions m, used as “features” in the classification model,
on a logarithmic scale. In this experiment, an abstraction hierarchy Tj is constructed for each
class yj ∈ Y, where Y is the set of all possible classes (class-specific abstraction hierarchies).

3.3.2 Data sets

The first data set used in our experiments, PSORTdb v.2.01 Gram-negative sequences,

introduced in [Gardy et al., 2003], contains experimentally verified localization sites. We refer

to this data set as psortNeg. We use all proteins that belong to exactly one of the following

five classes: cytoplasm (278), cytoplasmic membrane (309), periplasm (276), outer membrane

(391) and extracellular (190). The total number of examples (proteins) in this data set is 1444.

The second and third data sets used in our experiments, plant and non-plant2, were

first introduced in [Emanuelsson et al., 2000]. The plant data set contains 940 examples

belonging to one of the following four classes: chloroplast (141), mitochondrial (368), secretory

pathway/signal peptide (269) and other (consisting of 54 examples with label nuclear and 108

examples with label cytosolic). The non-plant data set contains 2738 examples, each in one

of the following three classes: mitochondrial (361), secretory pathway/signal peptide (715) and

other (consisting of 1214 examples labeled nuclear and 438 examples labeled cytosolic).
1http://www.psort.org/dataset/datasetv2.html
2http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
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3.3.3 Results

We trained AAMMs and MMs using 3-grams extracted from the data3. For psortNeg,

plant, and non-plant data sets, the number of 3-grams is 7970, 7965, and 7999 respectively.

Comparison of AAMMs with MMs and NB

Figures 3.3(a), 3.3(b), and 3.3(c) show the results of the comparison of AAMMs with MMs

on psortNeg, plant, and non-plant data sets, respectively. As can be seen in the figures,

AAMM matches the performance of MM with substantially smaller number of abstractions.

Specifically, the performance of MM trained using approximately 8000 3-grams is matched by

that of AAMM trained using only 79, 19 and 855 abstractions on the psortNeg, plant, and

non-plant data sets, respectively. On the psortNeg and plant data sets, AAMM outperforms

MM over a broad range of choices of m. For example, with m = 435 on the psortNeg data

set, AAMM achieves its highest accuracy of 76.87% as compared to 74.93% achieved by MM

with N = 7970 unique k-grams. On the plant data set with only m = 168, AAMM achieves

its highest accuracy of 71.59% as compared to MM which achieves an accuracy of 68.19% with

N = 7965. Not surprisingly, with m = N abstractions, the performance of AAMMs is the

same as that of MMs, because the AAMM trained on N abstractions and MM are exactly the

same models.

We conclude that AAMMs can match and, in some cases, exceed the performance of MMs

using substantially (by one to three orders of magnitude) more compact classifiers. AAMMs

could provide more robust estimates of model parameters than MMs, and hence, help avoid

overfitting.

Figures 3.3(a), 3.3(b), and 3.3(c) also show the comparison of AAMMs with Näıve Bayes

(NB) models trained using a “bag of letters” feature representation. As can be seen in the

figures, except for a few values of m (m < 18, m < 5, and m < 2 on psortNeg, plant, and

non-plant, respectively), AAMM outperforms NB (for any other choices of m). For example,
3The number of all unique k-grams is exponential in k. However, for large values of k, many of the k-grams

may not appear in the data (consequently, the counts for such k-grams are zero). Note that the number of
unique k-grams is bounded by the cardinality of the multiset of k-grams.



62

on the plant data set, with 20 features, NB achieves 59.36% accuracy as compared to 68.29%

obtained using AAMM (the accuracy of MM is 68.19%). On the non-plant data set, with 20

features, NB achieves 67.23% accuracy, whereas AAMM and MM achieve 72.31% and 74.98%

(respectively). Hence, both AAMM and MM (of order 3) are superior in performance to NB

models (0th order MM) for a large number of choices of m (for AAMM).

Evaluation of Abstraction in a Semi-supervised Setting

Figure 3.4 shows the results of the comparison of AAMMs with MMs using 3-grams for

1% (first row), 10% (second row), 25% (third row), and 100% (fourth row) of labeled data for

all three data sets: psortNeg (left column), plant (center column), and non-plant (right

column), respectively. Note that an MM is trained on the same fraction of labeled data as its

AAMM counterpart. Also note that, unlike our previous experiment where all the data are

labeled and, hence, a class-specific AH can be constructed for each class, in this experiment, a

single class-independent AH can be constructed from all sequences in the training set because

many of the training instances are unlabeled. As can be seen in the figure, in the cases where

only 1% and 10% of the data are labeled, AAMMs substantially outperform MMs over a broad

range of choices of m, on all of the three data sets. For example, on the 1% plant data set,

with m = 200, the accuracy of AAMM is 38.72%, whereas that of MM is 30.53%. On the 10%

plant data set, with m = 560, AAMM achieves its highest accuracy of 47.97%, as compared

to that of MM which is 37.87%.

When we increased the number of labeled data to 25%, AAMMs still have a much higher

performance than MMs for many choices of m on the plant and non-plant data sets, but

become comparable in performance to MMs on the psortNeg data set. With m = 2310, on

the 25% plant data set, AAMM achieves its highest accuracy of 56.80% as compared to 53.40%

achieved by MM. On the other hand, on the 25% psortNeg data set, the highest accuracy

of AAMM obtained with m = 4035 is 60.38% that is similar to the accuracy of MM which is

59.34%.

In the case where the entire data set is labeled (100%), the performance of AAMMs is
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Figure 3.4: Comparison of AAMMs with MMs for 1% (first row), 10% (second row), 25%
(third row), and 100% (fourth row) of labeled data for psortNeg (left column), plant (cen-
ter column), and non-plant (right column), respectively. The x axis shows the number of
abstractions m, used as “features” in the classification model, on a logarithmic scale. In this
experiment, an abstraction hierarchy T is constructed from all training data, independent of
the class variable (class-independent abstraction hierarchy).
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Figure 3.5: Comparison of the abstraction augmented Markov model clustering algorithm with
the Agglomerative Information Bottleneck on psortNeg (a), plant (b), and non-plant (c),
respectively.

comparable to that of MMs for choices of m ≥ 1255, m ≥ 1095, and m ≥ 1590 on psortNeg,

plant, and non-plant data sets, respectively. As an example, on the 100% plant data set,

with m = 1095, the accuracy of AAMM is 67.34%, and that of MM is 68.19%.

We conclude that AAMMs can provide more accurate models compared to MMs in settings

where there are relatively small amounts of labeled data, but rather plentiful unlabeled data

that would be very expensive to be labeled. AAMMs incorporates information available in the

unlabeled data, that would otherwise be ignored by MMs.

Comparison of AAMM clustering algorithm with Agglomerative Information Bot-

tleneck

Figure 3.5 shows, on all three data sets, the results of the comparison of AAMMs based on

(i) class-specific AHs, with one AH for each class, (ii) a single class-independent AH, and (iii) an

AH produced using AIB [Slonim and Tishby, 1999]. As can be seen in the figure, the AAMMs

based on the clustering algorithm proposed in this study substantially outperform the AAMMs

based on the AIB clustering algorithm over a broad range of values of m. For example, on

the plant data set, with m = 100, the accuracy of AAMM based on our clustering approach

is 69.57%, whereas that of AIB-clustering based AAMM is 48.29%. As expected, AAMMs

trained using class-specific abstraction hierarchies outperform AAMMs trained using a single
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Figure 3.6: Amino acid distributions (on the non-plant data set) induced (a) by an abstrac-
tion, a681, randomly chosen from the cut γ1000 through the AH T0 (corresponding to class
0), and by two 3-grams, “ELV” and “ILS”, randomly chosen from a681; (b) by “ELV” and
“ILS” and by their abstractions, a652 and a76, respectively, on the cut γ1000 through the AH
T1 (corresponding to class 1); (c) by “ELV” and “ILS” and by their abstraction, a2 on the
cut γ10 through the AH T0; (d) by “ELV” and “ILS” and by their abstractions, a5 and a1,
respectively, on the cut γ10 through the AH T1.

class-independent AH.

We conclude that organizing the k-grams in an AH based on the conditional distributions

of the next letter in the sequence rather than based on the class conditional distributions

induced by the k-grams produces more suitable AHs for AAMMs, and hence, better performing

AAMMs.

3.4 Analysis of Abstractions

To gain some insight into the data organization generated by our clustering procedure, we

took a closer look at the k-grams that are grouped into a particular abstraction. Figure 3.6(a)
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shows the amino acid distributions (on the non-plant data set) induced by an abstraction,

a681, randomly chosen from the cut γ1000 through the AH T0 (corresponding to class 0), and

by two 3-grams, “ELV” and “ILS”, randomly chosen from a681. Figure 3.6(b) shows the amino

acid distributions induced by “ELV” and “ILS” and by their corresponding abstractions, a652

and a76, respectively, on the cut γ1000 through the AH T1 (corresponding to class 1). Not

surprisingly, as can be seen in the figures, not only that “ELV” and “ILS” induce different

amino acid distributions as compared to those that they induce in class 0, but also the amino

acid distribution induced by “ELV” is different from that induced by “ILS” in class 1, and

hence, they belong to different abstractions. Note that the amino acid distribution induced by

an abstraction is very similar to those induced by individual (constituent) 3-grams (the average

number of 3-grams per abstraction is 8). Hence, the individual 3-grams can be replaced by their

abstraction without significant change in the accuracy of the resulting (AAMMs) classifiers.

To avoid cluttered figures, we drew different plots for class 1.

Figures 3.6(c) and 3.6(d) show the amino acid distributions induced by “ELV” and “ILS”

and by their abstractions on the cut γ10 through the AHs T0 and T1, respectively (the average

number of 3-grams per abstraction is 799). As expected, the distribution induced by an

abstraction become more dissimilar to those induced by individual 3-grams as we go from a

finer to a coarser set of abstractions (e.g., 1000 to 10). We conclude that AAMM provides

compact models at the expense of losing some information through abstraction. On the other

hand, AAMM could potentially provide better estimates of model parameters as compared to

MM (when the parameters are underestimated in the data). Consequently, AAMM can help

avoid overfitting.

3.5 Summary and Discussion

We have presented abstraction augmented Markov models that simplify the data represen-

tation used by the standard Markov models. The results of our experiments on three protein

subcellular localization data sets have shown that organizing the set of k-grams in a hierar-

chy using abstraction makes it possible to construct predictive models that have significantly
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smaller size (by 1 to 3 orders of magnitude) as compared to the size of the corresponding MM

(which is exponential in k). While the abstraction reduces the model size, the performance of

AAMM is similar, and in some cases better, than that of standard Markov models. Moreover,

the results have shown that abstraction allows us to make better use of unlabeled training

data.

3.5.1 Related Work

Segal et al. [Segal et al., 2002] and McCallum et al. [McCallum et al., 1998] have used

abstraction hierarchies over classes to improve classification accuracy. Punera et al. [Punera

et al., 2006] have designed an algorithm to organize the classes in a given data set in an n-ary

taxonomy. They have shown that n-ary tree based taxonomies provide a more “natural” way

to organize classes in a hierarchy than the binary tree based taxonomies. Zhang et al have

used abstraction hierarchies over nominal variables to build compact, yet accurate decision

tree (AVT-DTL) [Zhang and Honavar, 2003] and Naive Bayes (AVT-NBL) [Zhang et al.,

2006] classifiers. Unlike AVT-DTL and AVT-NBL, AAMMs exploit abstraction hierarchies

that compress entities (k-grams) based on conditional distributions of each element Xi in

the sequence given its parents, rather than class conditional distributions. In related work,

desJardins et al. [desJardins et al., 2000] have explored the use of abstraction-based search

(ABS) to compress conditional probability tables (CPTs) in Bayesian networks. Unlike ABS,

AAMMs exploit abstraction to construct compact Markov models of sequence data.

3.5.2 Connection between AAMMs and HMMs

An AAMM can be simulated by an appropriately constructed Hidden Markov Model

(HMM) [Rabiner, 1989], [Durbin et al., 2004] where the number of hidden states is equal to the

number of abstractions (i.e., clusters) in the AAMM. However, as a state corresponds to a clus-

ter (i.e., a set of k-grams) over the observable variables, the state is not really “hidden”. It can

be derived in a feed-forward manner, thus not requiring a Backward Reasoning/Expectation

step. This allows a “one pass through the data” learning procedure based on MAP learning
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[Mitchell, 1997] once the set of clusters has been chosen. Unlike the learning procedure for

HMMs (which involves the Expectation-Maximization (EM) algorithm), the AAMM learning

procedure is not prone to local maxima, has lower variance as no uncertainty is inherited from

the inference performed in the E step, and requires less time given that the set of clusters is

already available (as shown below).

The overall time complexity of AAMM is O(N2 · |X |+N · |D| · n), where N is the number

of unique k-grams, |X | is the size of the alphabet, |D| is the size of the data set, and n is the

maximum length of sequences in |D|. The time complexity of the HMM EM training procedure

for a fixed number of hidden states is O(T · |D| ·n · (|H|2 + |H| · |X |)), where |H| is the number

of hidden states and T is the number of EM iterations. Running this procedure for all possible

number of hidden states (from 1 to N) requires an overall time of O(N2(N + |X |) · T · |D| · n).

By observing that N <= |D| · n, based on the above analysis, our algorithm requires at least

a factor of N · T less time compared to the HMM training procedure. While algorithms that

attempt to automatically determine the number of hidden states in HMMs (e.g., based on

the Chinese Restaurant Process [Blei et al., 2004]) can be used, not only that they come at

additional costs vs. “vanilla” HMM, but they are also prone to the difficulties encountered

by hidden variable models. Hence, although AAMMs are less expressive models than HMMs,

they are easier to learn models compared to HMMs .

3.5.3 The relationship between AAMM clustering algorithm and Agglomerative

Information Bottleneck

Slonim and Tishby proposed Agglomerative Information Bottleneck (AIB) [Slonim and

Tishby, 1999] as a method to organize data in an AH based on the similarity of the class condi-

tional distributions. Specifically, they have applied their approach to cluster words in a given

text data set. However, it can also be used to cluster k-grams. Similar to the AAMM clus-

tering algorithm, their algorithm starts with one word (or k-gram) per cluster and recursively

merges pairs of sets of words (or k-grams), in a greedy fashion, to generate an AH. A merge

that minimizes the loss in the mutual information between the intermediate clustering and the
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class variable is performed at each step of their algorithm. Unlike AIB, we cluster k-grams

based on the similarity between the conditional distributions of each element Xi in the se-

quence given its parents, rather than the similarity between the class conditional distributions

(as in AIB). That is, the AIB method captures the information that one variable (e.g., a word)

contains about another variable (e.g., the topic of a document), while our method captures the

information that a k-gram contains about the next element in a sequence, independent of the

class.

3.5.4 AAMMs provide simple and accurate models

The performance of AAMMs is not always superior to that of MMs. However, AAMMs

provide simpler models. The simplicity is achieved by losing some information through ab-

straction. The challenge is to trade off the complexity of the model against its predictive

power. Not only that our model is simpler but it is also more interpretable from a biological

point of view, i.e. the set of k-grams that form an abstraction can be seen as a sequence

profile (e.g., Position Specific Scoring Matrix). Also, designing accurate models from relatively

small amounts of labeled data is important in many applications that involve sequence data

(e.g., biological applications) where unlabeled data is rather plentiful and obtaining labels for

unlabeled data is very expensive.

While the abstraction hierarchies can be learned using any top-down or bottom-up clus-

tering procedure, in this study we have used a bottom-up approach because it is simple, fast,

and allows iterating through all cardinalities from N to 1.

3.5.5 Future directions

Some possible directions for further research include extensions of the model developed here

for sequence classification to settings where the data instances have a much richer structure

(e.g., multi-modal data consisting of images and text, and combination of audio and visual

data).
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3.6 Appendix

Lemma 1:

Let X and Z be two random variables such that Z can take on k possible values. Let p (zi)

be the prior distribution of zi and p (x|zi) be the conditional distribution of X given zi for

i = 1, · · · , k. Then:

JSp(z1),···,p(zk) (p(x|z1), · · · , p(x|zk))

= H

(
k∑
i=1

p(zi)p(x|zi)

)
−

k∑
i=1

p(zi)H (p(x|zi)) = I(X;Z)

where H(·) is Shannon’s entropy [Lin, 1991].

Proof of Proposition 1:

Without loss of generality, let us assume that the merge is {a1, a2} → a.

Let δI({a1, a2} , a) = I(A(Am), Y ) − I(A(Am−1), Y ) denote the reduction in the mutual

information I(A;Y ), where A(Am) represents the variable A that takes values in the set Am =

{a1, · · · , am}. We use the above lemma. Hence,

δI({a1, a2} , a)

= JSp(a1),p(a2),···,p(am) [p(y|a1), p(y|a2), · · · , p(y|am)]− JSp(a),···,p(am) [p(y|a), · · · , p(y|am)]

= H

(
m∑
i=1

p(ai)p(y|ai)

)
−

m∑
i=1

p(ai)H (p(y|ai))−H

(
p(a)p(y|a) +

m∑
i=3

p(ai)p(y|ai)

)

+p(a)H (p(y|a)) +
m∑
i=3

p(ai)H (p(y|ai))

= H

(
m∑
i=1

p(ai)p(y|ai)

)
−

2∑
i=1

p(ai)H (p(y|ai))−H

(
p(a)

1
p(a)

2∑
i=1

p(y, ai) +
m∑
i=3

p(ai)p(y|ai)

)
+p(a)H (p(y|a))

= p(a)H (p(y|a))−
2∑
i=1

p(ai)H (p(y|ai))

= p(a)H

(
1

p(a)

2∑
i=1

p(y, ai)

)
−

2∑
i=1

p(ai)H (p(y|ai))

= p(a)

(
H

(
2∑
i=1

p(ai)
p(a)

p(y|ai)

)
−

2∑
i=1

p(ai)
p(a)

H (p(y|ai))

)
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= (p(a1) + p(a2)) · JSπ1,π2(p(Y |a1), p(Y |a2)).

Proof of Proposition 2:

As in Proposition 1, let us assume, without loss of generality, that the merge is {a1, a2} →

a. Hence, #a = #a1 + #a2. Furthermore, let π1 = p(a1)
p(a1)+p(a2) and π2 = p(a2)

p(a1)+p(a2) .

δLL({a1, a2} , a)

= LL(A(Am), Xi)− LL(A(Am−1), Xi)

=
∑

xi∈X ,aj∈Am

log p(xi|aj)#[aj ,xi] −
∑

xi∈X ,aj∈Am−1

log p(xi|aj)#[aj ,xi]

=
∑
xi∈X

log p(xi|a1)#[a1,xi] +
∑
xi∈X

log p(xi|a2)#[a2,xi] −
∑
xi∈X

log p(xi|a)#[a,xi]

=
∑
xi∈X

#[a1, xi] · log p(xi|a1) +
∑
xi∈X

#[a2, xi] · log p(xi|a2)

−
∑
xi∈X

(#[a1, xi] + #[a2, xi]) · log p(xi|a1 ∪ a2)

= −Mp(a)
∑
xi∈X

 2∑
j=1

πjp(xi|aj)

 log

 2∑
j=1

πjp(xi|aj)


+M · p(a)

∑
xi∈X

2∑
j=1

πjp(xi|aj) log p(xi|aj)


= Mp(a)

H
 2∑
j=1

πjp(xi|aj)

− 2∑
j=1

πjH (p(xi|aj))


= M · ((p(a1) + p(a2)) · JSπ1,π2(p(Xi|a1), p(Xi|a2))

where M is the cardinality of the multiset of (k + 1)-grams. We have used that:

p(xi|a1 ∪ a2) = π1p(xi|a1) + π2p(xi|a2),when a1 ∩ a2 = φ.

and

#[aj , xi] = p(aj , xi) ·M = p(xi|aj) · p(aj) ·M = p(xi|aj) · πj · p(a) ·M
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CHAPTER 4. LEARNING LINK-BASED CLASSIFIERS FROM

ONTOLOGY-EXTENDED TEXTUAL DATA AND ITS EXTENSION TO

DISTRIBUTED DATA

Real-world data mining applications call for effective strategies for learning predictive mod-

els from richly structured relational data. In this paper, we address the problem of learning

classifiers from structured relational data that are annotated with relevant meta data. Specif-

ically, we show how to learn classifiers at different levels of abstraction in a relational setting,

where the structured relational data are organized in an abstraction hierarchy that describes

the semantics of the content of the data. We show how to cope with some of the challenges

presented by partial specification in the case of structured data, that unavoidably results from

choosing a particular level of abstraction. Our solution to partial specification is based on a sta-

tistical method, called shrinkage. Furthermore, we extend the problem of learning link-based

classifiers from ontology-extended textual data to the semantically heterogeneous, distributed,

relational setting. We show under fairly general assumptions, how to exploit data sources anno-

tated with relevant meta data in building predictive models (e.g., classifiers) from a collection

of distributed relational data sources, without the need for a centralized data warehouse, while

offering strong guarantees of exactness of the learned classifiers relative to their centralized

relational learning counterparts. We present results of experiments in the case of learning link-

based Näıve Bayes classifiers on a text classification task that (i) demonstrate that the choice

of the level of abstraction can impact the performance of the resulting link-based classifiers

and (ii) examine the effect of partially specified data.



73

4.1 Introduction

Advances in sensors, digital storage, computing and communications technologies have

led to an exponential increase in the amount of on-line richly structured, relational data.

Problems such as classifying web pages, filtering e-mail, annotating images, etc., have become

very important. Machine learning algorithms [Mitchell, 1997], [Bishop, 2006] offer some of the

most cost effective approaches to building predictive models (e.g., classifiers) in a broad range

of applications in data mining.

Although the problem of learning classifiers from relational data sources has received much

attention in the machine learning literature [Getoor et al., 2002], [Neville et al., 2003], [Taskar

et al., 2002], there has been limited exploration of techniques that use structured relational

data sources that are annotated with relevant meta data. In this paper, we address the problem

of learning classifiers from such data.

Representational commitments, i.e., the choice of features or attributes that are used to

describe the data presented to a learner, and the level of detail at which they describe the

data, can have a major impact on the difficulty of learning, and the accuracy, complexity, and

comprehensibility of the learned predictive model [Valiant, 1984]. The representation has to

be rich enough to capture distinctions that are relevant from the standpoint of learning, but

not so rich as to make the task of learning infeasible due to overfitting.

Hence, we present an approach to learning classifiers at different levels of abstraction (or

detail) when the data (attributes and classes) are organized in abstraction hierarchies. We

adapt the link-based iterative classification algorithm introduced by Lu and Getoor [Lu and

Getoor, 2003] and use it in conjunction with Näıve Bayes classifiers to illustrate our approach.

Next, we show how to cope with partially specified data that inevitably result from choosing

a particular level of abstraction. Zhang et al. [Zhang and Honavar, 2003], [Zhang et al., 2006]

have previously addressed the problem of partially specified data in cases where data instances

are described by nominal attributes. In this study, we deal with partial specification in the

case of structured data, where, for example, a multinomial model is assumed as the underlying

model that generated the data instances. We use a statistical approach, called shrinkage, to
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cope with partially specified data.

Furthermore, given the autonomous nature of the on-line data sources from the same

domain, we show how to extend the approach to learning classifiers from a single data source

to learning classifiers from a collection of autonomous data sources that are annotated with

relevant meta data. Specifically, we present a principled approach to the problem of learning

classifiers from a collection of semantically disparate relational data sources that do not rely

on direct access to the data but instead can work with results of statistical queries against an

integrated view.

We evaluated our approaches to learning classifiers from both structured relational data

and structured relational, distributed data annotated with relevant meta data on the Cora

data set, a standard relational benchmark data set of research articles and their citations

[McCallum et al., 2000] for which we manually constructed an abstraction hierarchy from the

words in the data set. The task was to classify research articles based on their topics. The

results of our experiments show that: (i) more abstract levels can yield better performing

link-based classifiers, due to more robust estimates of model parameters (smaller number of

parameters that need to be estimated from data); (ii) making use of partially specified data can

improve classification performance; (iii) under fairly general assumptions, classifiers obtained

in the distributed setting are identical to those obtained from a centralized, integrated data

warehouse constructed from the collection of semantically disparate relational data sources

and associated ontologies and mappings.

The rest of the paper is organized as follows: In Section 2, we introduce the framework

necessary for learning classifiers from structured relational data annotated with relevant meta

data. We present our approach to learning classifiers from such data in the case of link-based

Näıve Bayes classifiers [Lu and Getoor, 2003] in Section 3. In Section 4, we discuss some of the

challenges presented by partially specified data in our setting. Section 5 provides experimental

results on a relational data set from the text categorization applications. In Section 6, we

extend our approach to learning classifiers from structured relational data that are annotated

with relevant meta data to a distributed setting. Section 7 concludes with summary, a brief
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Figure 4.1: (a) A simple schema corresponding to a bibliographic domain (the figure is adapted
from Getoor et al. (b) A sample instantiation graph corresponding to the schema in (a). The
nodes xi represent Article instances, i.e., xi ∈ Article, while the edges (xi, xj) represent
Cites instances, i.e., (xi, xj) ∈ Cites.

discussion of related work, and an outline of some directions for further research.

4.2 Ontology-Extended Structured Relational Data

A schema S of a structured relational data source describes a set of concepts X = {X1, · · · , Xt},

and the relations between them, R(Xi, Xj). An instance of a concept Xi is a structured object,

e.g. a string, a document, or an image. These instances can be described by features such as

a set of attributes, a histogram of words, or features from spatially contiguous elements of an

image. An attribute A of a concept Xi, denoted by Xi.A takes values in a set V(Xi.A). A

relation R(Xi, Xj) corresponds to a set defined as xi.R = {xj ∈ Xj s.t. xj is related to xi

through R}, where xi denotes an instance of the concept Xi. A tuple (xi, xj) is an instance of

the relation R. A data set D that specifies a set of instances and the relations between them is

an instantiation I(S) of a schema S. It can be represented as an instantiation graph in which

nodes denote instances and edges denote relations between instances [Getoor et al., 2002].

Figure bibliographic domain which consists of the Article concept and the Cites relation.

Figure 4.1b shows a sample instantiation graph corresponding to the relational schema in

Figure 4.1a. The nodes xi in the graph represent research articles (i.e., Article instances,
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xi ∈ Article) and the edges (xi, xj) represent the “citation” relation between articles (i.e.,

(xi, xj) ∈ Cites). Note that each instance can have a variable number of related instances and

thus, a variable number of features [Neville et al., 2003].

Assuming that we model a research article using the histogram of word occurrences, the

concept Article is described by two attributes: Article.Words that denotes the word his-

togram of the article, and Article.Topic, a categorical attribute that denotes the topic of the

article.

An ontology O associated with a structured relational data source D is given by a content

ontology that describes the semantics of the content of the data (e.g., the values and relations

between values that Article.Words can take in D)1. Of particular interest are ontologies

that specify hierarchical relations among values of attributes. Isa relations induce abstraction

hierarchies (AHs) over the values of attributes.

Definition 1 (Abstraction Hierarchy) An abstraction hierarchy T associated with an

attribute Xi.A is a rooted tree such that: (1) The tree T has exactly n = |V(Xi.A)| nodes such

that the leaves correspond to the most specific values of Xi.A, and the internal nodes correspond

to abstractions over the most specific values of Xi.A (i.e., more abstract values of Xi.A); in

particular, the root of T corresponds to the most abstract value of Xi.A; and (2) The edges of

T represent partial order relations ≺ (e.g., isa relations) between their corresponding nodes.

Definition 2 (m-Cut) An m-cut (or level of abstraction) γm through the abstraction

hierarchy T is a subset of m nodes of T satisfying the following properties: (1) For any leaf ai,

either ai ∈ γm or ai is a descendant of a node aj ∈ γm; and (2) For any two nodes ak, al ∈ γm,

ak is neither a descendant nor an ancestor of al. The set of abstractions A at any given m-cut

γm forms a partition of the set of leaves.

Figures 4.2a and 4.2b show two fragments of AHs over the values of the attributes Article.Topic

and Article.Words, respectively, corresponding to the bibliographic domain. The set

V(Article.Topic) consists of {Artificial Intelligence (AI), Data Mining (DM), Machine Learn-

ing (ML), Natural Language Processing (NLP ), Neural Networks (NN), Genetic Algorithms
1In a more general setting, the ontology O contains also a structure ontology that describes the semantics of

the elements of a schema S (concepts and their attributes), in addition to the content ontology.
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Figure 4.2: Two fragments of abstraction hierarchies (AHs) over the values of attributes
Article.Topic and Article.Words corresponding to a bibliographic domain are shown in
(a) and (b), respectively. The dash curves represent different cuts. The set {DM, ML, NLP}
represents a cut or level of abstraction γ3 in (a). {DM, NN, GA, CB, PM, T, RL, NLP} is a
finer cut γ8.

(GA), Case-Based (CB), Probabilistic Methods (PM), Theory (T ), Reinforcement Learning

(RL)}. The subset of nodes {DM,ML,NLP} represents a 3-cut γ3 through the AH in 4.2a.

The subset {DM,NN,GA,CB,PM, T,RL,NLP} is a finer cut γ8.

An ontology O associated with a structured relational data source D consists of a set of

AHs {T1, · · · , Tl}, corresponding to the set of attributes, w.r.t. the isa relation. A global cut

Γ through O consists of a set of cuts, one for each constituent AH, e.g., Γ = {γWords, γTopic}.

The isa relations between the nodes in an AH Ti associated with an attribute Xi.A specify

semantic relationships between the values of the attribute (more specific and more abstract

values). Examples of such semantic relationships are equality, x = y, meaning that x and y

are equivalent (or synonyms), and inclusion x < y, meaning that y subsumes x, or y is more

general than x [Rajan et al., 2005]. A subset of inclusion relationships between the values of

Article.Topic is {NN < ML, AI > ML}.

Definition 3 (Ontology-Extended Structured Relational Data Source) An ontology-

extended structured relational data source (OESRDS) is defined as a tuple {S,D,O}, where

S represents the structured relational data source schema, D is an instantiation of S, and O
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represents the data source ontology [Caragea et al., 2007c].

4.3 Learning Link-Based Classifiers from OESRDSs

We now proceed to describe an algorithm for learning classifiers from OESRDSs. We adapt

the link-based iterative classification algorithm introduced by Lu and Getoor [Lu and Getoor,

2003] to the problem of learning classifiers from OESRDSs. We apply the resulting classifiers

on the bibliographic domain where the task is to classify research articles based on their topics.

4.3.1 Link-based iterative classification

To label an instance, the iterative classification algorithm learns and exploits the distribu-

tion of links in the instantiation graph, in addition to the information available in the instance

itself. This approach to learning from relational data is potentially more powerful than meth-

ods (e.g., influence propagation over relations [Taskar et al., 2001]) that assume that related

instances have similar labels.

An Article instance xi is represented using the attribute Article.Words, denoted by

OA(xi), and the link distribution of xi, denoted by LD(xi) (to exploit the link patterns in

classifying xi). The object attribute OA(xi) holds xi’s word frequency counts. The link

distribution LD(xi) holds the topic frequency counts computed from the set of objects that

are linked to xi in four different ways as follows:

• InLink(xi) = {xj s.t. (xj , xi) ∈ Cites},

• OutLink(xi) = {xj s.t. (xi, xj) ∈ Cites},

• CoInLink(xi) = {xj s.t. xj 6= xi and ∃xk : (xk, xi) ∈ Cites and (xk, xj) ∈ Cites},

• CoOutLink(xi) = {xj s.t. xj 6= xi and ∃xk : (xi, xk) ∈ Cites and (xj , xk) ∈ Cites}.

The iterative classification algorithm consists of two steps, bootstrap and iteration [Lu and

Getoor, 2003]:

Step 1: Using only the object attributes OA(xi), assign an initial topic to each article xi in

the test set.
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Step 2: Using the object attributes OA(xi) and the link description LD(xi), iteratively assign

a topic to each article xi in the test set, until a termination criterion is met (e.g., either

there are no changes to the topic assignments of articles or a certain number of iterations

is reached). That is, for each article xi:

1. Encode xi using OA(xi) and LD(xi), based on the current assignments of linked

articles;

2. Compute:

ĉ(xi) = arg max
cj∈C

P (cj |OA(xi))
∏

l∈{In,Out,CI,CO}

P (cj |LDl(xi))

We use a Multinomial Näıve Bayes classifier [McCallum and Nigam, 1998]. The Näıve

Bayes classifier makes the assumption that the attributes of each instance are conditionally

independent given the class. Using Bayes rule and the independence assumption, the above

probabilities can be replaced by:

P (cj |OA(xi)) = P (cj)
∏

vi∈V(OA(xi))

P (vi|cj)

P (cj |LDl(xi)) = P (cj)
∏

ui∈V(LDl(xi))

P (ui|cj)

Although this assumption may be violated in practice, empirical results show that Näıve

Bayes classifier is competitive with state-of-the-art methods (including those that are compu-

tationally far more expensive than Näıve Bayes) on the document classification task [Mitchell,

1997], [Neville et al., 2003].

4.3.2 Learning Link-Based Näıve Bayes Classifiers from OESRDSs

We note that the task of learning link-based Näıve Bayes classifiers reduces to estimat-

ing the probabilities P (cj), P (vi|cj), and P (ui|cj), for all class labels cj ∈ C, for all object

attribute values vi ∈ V(OA(xi)) and for all link description values ui ∈ V(LDl(xi)). These

probabilities can be estimated from data using standard methods [Mitchell, 1997]. The result-

ing estimates constitute sufficient statistics for the parameters that specify a link-based Näıve

Bayes classifier.
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The task of learning link-based Näıve Bayes classifiers from an OESRDS {S,D,O} at a

given level of abstraction Γ essentially entails estimating the relevant probabilities from the

corresponding OESRDS.

We denote by σ(vi|cj) the frequency counts of the value vi ∈ V(OA(xi)), given the class

label cj ; by σ(ui|cj) the frequency counts of the value ui ∈ V(LDl(xi)), given the class label

cj ; and by σ(cj) the frequency counts of the class label cj , for a particular choice of a level

of abstraction Γ in O. The algorithm for learning a link-based Näıve Bayes classifier from an

OESRDS works as follows:

1. Formulate statistical queries asking for the frequency counts σ(vi|cj), σ(ui|cj), and σ(cj),

using the terms on the global cut Γ (γWords and γTopic).

2. Generate the link-based Näıve Bayes hΓ corresponding to the cut Γ based on the com-

puted frequency counts.

Choosing a level of abstraction Γ in O can result in data that are only partially specified.

This can arise from partially specified values of an attribute2. In the next section, we define

the partially specified values and provide a solution to the problem of dealing with partially

specified data based on a statistical approach, called shrinkage [Stein, 1955], [James and Stein,

1961], [McCallum et al., 1998].

4.4 Coping with Partially Specified Data

Definition 4 (Partially Specified Value): An attribute value vi ∈ V(Xi.A) in an AH

T is partially specified (or under-specified) w.r.t. an attribute value vj ∈ V(Xi.A) in the same

AH if vi > vj; vi is over-specified w.r.t. vj if vi < vj; vi is fully-specified w.r.t. vj if vi = vj

[Zhang et al., 2006].

For example, given the AH in Figure 4.2a over the values of the attribute Article.Topic,

the value ML is under-specified w.r.t. NN , since a machine learning article may be a neural

network article, a reinforcement learning article, etc., but over-specified w.r.t. AI because each
2Partially specified data can also arise from partially specified schemas, i.e., when schema concepts are

partially specified.
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machine learning article is an artificial intelligence article. Furthermore, ML is fully-specified

w.r.t. MachineLearning (not shown in the figure).

The problem of learning from partially specified data (when only the attributes are partially

specified) has been addressed by Zhang et al. [Zhang and Honavar, 2003], [Zhang et al.,

2006] in the setting where data instances are described by nominal attributes. This approach

exploits the observation that the problem of learning from partially specified data is a natural

generalization of the problem of learning from data in the presence of missing attribute values

[Zhang et al., 2006]. Hence, it is possible to adapt statistical approaches for dealing with

missing data [Little and Rubin, 2002] to deal with partially specified data under a variety of

assumptions, (e.g., the distribution of an under-specified attribute value is similar to that in

another data source where the corresponding attribute is fully specified).

Learning from data instances (e.g., documents) where a multinomial model is assumed as

the underlying generative model presents further complications: The “same” attribute can

be over-specified in one place in the document and under-specified in another place in the

document. To see this, consider the following paragraph taken from John C. Mallery’s arti-

cle “Semantic Content Analysis: A New Methodology for the RELATUS Natural Language

Environment” [Mallery, 1991]:

“Semantic content analysis differs from traditional computerized content analysis because

it operates on the referentially integrated meaning representation of a text instead of a linear

string of words. Rather than assessing the thematic orientation of texts based on the frequen-

cies of word occurrences, this new methodology examines and interprets explicit knowledge

representations of texts. [· · ·] Beyond semantic content analysis, lexical classification expands

the referential performance because it provides a basic inference mechanism to extend index-

ation, semantically disambiguate word senses, and provide criteria for further deliberation in

reference. [· · ·] The immediate political-analytic application of lexical classification is semantic

content analysis.”

In this paragraph, the term semantic content analysis is over-specified w.r.t. lexical clas-

sification which in turn is over-specified w.r.t. methodology ; the term this new methodology
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Figure 4.3: A fragment of an AH associated with the attribute methodology. The term lex-
ical classification is at the same time under-specified (wrt semantic content analysis) and
over-specified (wrt methodology) in the same document. Its cumulative frequency counts are
computed from its own frequency counts, term frequency counts coming from all its descen-
dants, and a percentage term frequency counts coming from all its ancestors. The participating
nodes are dashed.

refers to the semantic content analysis.

The fact that a term can be at the same time over-specified and under-specified even in the

same document (Figure 4.3), complicates the problem of dealing with partially specified data.

Our solution to this problem is based on a statistical method, called shrinkage [Stein, 1955],

[James and Stein, 1961], [McCallum et al., 1998], that provides better estimates of a model

parameters when the data is organized in an abstraction hierarchy (as defined in Section 2).

Hence, we compute the counts for a term Ti in a document D as a summation (or cumulative

term frequency counts) of the following three types of counts:

1. the term Ti frequency counts, i.e., the number of Ti occurrences in the document D;

2. the sum of term frequency counts coming from all its descendants Tk in the hierarchy,

i.e., the term frequency counts of each node term Tk in the tree rooted at Ti (the term

Ti is under-specified wrt any of its descendants);

3. a percentage term frequency counts coming from all its ancestors in the hierarchy, i.e.,

the percentage term frequency counts of each node term Tj in the tree on the path from
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Ti to the root of the tree. Thus, the frequency counts of term Tj are distributed among

all its descendants proportionally to their frequency counts (the term Ti is over-specified

wrt any of its ancestors).

4.5 Experiments and Results

4.5.1 Experiments

The goal of the experiments is to explore the feasibility of our approach to learning link-

based Näıve Bayes classifiers from ontology-extended structured relational data sources. We

investigated: (i) the effect of learning classifiers at different levels of abstraction; (ii) the effect

of partially specified data on the performance of our classifiers by comparing two approaches:

using only term frequency counts and using cumulative term frequency counts.

We evaluated our approach on a subset of the Cora data set [McCallum et al., 2000],

that is a standard benchmark data set of research articles and their citations (which can be

modeled as relations among the articles). The article topics are organized in a hierarchy with

73 leaves. We considered only the articles in Cora that are found on the Web and have topics

in the topic hierarchy shown in Figure 4.2a, and that cite or are cited by at least one other

article, so that there are no isolated nodes in our instantiation graph. Filtering the Cora

data using these criteria yields a data set of 2469 articles and 8297 citations. We associate

abstraction hierarchies (AHs) over the values of both attributes of the concept Article, i.e.

Article.Words and Article.Topic.

The Article.Topic hierarchy is a subtree of the Cora topic hierarchy and contains only

8 leaves out of 73. These leaves along with their article numbers are shown in Table 4.1.

The first six topics can be grouped into the more general term Machine Learning. Machine

Learning, Data Mining, Natural Language Processing can be grouped into the more general

term Artificial Intelligence (Figure 4.2a).

We designed the Article.Words abstraction hierarchy as follows: from the titles and

abstracts of our collection of articles, we first removed punctuation and words that contain

numbers, and then performed stemming and removal of stop words and words that occur less
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Topic NumArticles
Neural Networks (NN) 610
Genetic Algorithms (GA) 342
Case-Based (CB) 242
Probabilistic Methods (PM) 339
Theory (T) 325
Reinforcement Learning (ReL) 214
Data Mining (DM) 167
Natural Language Processing (NLP) 236

Table 4.1: Article topics along with their numbers in our subset of the Cora set.

than 10 times in the whole collection. From the remaining distinct terms we extracted 234

terms and manually organized them in an abstraction hierarchy using definitions in Wikipedia

(available at http://en.wikipedia.org). Each node in the hierarchy corresponds to one of the

234 terms, and its associated term is more general w.r.t. any term from its descendants and

more specific w.r.t. any term from its ancestors in the hierarchy.

In our experiments, we use four cuts, or levels of abstraction, through the abstraction

hierarchy corresponding to the Article.Words attribute. These cuts are as follows:

• the most abstract level, i.e. the set of nodes corresponding to the children of the root

form the first cut, denoted by Cut 1

• the second cut was obtained by replacing one node ( randomly chosen) from Cut 1 by

its children; the resulting cut is denoted by Cut 2

• the most detailed level, i.e. the set of nodes corresponding to the leaves of the trees form

the third cut, denoted by Leaf Cut

• a subset of nodes from the Leaf Cut was replaced by their parent, denoted by Cut 3.

4.5.2 Results

The effect of learning classifiers at different levels of abstraction. In our first set

of experiments, we investigated the effect of learning classifiers at different levels of abstraction.

We consider two tasks. In the first task suppose that we are interested in classifying computer
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Level of Abstraction Accuracy Precision Recall F-Measure
Cut 1 0.86 0.80 0.47 0.51
Cut 2 0.86 0.83 0.46 0.51
Cut 3 0.89 0.86 0.62 0.69
Leaf Cut 0.89 0.84 0.61 0.68

Table 4.2: The classification results on the task of classifying articles into one of the three
categories: Data Mining, Machine Learning, and Natural Language Processing for all four
levels of abstraction considered: Cut 1, Cut 2, Cut 3, Leaf Cut.

science research articles into one of the three classes: Data Mining, Machine Learning and

Natural Language Processing. Assume that we are given a cut in the AH corresponding to

the Article.Words attribute. Sufficient statistics (corresponding to terms on the cut) are

gathered so that the classifier can be trained.

The classification results for this task, for all four levels of abstraction, Cut 1, Cut 2,

Cut 3, and Leaf Cut, are shown in Table 4.2. The performance measures of interest were

estimated by averaging the performance of the classifier on the five runs of a cross-validation

experiment. As can be seen from the table, classifiers trained at different levels of abstraction

differ in their performance on the test data. Moving from a more general to a more specific

level of abstraction does not necessarily improve the performance of the classifier because

there may not be enough data to accurately estimate the classifier parameters. Similarly,

moving from a more specific to a more general level of abstraction does not necessarily improve

the performance since there may not be enough terms on the cut to discriminate between

classes. As can be seen in Table 4.2, Cut 3 yields the best performance among the four levels

considered, although it is an abstraction of the Leaf Cut. This suggests the possibility of

variants of the algorithm considered here that automatically search for an optimal level of

abstraction using methods similar to those proposed in [Zhang and Honavar, 2003], [Zhang et

al., 2006].

In the second task suppose that we are interested in predicting whether the topic of a

research article is Neural Networks. This requires finding a cut through the AH corresponding

to the attribute Article.Topic that contains the term Neural Networks. The articles labeled
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Figure 4.4: a) Comparison of the ROC curves of the link-based Näıve Bayes classifiers on the
task of predicting whether a research article is Neural Networks for all four levels of abstraction
considered in this study: Cut 1, Cut 2, Cut 3, and Leaf Cut. b) Comparison of the average
F-Measure under two scenarious: the counts for each term are simply term frequency counts
(shown in gray) and the counts for each term are cumulative term frequency counts (shown in
black). The numbers on the x axes represent the number of terms on a particular cut.

with the term Neural Networks represent positive instances, while the rest represent negative

instances.

Figure 4.4a shows the Receiver Operating Characteristic (ROC) curves on this binary

classification task using the same four levels of abstraction as above. The ROC curves show the

tradeoff between true positive and false positive predictions over their entire range of possible

values. As can be seen from the figure, for any choice of the False Positive Rate, as we go from

a coarser to a finer level of abstraction, the link-based Näıve Bayes classifier offers a higher

True Positive Rate (Recall). The performance improvement is quite striking from Cut 1 to

Cut 2. However, the difference in performance between Cut 3 and the Leaf Cut is rather

small (and eventually levels off). Unlike the first task where the classifier trained based on Cut

3 outperforms those trained based on the other cuts, in the second task the classifier trained

based on the Leaf Cut outperforms the others. This can be explained by the fact that the

number of parameters that need to be estimated is much smaller for this second task. As the

number of parameters that need to be estimated increases, more and more data is required to

obtain good estimates.
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The effect of partially specified data on the performance of classifiers. In our sec-

ond set of experiments, we investigated the effect of partially specified data on the performance

of our classifiers.

Figure 4.4b compares the average F-Measure under two scenarios. In the first scenario,

the counts for each term on the cut are simply the term frequency counts conditioned on the

class attribute, i.e. the number of term occurrences in the collection of articles given the class

attribute. In the second scenario, the counts for each term on the cut are the cumulative term

frequency counts conditioned on the class attribute (see Section §4 for more details). As can

be seen from the figure, taking into account the effect of partially specified data through the

means of cumulative term frequency counts improves the average F-Measure for all four levels

of abstraction considered in this study on the task of predicting whether the topic of an article

is Neural Networks. We obtained similar results on the task of classifying articles into one of

the three categories: Data Mining, Machine Learning, and Natural Language Processing (data

not shown).

4.6 Extension to a Distributed Setting

4.6.1 Background and Motivation

Recent technological advances have led to a proliferation of autonomously operated, dis-

tributed data repositories in virtually every area of human endeavor. Many groups have devel-

oped approaches for querying semantically disparate sources [Levy, 2000], [Noy, 2004], [Doan

and Halevy, 2005], [Calvanese et al., 2005], for discovering semantic correspondences between

ontologies [Kalfoglou and Schorlemmer, 2005], [Noy and Stuckenschmidt, 2005], and for learn-

ing from autonomous, semantically heterogeneous data [Caragea et al., 2005]. One approach

to learning from semantically disparate data sources is to first integrate the data from various

sources into a warehouse based on semantics-preserving mappings between the data sources

and a global integrated view, and then execute a standard learning algorithm on the resulting

centralized, semantically homogeneous data. Given the autonomous nature of the data sources

on the Web, and the diverse purposes for which the data are gathered, it is unlikely that a
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unique global view of the data that serves the needs of different users or communities of users

under all scenarios exists. Moreover, in many application scenarios, it may be impossible to

gather the data from different sources into a centralized warehouse because of restrictions on

direct access to the data. This calls for approaches to learning from semantically disparate

data that do not rely on direct access to the data but instead can work with results of statis-

tical queries against an integrated view. We present a principled approach to the problem of

learning classifiers from a collection of semantically disparate relational data sources in such a

setting. We use link-based Näıve Bayes classifiers as an example to illustrate this approach. We

show, under fairly general assumptions, that our approach is guaranteed to yield classifiers that

are identical to those obtained from a centralized, integrated data warehouse constructed from

the collection of semantically disparate relational data sources and associated ontologies and

mappings. Experimental results using our implementation of link-based Näıve Bayes classifiers

[Lu and Getoor, 2003], [Mitchell, 1997] for constructing text classifiers from text repositories

based on related but disparate ontologies demonstrate the feasibility of the proposed approach.

4.6.2 Learning Classifiers from Semantically Heterogeneous Distributed Rela-

tional Data

Recall that An ontology O associated with a structured relational data source D is given by

a content ontology that describes the semantics of the content of the data (e.g., the values and

relations between values that Article.Words can take in D). An ontology O in a distributed

setting consists of a set of AHs {T1, · · · , Tl}, w.r.t. the isa relation (one AH for each data

source). A cut (or level of abstraction) through an AH induces a partition of the set of leaves

in that hierarchy. A global cut through an ontology consists of a set of cuts, one for each

constituent AH.

A mapping ψ from a user ontology OU to a data source ontology OD (defining the seman-

tics of two different views of the same domain) establishes semantic correspondences between

the values of the attributes in OU and the values of attributes in OD. Examples of such

semantic correspondences are equality, x = y (i.e., x and y are equivalent), and inclusion
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x < y (i.e., y subsumes x, or y is more general than x) [Rajan et al., 2005]. A subset of

semantic correspondences between two AVHs corresponding to two ontologies OU and OD, T 1

and T 2, respectively, over the values of Article.Topic is {DMT1 = DataMiningT2 , NNT1 <

MachineLearningT2 , AIT1 > DataMiningT2}.

Definition: Let {S1,D1,O1},· · ·,{Sp,Dp,Op} be a set of OESRDSs. A user ontology OU ,

together with a set of mappings {ψk|k = 1, · · · , p} from OU to the data source ontologies

O1, · · · , Op define a user view [Caragea et al., 2007c], [Caragea et al., 2005].

The user view implicitly specifies a user level of abstraction, corresponding to the leaf nodes

of the hierarchies in OU . The mappings ψk can be established manually or semi-automatically

(e.g., using existing approaches to learning mappings between ontologies [Doan et al., 2003]).

Learning Classifiers from a collection of OESRDSs We assume the existence of: (1)

A collection of several related OESRDSs {S1,D1,O1},· · ·,{Sp,Dp,Op} for which the schemas

and the ontologies are made explicit and the instances in the data sources are labeled according

to some criterion of interest to a user (e.g., topic categories); (2) A user view, consisting of a

user ontology OU and a set of mappings ψk that relate OU to O1, · · · , Op; (3) A hypothesis

class H (e.g., Bayesian classifiers) defined over an instance space; (4) A performance criterion

P (e.g., accuracy on a classification task).

Under the above assumptions, learning classifiers from a collection of semantically heteroge-

neous OESRDSs can be formulated as follows: the task of a learner L is to output a hypothesis

h ∈ H that optimizes P , via the mappings {ψk}.

In this setting, the statistical query answering component of the algorithm poses a statistical

query against the user view; decomposes the query into sub-queries and translates them into

queries that can be answered by the individual data sources (based on the mappings from the

user ontology to the data source ontologies); and assembles the answer to the original query

from the answers returned by the individual data sources (Figure 4.5). Once a classifier has

been learned, it can be used to classify data that is at the disposal of the user.
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Figure 4.5: Learning classifiers from ontology-extended structured relational data sources.

Learning Link-Based Classifiers from a collection of OESRDs We now proceed

to describe our algorithm for learning classifiers from a collection of OESRDSs. We adapt the

link-based iterative algorithm introduced by Lu and Getoor [Lu and Getoor, 2003] to learning

classifiers from OESRDSs (see Section 4.3 for more details on the algorithm).

Learning link-based Näıve Bayes classifiers reduces to estimating the probabilities P (cj),

P (vi|cj), and P (ui|cj), for all classes cj ∈ C, for all object attribute values vi ∈ V(OA(xi)) and

for all link description values ui ∈ V(LDl(xi)) using standard methods [Mitchell, 1997] (see

Section 4.3 for an explanation of the link description).

We denote by σ(vi|cj) the frequency count of the value vi ∈ V(OA(xi)), given the class cj ;

by σ(ui|cj) the frequency count of the value ui ∈ V(LDl(xi)), given the class cj ; and by σ(cj)

the frequency count of the class cj , in the user view. The algorithm for learning a link-based

Näıve Bayes classifier from a set of related OESRDSs works as follows:

1. Select a global user cut Γ through the user ontology (AVHs). In particular, the user cut

corresponds to the set of primitive values (i.e., leaves in AHs).

2. Apply the mappings ψk to find a cut Γk, corresponding to the user cut Γ, in each OESRDS

{Sk,Dk,Ok}.

3. Formulate statistical queries asking for the frequency counts σ(vi|cj), σ(ui|cj), and σ(cj),

using terms in the user cut Γ.
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4. Translate these queries into queries expressed in the ontology of each OESRDS {Sk,Dk,Ok},

using terms in the cut Γk, and compute the local counts σk(vi|cj), σk(ui|cj), and σk(cj)

from each OESRDS {Sk,Dk,Ok}.

5. Send the local counts to the user and add them up to compute the global frequency

counts σ(vi|cj), σ(ui|cj), and σ(cj).

6. Generate the link-based Näıve Bayes hΓ corresponding to the cut Γ based on the global

frequency counts.

4.6.3 Exactness

Definition: An algorithm Ldistributed for learning from OESRDSs {S1,D1,O1},· · ·,{Sp,Dp,Op},

via the mappings {ψk}, is exact wrt its centralized counterpart Lcentralized, if the hypothesis

produced by Ldistributed is identical to that produced by Lcentralized from the data warehouse

D that is constructed by integrating the data sources D1, · · · ,Dp, according to the user view,

via the same mappings {ψk}.

The exactness criterion defined above assumes that it is possible, in principle, to create an

integrated data warehouse in the centralized setting. In practice, the data sources D1, · · · ,Dp

might impose access constraints on the user. These constraints might prohibit the user from

retrieving instance data from some of the data sources (e.g., due to restrictions on the queries

that can be answered by the data source, bandwidth limitations, or privacy considerations),

while allowing retrieval of answers to statistical queries against the data.

Note that the algorithm for learning a link-based Näıve Bayes classifier from OESRDSs

using statistical queries is exact relative to the link-based Näıve Bayes classifier obtained by

executing the standard algorithm on the data warehouse D obtained by integrating the set of

OESRDSs {S1,D1,O1},· · ·,{Sp,Dp,Op} (using the same set of mappings {ψk}). This follows

from the observation that σ(vi|cj) =
∑k

i=1 σk(vi|cj) = σD(vi|cj), σ(ui|cj) =
∑k

i=1 σk(ui|cj) =

σD(ui|cj), σ(cj) =
∑k

i=1 σk(cj) = σD(cj), when there is no overlap between the distributed

sources. Note that dealing with duplication of instances between any two data sources requires

establishing correspondences between individual instances [Parag and Domingos, 2004].
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4.6.4 Experiments and Results

The goal of the experiments is to demonstrate the feasibility of the statistical query-based

approach to learning link-based Näıve Bayes classifiers from a set of related, ontology-extended

data sources from a user’s point of view. We investigated: (i) the effect of learning classifiers

at different levels of abstraction, by refining the user cut, starting with the most abstract cut;

(ii) the effect of partially specified data on the performance of our classifiers by comparing two

approaches: using only term frequency counts and using cumulative term frequency counts.

We evaluated our approach to learning classifiers from a collection of semantically disparate

relational data sources on the same data set as for learning classifiers from a single relational

data source. To simulate the distributed setting, we randomly partitioned the Cora dataset

into two subsets, such that the class distribution in each subset is similar to the class distri-

bution in the entire dataset (stratified partitioning). In our experiments, we used one-to-one,

manually-defined mappings between the user ontology and the data source ontologies. More-

over, the same four cuts, or levels of abstraction, through the user hierarchy corresponding to

the Article.Words attribute were also considered in the distributed setting.

As the results in the distributed setting are identical with the results in the centralized

setting (i.e., the results in Section 4.5), we do not repeat them.

4.7 Summary and Discussion

We have described an algorithm for learning link-based Näıve Bayes classifiers from ontology-

extended structured relational data sources. We have evaluated the resulting classifiers on a

text categorization task for several choices of levels of abstraction. The results of our exper-

iments show that more abstract levels can yield better performing classifiers. We have also

addressed some of the unique challenges presented by partial specification of data which is

unavoidable on text data.

The problem of learning classifiers from relational data sources has received much attention

in the machine learning literature [Getoor et al., 2002], [Neville et al., 2003], [Taskar et al.,

2002]. In contrast to these methods, we have presented in this paper an algorithm for learning
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predictive models from relational data sources which is annotated with relevant meta data.

Zhang et al. [Zhang and Honavar, 2003], [Zhang et al., 2006] proposed an approach to learning

classifiers from partially specified data over nominal attributes when data are stored in a flat

table. McCallum et al. [McCallum et al., 1998] have used a well-known statistical approach,

called shrinkage, in a hierarchy of classes to improve classification accuracy. Inspired from

this work, we have used shrinkage to handle partially specified text data where a multinomial

model is assumed as the underlying generative model for the text documents.

Furthermore, we have described a general strategy for learning link-based Näıve Bayes clas-

sifiers [Lu and Getoor, 2003] from a collection of semantically disparate relational data sources.

The proposed approach exploits mappings between a user ontology and data source ontologies

to gather the necessary statistics for learning the classifiers. The resulting algorithms for learn-

ing link-based classifiers from semantically disparate relational data sources can be shown to

be provably exact relative to their centralized counterparts under fairly general assumptions.

The problem of learning classifiers from a semantically homogeneous relational database has

received much attention in the recent machine learning literature [Getoor et al., 2002], [Neville

et al., 2003]. There is a large body of literature on learning predictive models from distributed

data (see [Kargupta and Chan, 2000], [Caragea and Honavar, 2008] for surveys). Of particular

interest in our setting is the work of Caragea et al [Caragea et al., 2005] that introduced a

general strategy for transforming a broad class of standard learning algorithms that assume in

memory access to a dataset into algorithms that interact with the data source(s) only through

statistical queries or procedures that can be executed on the data sources. A basic strategy

for coping with semantically disparate data was outlined in [Caragea et al., 2005]. However,

these works assumed that data are stored in a flat table.

4.7.1 Discussion

Due to the unavailability of data sources that are already annotated with relevant meta

data, we performed experiments on only one data set, the relational Cora data set [McCallum

et al., 2000] . In our experiments, we manually associated an abstraction hierarchy over values
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of the attribute Article.Words. The hierarchy over the values of the attribute Article.Topic

is provided by the Cora data set.

To simulate a distributed setting, the Cora data set was randomly partitioned into two

data sets. We manually associated ontologies over values of the attributes Article.Topic and

Article.Words for the two data sets and a users point of view in order to have control over

the mappings. The mappings between the user ontology OU and the data source ontologies O1

and O2 are also specied manually. Because of the difficulty of manually specifying mappings

between two large ontologies, in our experiments, we used one-to-one mappings.

The algorithm presented here assumes a pre-specified level of abstraction defined by a

global cut through the ontology. Our experiments have shown that the choice of the level

of abstraction can impact the performance of the classifier. This suggests the possibility of

improving the algorithm using a top down, iterative approach to refining the cut (see Figure

4.2b), starting with the most abstract cut in the abstraction hierarchy corresponding to the

Article.Words attribute until an “optimal cut” and, thus, an optimal level of abstraction is

identified for the learning task at hand. This strategy is similar to that adopted in [Zhang et

al., 2006] in learning Näıve Bayes classifiers from a single flat table, in the presence of attribute

value taxonomies and partially specified data.

We investigated the effect of partially specified data on the performance of classifiers de-

signed to predict the topic of a text document. Our experiments have shown that incorporating

the effect of partially specified data through the means of cumulative term frequency counts

(i.e., shrinkage) in computing the statistics used by the learning algorithm improves the per-

formance of the resulting classifiers.

Some directions for future research include: implementation and experimental evaluation of

a large class of algorithms for learning predictive models from structured relational data sources

annotated with relevant meta data, including multi-modal data (e.g., images); exploring the

effect of using different ontologies and mappings; the use of automated approaches to establish

mappings between ontologies [Doan et al., 2003]; the effect of degree of incompleteness of

mappings; the effects of errors in mappings, etc.
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CHAPTER 5. SUMMARY AND DISCUSSION

5.1 Thesis Summary

Topologically structured data present an important characteristic: they have a topology

that reflects intrinsic dependencies between the constituent elements of the data. Examples of

topologically structured data include: text data, image data, biological sequence data, social

network data, etc. Hence, for each type of topologically structured data, we can define the

notion of “neighborhood” for an element of interest. For example, in the case of biological

sequence data, the neighborhood of an element (a residue) is given by the elements to its left

and to its right in the sequence (called, a “window” around the residue of interest). In the

case of image data, the neighborhood is given by the eight adjacent pixels in the image.

In this thesis, we present an abstraction-based approach that simplifies the data repre-

sentation used by a learner on topologically structured data with applications to biological

sequence and text classification tasks (when a multinomial model is assumed as the underlying

generative model for sequence data). Our abstraction-based approach exploits the comple-

mentary strengths of super-structuring (constructing complex features by combining exist-

ing features) and abstraction (grouping similar features to generate more abstract features).

Super-structuring provides a way to increase the predictive accuracy of the learned models by

enriching the data representation (hence, it increases the complexity of the learned models)

whereas abstraction helps reduce the number of model parameters by simplifying the data

representation.

Although we have focused on super-structuring in the case of sequence data to enrich

the data representation, and hence increase the performance of learned models, in general,

any topology that reflects the interactions between elements of structured data can be used
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to guide super-structuring. For example, in the case of image data, this involves generating

features from spatially contiguous elements of an image [Jolion and Rosenfeld, 1994], [Lazebnik

et al., 2006], [Ommer and Buhmann, 2007], [Cantoni and Petrosino, 2002], [Bosch et al., 2007].

We evaluated our abstraction-based models on biological sequence and text data in settings

where the sequences in a data set are independent and identically distributed, and where the

sequences are highly inter-connected.

The results of our experiments show that:

• adapting data representation by combining super-structuring and abstraction makes it

possible to construct predictive models that use significantly smaller number of features

(by one to three orders of magnitude) than those obtained using super-structuring alone

(whose size grows exponentially with k). Moreover, the performance of such models is

similar and, in some cases, better compared to the performance of models that use only

super-structuring, i.e., more abstract levels can yield better performing models (which

could be explained by overfitting) (Chapters 2, 3 and 4).

• simplifying data representation using abstraction yields better performing models than

those obtained by feature selection. On sequence classification tasks, selecting a subset

of super-structures by feature selection can substantially reduce the number of model

parameters. However, this approach of combining super-structuring and feature selection

may not capture important sequence patterns (motifs, in the case of biological sequences)

that are removed during the selection process (Chapter 2).

• organizing super-structures (i.e., k-grams) in abstraction hierarchies based on the con-

ditional distributions of the next letter in the sequence rather than based on the class

conditional distributions induced by the k-grams produces more suitable abstraction hi-

erarchies for abstraction-based Markov models, and hence, better performing models.

Furthermore, this data organization procedure allows to incorporate information avail-

able in the unlabeled data, that would otherwise be ignored by standard Markov models

(Chapters 3).
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• incorporating the effect of partially specified data using shrinkage when computing the

sufficient statistics used by a learning algorithm improves the performance of the resulting

classifiers on text data (a multinomial model is assumed as the underlying generative

model for text data). In such settings, partially specified data inevitably result from

choosing a level of abstraction (Chapter 4).

5.2 Summary of Contributions and Future Directions

In what follows, we present the context of our work, summarize the contributions of this

thesis, and outline some directions for further research. We start with the setting in which the

sequences in a data set are independent and identically distributed.

5.2.1 Independent and identically distributed sequence data

5.2.1.1 Context of our work

Segal et al. [Segal et al., 2002] and McCallum et al. [McCallum et al., 1998] have used

abstraction hierarchies over classes to improve classification accuracy. Slonim and colleagues

[Slonim and Tishby, 1999], [Slonim et al., 2001] have introduced the information bottleneck

(IB) methods that perform model compression by identifying a set of bottleneck variables. In

IB, the data in a given data set is organized in abstraction hierarchies based on the similarity

of the class conditional distributions. Inspired from the IB methods, Punera et al. [Punera

et al., 2006] have designed an algorithm to organize classes in a given data set in an n-ary

taxonomy. They have shown that n-ary tree based taxonomies provide a more “natural” way

to organize classes in a hierarchy than the binary tree based taxonomies. Zhang et al. [Zhang

et al., 2006] have used abstraction hierarchies over nominal variables to build compact yet

accurate classifiers. Silvescu [Silvescu, 2008] has introduced a method, called combining super-

structuring and abstraction (SS-A), where abstraction hierarchies are learned from sequence

data. Specifically, super-structuring is used to extract contiguous sub-sequences of a certain

length k from sequence data, followed by abstraction that is used to organize them in an

abstraction hierarchy. Silvescu [Silvescu, 2008] has trained Näıve Bayes classifiers to label
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biological sequences. This work is similar in spirit to the agglomerative information bottleneck

(AIB) method of Slonim and Tishby [Slonim and Tishby, 1999]. However, AIB requires an

iterative process to estimate parameters for the bottleneck variables, whereas SS-A requires

only a simple weighted aggregation of the existing parameters.

5.2.1.2 Summary of contributions

• We have extended SS-A to text classification (Chapter 2). We found that:

– The performance of classifiers trained using super-structuring representation was

worse than that of classifiers trained using a “bag of words” feature representation

which is consistent with the work of Dumais et al. [Dumais et al., 1998].

– We compared Näıve Bayes trained using an abstraction-based representation with

Näıve Bayes trained using a “bag of words” representation, and with Näıve Bayes

trained using feature selection-based representation. Consistent with the results

obtained using SS-A, the abstraction-based representations result in better per-

forming models than those based on feature selection, and in similar performing

models compared to the “bag of words” representations.

– Although feature selection and abstraction are seemingly antagonistic, better re-

sults can be obtained by using them sequentially, whereas feature selection is used

to remove the irrelevant features, and abstraction is used to deal with feature re-

dundancy.

• We have explored Support Vector Machine classifiers in the SS-A framework

on biological sequence prediction tasks (Chapter 2). We found that:

– The combination of super-structuring and abstraction results in better performing

models than that of super-structuring and feature selection.

– Unlike Näıve Bayes classifiers, SVMs trained on super-structuring followed by ab-

straction representation substantially outperform those trained on super-structuring
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representation. Hence, abstraction can be seen as a regularizer for SVM classifiers

which are sensitive to overfitting.

• We have introduced and studied Abstraction Augmented Markov Models

(AAMMs) (Chapter 3). Specifically,

– we have shown how to represent and learn AAMMs.

– we have designed a clustering algorithm that produces suitable abstrac-

tion hierarchies for AAMMs.

– Furthermore, our clustering algorithm allows to incorporate information available

in the unlabeled data that are rather plentiful. Hence, we have shown how to

produce more accurate models compared to the standard Markov models

in a semi-supervised setting .

– Although AAMMs are less expressive models than HMMs, we have shown that

they are easier to learn models compared to HMMs.

• We found that:

– Abstraction-based Markov models substantially outperform the standard Markov

models in both supervised and semi-supervised settings.

– The AAMM clustering algorithm helps produce more suited abstraction hierarchies

than agglomerative information bottleneck for abstraction-based Markov models.

5.2.1.3 Future directions

As the immediate next steps, we plan to:

• Explore the combination of super-structuring, feature selection and abstraction on bi-

ological sequence data, whereas super-structuring helps enrich the data representation,

feature selection helps remove the irrelevant feature, and abstraction helps handle redun-

dancy in the features;
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• Compare SS-A with more sophisticated feature selection methods;

• Explore Support Vector Machine classifiers in the context of AAMMs;

• Compare AAMMs with Hidden Markov Models [Durbin et al., 2004] and Interpolated

Markov Models [Jelinek and Mercer, 1980] on a broad range of sequence classification

tasks, including text classification;

• Use abstraction to design Abstraction Augmented Hidden Markov Models (AAHMMs)

and Abstraction Augmented Interpolated Markov Models (AAIMMs).

In related work, Liu et al. [Liu et al., 2008] developed a system called TEFE (Time-

Efficient Feature Extraction) to extract a “good” set of features from image data, and the goal

was to trade off the test accuracy against the test time cost. TEFE starts by ranking all m

features by their extraction time cost. Then, a collection of m SVM classifiers are trained in

cascade such that the ith SVM is trained on the best ranked ith features. During testing, the

best ranked feature is extracted from a test image. If the output returned by the 1st SVM is

higher than a user threshold θ, the prediction (made by the 1st SVM) is returned. Otherwise

the next feature is extracted from the image and the process is repeated until there are no

more features available or a predefined amount of time t is exceeded.

Motivated by our findings that abstraction results in better performing models than feature

selection, and the fact that image data is a special case of topologically structured data, we

plan to:

• Extend our abstraction-based approach to image data.

In related work of Zhang et al. [Zhang et al., 2006], the authors present an approach to

searching for a compact classifier by trading off the complexity against the accuracy of the

models. Similar to this approach, we plan to:

• Design a scoring function to determine the “best” cut in an abstraction hierarchy to

trade off the complexity against the accuracy of the learned models.
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Furthermore, as the quality of classifiers that use as input abstract features highly depends

on the quality of the abstraction hierarchies, we plan to:

• Design well suited top-down clustering algorithms for building abstraction hierarchies.

Other directions for future research of the work in Chapter 2 and 3 may include:

• Extension of abstraction-based models to an unsupervised setting

• Comparison of abstraction-based models trained in a semi-supervised setting with those

trained in a transductive setting

5.2.2 Relational sequence data

In a more general setting, sequence data is highly inter-connected, e.g. news articles link to

related news articles, Wikipedia articles link to related internal or external articles. We refer

to such data as relational or network data.

5.2.2.1 Context of our work and summary of contributions

The problem of learning classifiers from relational data sources has received much attention

in the machine learning literature, e.g. [Getoor et al., 2002], [Neville et al., 2003], [Taskar et al.,

2002]. However, there has been limited exploration of techniques that use structured relational

data sources that are annotated with relevant meta data.

• We have described an Expectation-Maximization algorithm for learning link-

based Näıve Bayes classifiers from relational data that are organized in ab-

straction hierarchies associated with both the input (i.e., text data) and the

output (i.e., class variable) (Chapter 4).

Choosing a particular level of abstraction inevitably results in partially specified data. Zhang

et al. [Zhang and Honavar, 2003], [Zhang et al., 2006] have previously proposed an approach to

learning classifiers from partially specified data over nominal attributes when data are stored

in a flat table. McCallum et al. [McCallum et al., 1998] have used a well-known statistical
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approach, called shrinkage, in a hierarchy of classes to improve the statistical estimates of

model parameters when the data at a node is sparse. The authors have shown that shrinkage

improves classification accuracy. Shrinkage has also been used in language modeling [Jelinek

and Mercer, 1980] for smoothing n-grams on speech recognition tasks.

• We have used shrinkage to cope with partially specified text data where a

multinomial model is assumed as the underlying generative model for the

text documents (Chapter 4).

• We found that:

– more abstract levels can yield better performing classifiers

– incorporating partially specified data using shrinkage yields better estimates of

model parameters

Given the existence of massive autonomous distributed data sources that are gathered for di-

verse purposes, it is unlikely that a unique global view of the data that serves the needs of

different users or communities of users under all scenarios exists. Moreover, it may be impossi-

ble to gather data from different sources into a centralized warehouse because of restrictions on

direct access to the data. Kargupta and Chan [Kargupta and Chan, 2000] and Caragea et al.

[Caragea et al., 2005] (among others) have learned classifiers from semantically heterogeneous

distributed data.

• We have extended the approach introduced in [Caragea et al., 2005] to the

semantically heterogeneous, distributed, relational data setting (Chapter 4).

Specifically,

– we have described a strategy for learning link-based Näıve Bayes classi-

fiers from a collection of semantically disparate relational data sources

that exploits mappings between a user ontology and data source ontolo-

gies to gather necessary statistics for learning classifiers.
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– The algorithm for learning link-based Näıve Bayes classifiers from such data using

statistical queries is exact relative to link-based Näıve Bayes classifiers obtained in

a centralized setting when there is no overlap between the distributed data sources.

5.2.2.2 Future directions

Some directions for future research of the work in Chapter 4 may include:

• application of the abstraction-based approach to annotate multi-modal data (e.g., im-

ages)

• exploration of approaches (e.g., approaches developed in earlier chapters) to automati-

cally constructing abstraction hierarchies from data

• exploration of the effect of:

– using different abstraction hierarchies and mappings in a distributed setting

– the degree of incompleteness of mappings

– errors in mappings

• usage of automated approaches to establish mappings between abstraction hierarchies.
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