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Vertical Ensemble Co-Training for Text Classification
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High-quality, labeled data is essential for successfully applying machine learning methods to real-world text

classification problems. However, in many cases, the amount of labeled data is very small compared to that

of the unlabeled, and labeling additional samples could be expensive and time consuming. Co-training al-

gorithms, which make use of unlabeled data to improve classification, have proven to be very effective in

such cases. Generally, co-training algorithms work by using two classifiers, trained on two different views

of the data, to label large amounts of unlabeled data. Doing so can help minimize the human effort required

for labeling new data, as well as improve classification performance. In this article, we propose an ensemble-

based co-training approach that uses an ensemble of classifiers from different training iterations to improve

labeling accuracy. This approach, which we call vertical ensemble, incurs almost no additional computational

cost. Experiments conducted on six textual datasets show a significant improvement of over 45% in AUC

compared with the original co-training algorithm.
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1 INTRODUCTION

Supervised methods for inducing accurate text classifiers rely on the availability of large amounts
of labeled data. However, in many applications, because of the high cost and effort involved in
labeling the data, the amount of labeled data is small compared to the amount of unlabeled data.
Because of this growing gap between the rate of acquisition of textual data and the rate of manual
labeling, there is a significant interest in semisupervised algorithms that can exploit large amounts
of unlabeled data together with limited amounts of labeled data in training text classifiers [58].
Co-training, originally developed by Blum andMitchell [3], is a semisupervised learningmethod

designed to tackle these types of scenarios. Specifically, in addition to a small labeled training
set, the co-training algorithm assumes that a large, unlabeled training set is available. One of the
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requirements for co-training towork is that the data can be represented using two different “views”
of features on which two separate classifiers are trained. Unlabeled data are then labeled with
these two classifiers. Iteratively, each classifier selects a few unlabeled samples for which it has
the highest level of certainty in classification. These samples (a few from each class) are added
to the labeled training set with the labels predicted by these classifiers in such a way that each
classifier “trains” the other by providing it with samples that it may have difficulty classifying
on its own. This process continues until some stopping criterion is met (e.g., until a predefined
number of iterations is reached or all unlabeled data are used).
Since the introduction of the co-training approach, many extensions have been proposed in

the literature. For example, the original co-training has been shown to work well when the two
“views” or subsets of features satisfy certain assumptions on “sufficiency” and “independence” [3,
42]. The sufficiency assumption states that each feature subset is sufficient to predict the labels
of instances in the test set. The independence assumption states that the views of each feature
subset are independent of each other given the label. Recent research has proposed extensions that
decompose the feature set into two views when an obvious split is not available [8, 15]. Moreover,
recent works have shown that the independence criterion can be relaxed without much impact on
the final performance [2].
Despite the many extensions, in our view, co-training methods are still lacking in two important

ways. First, although it has been shown in many application domains that unlabeled data can help
improve the classification performance [21, 29, 53], the addition of too many unlabeled samples to
the labeled training set may very well hurt performance [43]. Three common causes for this are
(1) the mislabeling of samples [28]; (2) the labeling of samples from a subgroup in the data, which
causes the classifier to “ignore” the other groups; and (3) the instability of the classification model,
caused by the small number of training samples.
The second shortcoming is that the final classification model produced by the co-training pro-

cess does not utilize in any way the knowledge represented by the various classifiers that were
created “along the way.” This is problematic not only because of the loss of possibly useful in-
formation but also because these models have already been generated as part of the co-training
process and using them incurs no additional cost.
To address the preceding limitations, we propose an improvement to the co-training algorithm.

By using the classification models created in multiple training iterations, we propose creating an
ensemble classifier. Not only does this approach produce a substantial improvement in classification
performance (up to 45%), the combining of a large number of classification models also produces
smoother, more robust results.
We evaluate our proposed improvements to co-training on six datasets from the text classifica-

tion domain. This domain is particularly well suited for the use of co-training since the labeling
of texts is both time consuming and expensive, as it requires human taggers. Our experiments on
these datasets clearly show that our proposed approach significantly outperforms the “standard”
co-training algorithm. In addition, the results clearly show that the relative improvement of the
proposed methods increases as the number of labeled training samples decreases.
The remainder of this article is organized as follows. Section 2 introduces related work on co-

training. In Section 3, we present the “standard” co-training algorithm. In Section 4, we present
our proposed method, and in Section 5, we present the results of our evaluation. Last, Section 6
presents our conclusions and directions for future research.

2 RELATEDWORK

In this section, we discuss the works most relevant to our study. In their ground-breaking article,
Blum and Mitchell [3] introduced the co-training framework, which suggested the use of different
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perspectives of the same data to train a pair of classifiers. This bootstrapping approach, which was
demonstrated on aWeb page classification problem, was later applied to many additional domains.
These domains include email classification [11, 29], academic home page classification [21], word-
sense disambiguation [39], image object recognition [8], tag-based image search [47], sentiment
analysis [53], and event identification in news [54].
Despite the diversity of the domains mentioned earlier, most works dealing with co-training

closely follow the model described by Blum and Mitchell [3] in the sense that they all use a pair of
classifiers trained on a small amount of labeled data. However, there are several works in which
attempts were made to modify or improve the original co-training algorithm by Blum andMitchell
[3].
One such interesting attempt was proposed in Denis et al. [11], which applied the co-training

algorithmwhen tagged samples from only one class are available, in addition to a pool of unlabeled
samples. By modifying the naive Bayes (NB) algorithm, the authors proposed two versions of the
algorithm capable of training the model. This approach may very well prove useful in cases where
the dataset in use is highly imbalanced and the chances of obtaining a sufficient number of samples
from both classes are small.
Multiview learning (of which co-training is a special case, with two views) has been studied

by the machine learning community with great interest [9, 35, 48]. This problem is typically ad-
dressed by maximizing “consensus” or agreement among the different views. Previous solutions
to multiview learning tend to frame the problem in terms of a global optimization problem and
simultaneously learn classifiers for all underlying views. In some cases, the solutions depend on
underlying classification algorithm used [4, 20].

Another interesting approach that has been proposed in several works [37, 41, 51, 52] is the
use of co-training together with active learning [30]. In active learning, an oracle (e.g., a human
expert) is used to analyze select samples and provide their true labels—an accurate but often time-
and resource-consuming process. The utilization of these two opposite methods (one is “cheap” to
apply but runs the risk of wrong labeling of samples, whereas the other is “expensive” yet accu-
rate) attempts to boost performance by providing the co-training algorithm with a small number
of “strategic” samples that can improve the classifiers’ performance. One example of a scenario
in which active learning may be very beneficial is when the two classifiers of the co-training al-
gorithm are in a strong “disagreement” over the assumed label of a sample. Another approach
for dealing with the uncertainty of adding initially unlabeled instances was proposed by Zhang
and Zhou [55], using an approach called COTRADE. The classifiers’ confidence is estimated on
unlabeled data using editing techniques and then high-confidence predicted examples that satisfy
certain constraints are added to the labeled set. In contrast, our approach uses classifiers that are
trained and stored at each iteration.
Transductive learning [25] is a field that bears similarity to co-training. In addition to training

a model based on a labeled training set, the said model also aims to derive insights from the entire
population (labeled and unlabeled alike). This approach facilitates the generation of models that
generalize better, especially when the size of the labeled training set is small. The approach was
found to be highly useful in text classification [26] due to its high dimensionality. As shown by Li
et al. [32], who used multiple views of the data together with transductive learning, this approach
can be integrates with co-training.
Other works have proposed to use ensemble learning, instead of active learning, to improve the

co-training process [34, 56, 57]. Ensemble classification consists of the use of multiple classifiers
(perspectives on the data) to achieve greater accuracy. These methods depend on the diversity of
their member classifiers with various methods being proposed to achieve this goal.
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Two of the most common methods in ensemble classification are bagging and boosting. In bag-
ging [5], different sets of instances and (reduced) attributes sets are chosen for each classifier, thus
forcing diversity. The best known member of this family of algorithms is the random forest algo-
rithm [6], which usually uses a simple majority vote to reach a final decision. In boosting [17, 18],
sets of weak learner are iterative trained while giving additional weight to misclassified instances.
Finally, the learners are linearly combined.
The common denominator of bagging and boosting, as well as most other ensemble methods,

is the reliance on diversity: the different classifiers must be different from one another to provide
different perspectives on the data. In this respect, ensemblemethods are very similar to co-training,
which also uses two (or more) different “views” of the data to improve classification. Because of
this similarity, it is hardly surprising that several methods for the incorporation of co-training and
ensemble methods have been proposed.
A successful attempt to incorporate these two methods was the tri-training algorithm [57],

which used three classifiers instead of two as proposed in the original work. This approach of-
fered a solution for scenarios in which the two co-training classifiers are in disagreement over the
label of an instance. Other approaches successfully demonstrated the benefit of integrating the
co-training and boosting methods [31, 34].

In this article, we also propose the use of ensemble learning together with co-training, how-
ever our proposed algorithm is easier to implement and less computationally costly, as it “reuses”
classifiers from previous training iterations.

3 THE CO-TRAINING ALGORITHM

3.1 The Co-Training Algorithm

Before introducing our proposed co-training algorithm, we first provide some background on the
original co-training [3].
The original co-training algorithm assumes that two independent views of the data are available

and are used to train two classifiers. The classifiers are trained on a set of labeled training instances
L and are used to classify a set of unlabeled training instances U . Then, iteratively, each classifier
selects a few instances from U of which it is most certain (for each of the target classes) and adds
them to L. For a classifier, the degree of certainty is determined by the probabilities assigned to
each unlabeled instance for belonging to class c. The instances are ordered by their probabilities,
and we select the top X ranking instances. We then add these instances to the labeled training
instances set L. The label assigned to each instance is the one presumed by the classifier.
The intuition behind this method is that the two classifiers are trained on two different views of

the data, and therefore one classifier can improve the performance of the other. As one classifier
feeds the other instances it may not be certain how to classify, the latter receives instances it has
problems classifying on its own, and thus the overall performance improves.
The basic (original) co-training algorithm that we use as our baseline is shown in Algorithm 1.

The input to the algorithm is a labeled set of instances (L), an unlabeled set of instances (U ),
a test set (T ), a classification algorithm (I ), and the number of iterations of the co-training (n).
The product of the algorithm is a classification model whose training set consists of the extended
training set (ET ). This set consists of the initial labeled set (L) and a portion of the unlabeled set
that was labeled throughout the training iterations and added to (L). Upon labeling, these newly-
labeled instances are removed from the unlabeled set.
In addition, the final classificationmodel produced by the co-training process completely ignores

the knowledge represented by the various classifiers that were created “along the way.” To address
these limitations, next we present our proposed co-training algorithm.
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ALGORITHM 1: The Original Co-Training Algorithm

Input:

L - labeled set

U - unlabeled set

T - test set

I - classification algorithm

n - number of iterations

Output:

ET - extended training set

h - classifier

Apply_Co_Traininд

ET ← L
for all iterations i ≤ n do

h1 ← TrainClassi f ier (I ,πx1 (ET ))
h2 ← TrainClassi f ier (I ,πx2 (ET ))
// label all unlabeled instances with h1

L1 ← ApplyClassi f ier (h1,πx1 (U ))
// label all unlabeled instances with h2

L2 ← ApplyClassi f ier (h2,πx2 (U ))
// add instances with highest confidence in L1 and remove them from the unlabeled set

ET ← ET ∪ SelectSamplesW ithHiдhestConf idence (L1)
// add instances with highest confidence in L2 and remove them from the unlabeled set

ET ← ET ∪ SelectSamplesW ithHiдhestConf idence (L2)
end for

EvaluateClassi f iers (h1,h2,T ).

3.2 Ensemble of Co-Training Models

One of the prerequisites to the successful application of ensemble learning is diversity. The various
classification models partaking in the ensemble need to offer varying “perspectives” (i.e., classifi-
cations or levels of confidence) regarding the labels of the instances of the training and validation
sets [13]. The success of our proposed approach depends on the co-training models generated
throughout the various iterations to possess this trait.
To determine whether this is the case, we review two previous studies examining this subject.

Mihalcea [39] analyzed the performance of the co-training algorithm throughout the training pro-
cess in an attempt to determine the optimal number of training iterations. The analysis presented
in this study shows significant fluctuations in precision for consecutive iterations, a fact that leads
us to conclude that themodels are significantly different and therefore could be useful in an ensem-
ble setting. Another study that supports this conclusion is that of Katz et al. [28], who demonstrate
that different strategies for selecting additional instances have significant performance on the per-
formance (i.e., the classification model) of the co-training algorithm.
Intuitively, this conclusion is to be expected. Given the fact that the classification models gen-

erated during the co-training process are created using only a small number of instances, the
addition of even a few instances is very significant percentage -wise. These changes are likely to
be even more significant for classifiers such as decision trees, which utilize a hierarchical ordering
of features with specific “split points” for each attribute (e.g., “if x < 4. take the left branch and
otherwise the right”).
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4 THE PROPOSED METHOD

As explained in Section 2, existing approaches to the use of ensembles with co-training have two
drawbacks in our view: the added computational cost of usingmultiple classifiers in every iteration
and the fact that there might not be enough “informative” features to make the different classifiers
sufficiently different from one another (i.e., useful).
We present an ensemble solution designed to address the two shortcomings mentioned previ-

ously. Instead of using horizontal ensemble—the training of multiple classifiers on the same data
at each iteration—we propose a vertical ensemble solution that utilizes the models created during
the previous training iterations.
The proposed algorithm is presented in Algorithm 2. The two classifiers that are generated at

each iteration are used in conjunction with the classifiers of previous iterations to rank the unla-
beled samples. It is important to note that the splitting of the data into two “perspectives” remains,
with each current model being integrated only with the previous models that were trained on the
same data. The integration of the different classifiers is done by averaging the probabilities that
they assign to the analyzed instances of belonging to each of the possible classes. This technique,
known as distribution summation, is recommended by Menahem et al. [38]. The authors of this
study have shown that averaging the probabilities obtained by the various classifiers is often su-
perior to other methods (e.g., Bayesian combination [7]).
Once the training iteration is complete, the two models that were generated during the current

iteration are saved for future use. Upon the termination of the training process, a set of the most
recent classifiers are used in an ensemble to classify the test set.
The vertical ensemble solution offers significant advantages in running time and memory usage

compared to previously proposed ensemble solutions while also addressing their possible perfor-
mance shortcomings. By storing the models generated previously, the number of classification
models that needs to be generated at each iteration remains two. This corresponds to the two
views used by the algorithm and is identical to the original co-training algorithm. Moreover, the
addition of new samples to the (very small) labeled dataset is likely to generate different models
for different training iterations, thus providing the diversity required for a successful ensemble.
Although to the best of our knowledge this type of approach has not been previously used in

the field of co-training, it has proven effective in another domain. In the field of hyperparameter
optimization [16], the authors opted to utilize the multiple models generated in the search process
instead of simply discarding them. However, their implementation can be considered “horizontal,”
as their models are not run on an evolving version of the same data.

5 EVALUATION

Our experiments were designed in an attempt to answer a set of questions: (1) How beneficial is the
application of the proposed ensemble method to the co-training process? (2) What is the influence
of varying training set sizes on the performance of algorithms? (3) Does the performance vary
substantially with the use of different classification algorithms?
We begin by describing the evaluated datasets and their characteristics in Section 5.1. Section 5.2

reviews the experimental setting. In Section 5.3, we present the various configurations that were
evaluated, and in Section 5.4, we analyze the results.

5.1 The Datasets

The proposed methods were tested on six datasets, all from the text classification domain: Spam,
WebKB (which was used in the original co-training work by Blum andMitchell [3]), Reuters RCV1,
Cora, WebSpam, and Large Movie Reviews dataset [36]. All datasets are well known and publicly
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Table 1. Five Datasets Used for the Evaluation and Their Characteristics

Dataset Name Items (#) Attributes (#) Imbalance
Spam 4,601 57 1.53
WebKB 1,051 7,344 3.57
Reuters 657,399 47,236 1.1
Cora 3,191 3,774 2.43

WebSpam 350,000 254 1.54
Large Movie Reviews 100,000 89,527 1

ALGORITHM 2: The Co-Training Algorithm With the Use of Ensemble

Input:

L - labeled set

U - unlabeled set

T - test set

I - classification algorithm

n - number of iterations

e - number of iterations back to include in the ensemble

Output:

ET - extended training set

h - classifier

Apply_Co_Traininд

ET ← L
for all iterations i ≤ n do

h1 ← TrainClassi f ier (I ,πx1 (ET ))
h2 ← TrainClassi f ier (I ,πx2 (ET ))
// label all unlabeled instances with h1

L1 ← ApplyClassi f ier (h1,πx1 (U ))
// label all unlabeled instances with h2

L2 ← ApplyClassi f ier (h2,πx2 (U ))
// add instances with highest confidence in L1 and remove them from the unlabeled set

ET ← ET ∪ SelectSamplesW ithHiдhestConf idence (L1)
// add instances with highest confidence in L2 and remove them from the unlabeled set

ET ← ET ∪ SelectSamplesW ithHiдhestConf idence (L2)
// save the first classifier for iteration i

SaveClassi f ierPerIteration(i, 1,h1)
// save the second classifier for iteration i

SaveClassi f ierPerIteration(i, 2,h2)
end for

// create the ensemble by combining the classifications of the e latest classifiers on the test set using distribution summation

return ApplyDistributionSummation(T , e,n)

accessible. The properties of the datasets are presented in Table 1. Multiclass datasets were trans-
formed into binary datasets. For example, forWebKB, we used course versus noncourse (as in Blum
and Mitchell [3]), whereas for Cora and RCV1, we used the most populous class as one class with
the other class containing the remaining instances (i.e., neural networks vs. the rest, and CCAT
vs. the rest, respectively).
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We chose to focus on the analysis of text in our experiments, as it is one of the most challenging
areas for collecting large amounts of high-quality data. The difficulty arises from the fact that
accurate labeling of text still requires human taggers, who can identify elements such as cynicism,
word games, and irregular expressions. Case in point: a previous study [27] by one of the authors
required human annotation of automatically transcribed text. The tagging of approximate 500
conversation required close to 5 months of work.
It is also important to note that the datasets represent multiple domains of classification tasks:

news, Web pages, spam, and reviews (opinions). This diversity enables us to evaluate the robust-
ness of the proposed algorithm as well as its applicability in different domains.

5.2 Data Preparation and Experimental Configuration

To enable a full and informative evaluation of the proposed methods, we performed extensive
evaluation with multiple configurations. It is also important to note that all experiments described
in this section were run twice: once with the NB algorithm (which was used in the original co-
training work) and once with the support vector machine (SVM) algorithm—a popular classifier
that is often used in a co-training framework (e.g., see Chen et al. [8]).
Each dataset was preprocessed in the following way:

(1) Four different labeled training set sizes were used: 40, 60, 80, and 100 samples. In experi-
ments where the validation sets were used, the labeled samples were evenly split between
the training and validation sets.

(2) Each dataset was randomly partitioned into four disjoint sets: labeled (training set), un-
labeled (training set), validation (which was left empty in some experiments), and test.
This was done 20 times for each dataset and for each of the four labeled training set sizes.
All algorithms presented in this article were run on the same random partitions to ensure
the consistency of the results (if no validation was done, these samples were added to the
labeled training set).

(3) During each training iteration, each of the two classifiers selected two samples from each
of the possible classes and added them to the labeled training set.

Although Blum and Mitchell [3] used a dataset that had a clear division of features (textual
features and links of Web pages), this is not the case for all of the other datasets used in our
experiments. For this reason, we randomly and evenly split the features into two groups (for each
dataset, the same partition was used in all experiments). We hypothesize that the large number of
features in each group will provide the diversity required for the co-training process to succeed.
In doing so, we rely on the work by Balcan et al. [1], who show that the independence assumption
could be relaxed, and on a study by Gollapalli et al. [22], who demonstrate that random partitions
are also effective and could even outperform “natural” splits in co-training.
The probability distribution of each classifier (i.e., the probability assigned to an instance for

belonging to each class) is obtained in a manner consistent with each algorithm’s inner workings.
The NB algorithm is probabilistic by nature and operates under the assumption that all features
are independent. Therefore, the probability for each class c is computed by multiplying the apriori
probability of the class with the conditional probability of each feature given that the instance is
of class c. The a priori and conditional probabilities are computed from the training set. For the
SVM classifier, the probabilities are computed using the Platt scaling algorithm [45], which applies
logistic transformation on the SVM scores to obtain the probability of each class. In our experi-
ments, we used the Weka implementation of SVM with the option setBuildLogisticModels(true),
which generates these probabilities.
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A large majority of existing publications in the field of co-training use a predefined number of
training iterations [40, 46], similar to what was done in the original work. This is a common ap-
proach that also enables easy comparison to works published previously. This approach, however,
may not always produce the optimal results for the co-training algorithm; as shown in experi-
ments conducted by Mihalcea [39], it may sometimes be better to use smaller number of training
iterations (in the work mentioned earlier, the number was six to seven iterations). Based on these
results (and empirical evaluation of larger iterations), we cap the number of training iterations for
our algorithm at nine.

5.3 Evaluated Algorithms and Configurations

We conducted a thorough evaluation of the proposed method described in Section 3 with the
following settings:

(1) Single classifier on all labeled instances and all features. This experiment is included as
a baseline to determine whether the use of co-training improves performance.

(2) Original co-training, stop after X iterations (no validation). This set of experiments
was based on Mihalcea [39], which showed that the performance of the co-training al-
gorithm may “peak” after a small number of iterations. For this reason, we evaluated the
performance of the original co-training algorithm after three, six, and nine iterations. In
all experiments, we used the Weka ML platform [23] with the default parameters for all
algorithms.
It should be noted that although previous studies exist where parameters such as the

number of iterations can be tuned [16, 50], the implementation and adaptation of these
techniques to the domain of co-training is far from trivial. For this reason, we consider
this subject beyond the scope of this work and plan to address it in the future.

(3) Ensemble co-training (the proposed algorithm). We evaluated multiple configurations:
• With varying numbers of models making up the ensemble (always the models of the

most recent iteration). The values of this parameter were set to 3, 5, 10, and all (all
models generated up to that point). Since the best results were obtained by using the
latter configuration (i.e., all previously generated models), we present these throughout
this work. For full results, see Figure A1 in Appendix A.

• With varying numbers of training iterations to make sure that the evaluation is correct,
the same number of training iterations was used as in (3): three, six, and nine training
iterations.

5.4 Experimental Results

The performance of the proposed algorithms is presented in Tables 2 and 3, where we present
the AUC (area under the ROC curve [10]) of all proposed algorithms. To demonstrate that the
improvement in AUC performance is reflected in other metrics as well, we present the precision-
recall curves for one of our experiments (to not burden the reader, we do not present all possible
dataset/algorithm/training set size configurations). The results for the SVM algorithmwith a train-
ing size of 40 are presented in Figure 1(a) through (e).
As can be seen from the figures, the precision-recall curves also clearly show that the proposed

method outperforms the “standard” co-training algorithm on all five datasets. In addition to show-
ing higher precision, they also cover a much larger area of the “recall” axis. This reveals strong
evidence that the classification models produced by the proposed methods are not only superior to
the original co-training algorithm but are also more refined, offering a wider range of confidence
level in the classification.
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Table 2. AUC Results of the Various Co-Training Methods When Using the SVM Classifier

Train Single CT 3 CT 6 CT 9 EnsCT 3 EnsCT 6 EnsCT 9

Dataset Size Classifier Iteration Iteration Iteration Iteration Iteration Iteration

Cora 40 0.21 0.43 0.43 0.43 0.52 0.58 0.60

Cora 60 0.25 0.42 0.44 0.44 0.52 0.57 0.60

Cora 80 0.35 0.51 0.51 0.52 0.61 0.65 0.67

Cora 100 0.34 0.49 0.48 0.48 0.58 0.62 0.63

Spam 40 0.67 0.55 0.25 0.08 0.78 0.78 0.77

Spam 60 0.67 0.53 0.26 0.12 0.75 0.75 0.75

Spam 80 0.69 0.56 0.30 0.15 0.75 0.76 0.76

Spam 100 0.70 0.59 0.38 0.16 0.76 0.76 0.76

WebKB 40 0.51 0.63 0.66 0.68 0.73 0.76 0.80

WebKB 60 0.54 0.65 0.65 0.64 0.71 0.75 0.77

WebKB 80 0.56 0.65 0.71 0.71 0.72 0.79 0.83

WebKB 100 0.48 0.6 0.64 0.66 0.67 0.73 0.77

WebSpam 40 0.60 0.73 0.72 0.73 0.8 0.83 0.84

WebSpam 60 0.67 0.77 0.76 0.75 0.81 0.82 0.83

WebSpam 80 0.63 0.75 0.74 0.74 0.82 0.84 0.85

WebSpam 100 0.69 0.78 0.77 0.76 0.82 0.84 0.85

RCV1 40 0.47 0.68 0.69 0.69 0.68 0.74 0.76

RCV1 60 0.59 0.73 0.74 0.75 0.71 0.77 0.80

RCV1 80 0.67 0.78 0.78 0.79 0.77 0.81 0.83

RCV1 100 0.68 0.78 0.78 0.79 0.77 0.81 0.83

Movie reviews 40 0.28 0.42 0.43 0.47 0.60 0.59 0.60

Movie reviews 60 0.36 0.47 0.47 0.47 0.53 0.57 0.63

Movie reviews 80 0.42 0.49 0.51 0.53 0.59 0.62 0.66

Movie reviews 100 0.44 0.5 0.52 0.52 0.61 0.66 0.69

Note: The highest results in every experimental configuration are shown in bold.

The analysis of the AUC performance of the analyzed algorithms, shown in Tables 2 and 3,
enabled us to conclude the following:

(1) The proposed method significantly outperforms both the basic co-training algorithm and
the single classifier baseline. By using the paired t-test on the AUC values obtained for
each experiment, we were able to determine that our approach outperforms the two base-
lines in all experiments for the NB algorithm and in five out of six datasets (all but Spam)
for the SVM algorithm. The improvement was found to be statistically significant with
a p-value of p ≤ 0.01. In the Spam dataset, our approach is significantly better than the
original co-training algorithm, but there is no statistically significant difference from the
single classifier algorithm. This improvement is particularly significant given the fact that
it comes at (almost) no additional computational cost compared to the original co-training
algorithm.

(2) The ensemble co-training approach shows a higher relative improvement when the size
of the labeled training set is smaller. This fact is very encouraging, as it shows that the
proposed algorithm is useful in the more difficult learning scenarios.

(3) The performance of the co-training algorithm when using SVM produced a significantly
higher performance than the use of the NB algorithm with co-training. This is consistent
with the previous work by Kiritchenko and Matwin [29].
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Table 3. AUC Results of the Various Co-Training Methods When Using the NB Classifier

Train Single CT 3 CT 6 CT 9 EnsCT 3 EnsCT 6 EnsCT 9

Dataset Size Classifier Iteration Iteration Iteration Iteration Iteration Iteration

Cora 20 0.37 0.52 0.49 0.49 0.63 0.66 0.66

Cora 30 0.47 0.55 0.54 0.54 0.66 0.69 0.70

Cora 40 0.52 0.57 0.58 0.57 0.68 0.71 0.72

Cora 50 0.52 0.57 0.57 0.56 0.69 0.7 0.72

Spam 20 0.78 0.6 0.52 0.57 0.85 0.83 0.80

Spam 30 0.80 0.7 0.64 0.63 0.78 0.75 0.73

Spam 40 0.80 0.8 0.70 0.63 0.87 0.87 0.85

Spam 50 0.79 0.8 0.73 0.61 0.88 0.88 0.86

WebKB 20 0.65 0.7 0.69 0.65 0.81 0.85 0.86

WebKB 30 0.68 0.7 0.70 0.68 0.82 0.84 0.86

WebKB 40 0.64 0.73 0.72 0.71 0.81 0.84 0.85

WebKB 50 0.70 0.71 0.70 0.69 0.81 0.84 0.85

WebSpam 20 0.61 0.66 0.65 0.66 0.71 0.73 0.74

WebSpam 30 0.66 0.66 0.66 0.65 0.71 0.72 0.73

WebSpam 40 0.65 0.66 0.65 0.63 0.72 0.73 0.73

WebSpam 50 0.65 0.66 0.63 0.62 0.7 0.71 0.71

RCV1 20 0.46 0.58 0.59 0.58 0.72 0.76 0.77

RCV1 30 0.51 0.65 0.67 0.66 0.78 0.8 0.82

RCV1 40 0.44 0.71 0.70 0.71 0.8 0.82 0.84

RCV1 50 0.59 0.72 0.72 0.71 0.79 0.81 0.83

Movie reviews 40 0.26 0.4 0.41 0.41 0.5 0.52 0.53

Movie reviews 60 0.35 0.43 0.45 0.42 0.53 0.55 0.57

Movie reviews 80 0.41 0.43 0.47 0.44 0.58 0.59 0.62

Movie reviews 100 0.41 0.43 0.45 0.46 0.61 0.62 0.62

Note: The highest results in every experimental configuration are shown in bold.

5.4.1 Co-Training for Sentiment Analysis Tasks. The results presented here are particularly sig-
nificant for the Large Movie Reviews dataset. Of all domains evaluated in this study, sentiment
analysis is often considered to be the most challenging [44]. Our approach’s ability to outperform
the standard co-training algorithm by 30% and the single classifier by 50% to 200% is particularly
significant given the difficulty of amassing high-quality datasets in this domain.

5.4.2 Runtime and Complexity Analysis. Our evaluation has shown that the average runtime
of our proposed approach was less than 5% longer than that of the corresponding original co-
training algorithm (this translates to additional few minutes). The reason for this is that the only
additional computational cost incurred by our algorithm is the need to combine the predictions of
the classification models generated throughout the experiment. This cost has O (n) complexity, as
it is dependent on the number of instances in the test set.

6 DISCUSSION

This section is comprised of two parts. We begin by exploring the reasons for our approach’s supe-
rior performance over the standard co-training algorithm. We focus on the subject of classification
model stability and demonstrate how its absence harms the standard co-training algorithm while
enabling the vertical ensemble’s more robust model. In the second part of this section, we explore
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Fig. 1. Precision-recall curves, using the SVM algorithm and a labeled training set of 40 samples for the

following datasets: Cora (a), RCV1 (b), Spam (c), WebKB (d), WebSpam (e), and Movie reviews (f).

the use of validation sets in an attempt to mitigate the lack of model stability by using validation
sets and assess its contribution to our vertical ensemble approach.

6.1 Analyzing Classification Model Stability

The main reason for the ability of ensemble learning algorithms to outperform single classifiers in
many cases is that they use a diverse group of classification models [12]. Intuitively, combining the
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ALGORITHM 3: Co-Training With a Validation Set

Input:

L - labeled set

V - validation set

U - unlabeled set

T - test set

I - classification algorithm

n - number of iterations

Output:

ET - extended training set

h - classifier

Apply_Co_Traininд

ET ← L
CI ← 0 // The index of the iteration that will be chosen by the algorithm

for all iterations i ≤ n do

CI ← i
h1 ← TrainClassi f ier (I ,πx1 (ET ))
h2 ← TrainClassi f ier (I ,πx2 (ET ))
// assess the performance of current classifiers on validation set

VALi ← EvaluateClassi f iers (hi1 ,hi2 ,V )
// if the performance on the validation set is worse than in the previous iteration, stop

if VALi < VALi−1 then
CI − −; // revert to the previous training iteration

break; // terminate the training process

end if

// label all unlabeled instances with h1

L1 ← ApplyClassi f ier (h1,πx1 (U ))
// label all unlabeled instances with h2

L2 ← ApplyClassi f ier (h2,πx2 (U ))
// add instances with highest confidence in L1 and remove them from the unlabeled set

ET ← ET ∪ SelectSamplesW ithHiдhestConf idence (L1)
// add instances with highest confidence in L2 and remove them from the unlabeled set

ET ← ET ∪ SelectSamplesW ithHiдhestConf idence (L2)
end for

// classify the test set using classifiers of iteration CI

EvaluateClassi f iers (hCI1 ,h
CI

2 ,T )

predictions of three identical classification models will produce the same results as using either
one. It is the combining of multiple and different perspectives of the data that makes ensemble
learning such an effective approach.
We hypothesized that the reason for the superior performance of the vertical ensemble co-

training approach over the standard co-training is the large variance in the classification models
generated over the course of the training process. To test this hypothesis, we compared the per-
formance of the standard co-training algorithm to that of our approach on each iteration for each
of the datasets evaluated in Section 5.
Our analysis has shown the same trends in all datasets: whereas the original co-training algo-

rithm demonstrated a large degree of volatility in its performance, the ensemble approach pre-
sented monotonous improvement. Interestingly, this was not only the case for the average of all
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Fig. 2. Comparison of the average performance of the original and ensemble co-training algorithms over the

test set in the Cora dataset.

Fig. 3. Comparison of the performance of the original and ensemble co-training algorithms over a single

experiment on the Cora dataset.

experiments on a given dataset but in most individual datasets. In Figures 2 and 3, we present an
example of these trends (as all datasets behave in a similar manner, we only present the results for
one dataset to not burden the reader).
This volatility in performance can be explained as follows. Given an instances set I with each

i ∈ I containing a feature set F , the goal of the classifier is to identify a subset { f1, f2, ..} ∈ F that
best describes I . If |I | � |F |, this task becomes far more difficult due to the curse of dimensionality
[19] and overfitting [14]. This is particularly true when I consists of no more than 100 instances,
as is the case in our experiments—the addition of even a single instance may significantly change
the indicative value of a given feature and may lead to the selection of a different subset.
To verify the correctness of this explanation, we have done the following for each of our ana-

lyzed datasets:
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Table 4. AUC Results of the Standard Co-Training and

Ensemble Co-Training Methods When Using Validation Sets and

the SVM Classifier

Train Original
Dataset Size CT CT + VS EnsCT + VS
Cora 40 0.43 (1) 0.39 (0.88) 0.56 (1.29)
Cora 60 0.44 (1) 0.40 (0.90) 0.55 (1.25)
Cora 80 0.51 (1) 0.42 (0.83) 0.56 (1.11)
Cora 100 0.48 (1) 0.46 (0.94) 0.60 (1.25)
Spam 40 0.25 (1) 0.60 (2.32) 0.67 (2.60)
Spam 60 0.26 (1) 0.63 (2.41) 0.73 (2.77)
Spam 80 0.30 (1) 0.65 (2.14) 0.72 (2.36)
Spam 100 0.38 (1) 0.69 (1.81) 0.73 (1.91)
WebKB 40 0.66 (1) 0.62 (0.94) 0.77 (1.17)
WebKB 60 0.65 (1) 0.65 (0.99) 0.80 (1.22)
WebKB 80 0.71 (1) 0.64 (0.91) 0.83 (1.18)
WebKB 100 0.64 (1) 0.60 (0.93) 0.81 (1.24)
WebSpam 40 0.72 (1) 0.68 (0.94) 0.78 (1.08)
WebSpam 60 0.76 (1) 0.71 (0.93) 0.81 (1.06)
WebSpam 80 0.74 (1) 0.69 (0.93) 0.79 (1.06)
WebSpam 100 0.77 (1) 0.73 (0.94) 0.84 (1.08)
RCV1 40 0.69 (1) 0.59 (0.86) 0.76 (1.10)
RCV1 60 0.74 (1) 0.64 (0.86) 0.81 (1.07)
RCV1 80 0.78 (1) 0.70 (0.89) 0.83 (1.05)
RCV1 100 0.78 (1) 0.72 (0.92) 0.85 (1.09)
Movie reviews 40 0.43 (1) 0.41 (0.95) 0.50 (1.17)
Movie reviews 60 0.47 (1) 0.47 (1) 0.53 (1.13)
Movie reviews 80 0.51 (1) 0.51 (1.01) 0.58 (1.13)
Movie reviews 100 0.52 (1) 0.56 (1.07) 0.62 (1.20)

Note: Relative performance to the original co-training algorithm is shown in paren-

theses.

• For each of the 20 experiments conducted on the dataset, we obtained the labeled sets of the
two first consecutive training iterations (iteration 0 and 1). This was done for the experi-
ments in which the original size of the labeled training set was 40 instances.

• We used Weka’s InfoGainAttributeEval filter to select to top 10 ranking features for both
labeled instances sets.

• We calculated the overlap percentage of the two sets.
• We averaged the results of all experiments for each dataset.

The goal of this analysis is to determine whether the most indicative features can vary to a large
degree in consecutive training iteration. Intuitively, if the usefulness of the features vary, different
features will be used to create the classification model. Our results show a relatively low overlap:
just 66% on average. The full results are presented in Table 4.
The results of analysis clearly indicate that the classification models generated during the vari-

ous training iterations are not only different in their performance but also in the composition of the
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features used to generate them. This diversity explains the robustness of our proposed ensemble
approach, as it meets the major prerequisite of a successful ensemble.

6.2 Co-Training With Validation Sets

As shown by Mihalcea [39], a larger number of training iterations does not always contribute
to the performance of the co-training algorithm. The solution proposed by our work, which has
proven beneficial even for the more robust ensemble solution presented in this article, was to
terminate the training process after a small number of iterations (six to nine in our case).
Despite the fact that this rule has been proven beneficial on average, our analysis of the co-

training algorithm’s performance has shown large variance across different datasets and runs.
This has led us to try to implement one of the most common “best practices” that is often in use
in other ML domains—validation sets.
The use of validation sets consists of setting aside a certain percentage of the labeled training

set to evaluate the performance of the classifier that is generated using the remaining labeled
instances. It is often used to prevent overfitting [24], where the generated model is too “tailored”
to the training set to generalize well to the test set.
The obvious hurdle to the use of a validation set in conjunction to co-training is the small

number of available labeled samples. Given this limitation, it seems almost counterintuitive to
further reduce the number of available samples by allocating some of them to the validation set.
However, we hypothesize that our proposed ensemble method would be able to perform well even
with a smaller training set while reaping the benefits of the validation set.
We tested two versions of the co-training with validation set algorithm. The first, presented in

Algorithm 3, was applied on the “regular” co-training algorithm. The second, presented in Algo-
rithm 4, was applied on the proposed ensemble co-training algorithm. The same principles were
applied to both algorithms: once a training iteration is completed, the performance of the new
model is evaluated on the validation set. If the performance of the current training iteration is
inferior to that of the one before, we revert to the classification model of the previous iteration
and terminate the training (the chosen index is designated by CI in both algorithms). To avoid
scenarios where the performance declines and then “picks up,” we also tested configurations that
required a decline over a consecutive number of iterations.
The results of our experiments are presented in Tables 5 and 6, and we can clearly see that

both for the standard co-training example and for our proposed ensemble approach, the use of
validation sets causes a slight relative decrease in performance.
Despite the decreased performance, we find it noteworthy that it is surprisingly small given

the fact that only half of the labeled set is used for training in this setting. This suggests, in our
opinion, that the use of validation sets has significant potential in the context of co-training. We
plan to explore this area further in future work by exploring options such as k-fold cross validation
and varying validation set sizes.

7 CONCLUSIONS

In this article, we presented a novel type of ensemble approach for the co-training algorithm,
which enables a significant improvement in results (almost) without any added computational
complexity. We evaluated our proposed methods on six textual datasets, some with extremely
high dimensionality and sparsity. The results of the evaluation showed that the proposed methods
clearly outperform the standard co-training algorithm.
The effectiveness of our approach in the field of text analysis in general and sentiment anal-

ysis in particular is significant, as it is a challenging field for the creation of large, high-quality

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 2, Article 21. Publication date: October 2017.



Vertical Ensemble Co-Training for Text Classification 21:17

Table 5. AUC Results of the Standard Co-Training and Ensemble

Co-Training Methods When Using Validation Sets and the NB Classifier

Train Original
Dataset Size CT CT + VS EnsCT + VS
Cora 40 0.49 (1) 0.45 (0.91) 0.60 (1.22)
Cora 60 0.54 (1) 00.48 (0.88) 0.63 (1.16)
Cora 80 0.58 (1) 0.52 (0.88) 0.67 (1.14)
Cora 100 0.57 (1) 0.53 (0.93) 0.66 (1.16)
Spam 40 0.52 (1) 0.65 (1.25) 0.68 (1.31)
Spam 60 0.64 (1) 0.73 (1.13) 0.76 (1.17)
Spam 80 0.70 (1) 0.75 (1.07) 0.80 (1.13)
Spam 100 0.73 (1) 0.79 (1.08) 0.84 (1.16)
WebKB 40 0.69 (1) 0.71 (1.01) 0.80 (1.15)
WebKB 60 0.70 (1) 0.68 (0.94) 0.83 (1.19)
WebKB 80 0.72 (1) 0.68 (0.94) 0.81 (1.12)
WebKB 100 0.70 (1) 0.68 (0.96) 0.83 (1.17)
WebSpam 40 0.65 (1) 0.64 (0.97) 0.75 (1.14)
WebSpam 60 0.66 (1) 0.65 (0.98) 0.74 (1.12)
WebSpam 80 0.64 (1) 0.67 (1.03) 0.73 (1.13)
WebSpam 100 0.63 (1) 0.66 (1.04) 0.73 (1.15)
RCV1 40 0.59 (1) 0.60 (1.02) 0.63 (1.06)
RCV1 60 0.67 (1) 0.62 (0.92) 0.70 (1.04)
RCV1 80 0.70 (1) 0.74 (1.05) 0.78 (1.11)
RCV1 100 0.72 (1) 0.75 (1.04) 0.84 (1.17)
Movie reviews 40 0.41 (1) 0.40 (0.99) 0.50 (1.22)
Movie reviews 60 0.45 (1) 0.41 (0.929) 0.51 (1.14)
Movie reviews 80 0.47 (1) 0.44 (0.93) 0.58 (1.24)
Movie reviews 100 0.45 (1) 0.44 (0.99) 0.53 (1.19)

Note: Relative performance to the original co-training algorithm is shown in paren-

theses.

Table 6. Overlap Percentage of the Top

Indicative Features for the Two First

Consecutive Training Iterations

for Each Dataset

Dataset Name Overlap (%)
Spam 75
WebKB 64
Reuters 61
Cora 73

WebSpam 68
Large Movie Reviews 58

datasets. The need to rely on human taggers, capable of understanding the intricacies of hu-
man communication, causes the process of corpus creation to be slow and expensive. On this
task, the proposed approach outperforms a single classifier by 200% and the standard co-training
by 50%.
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ALGORITHM 4: The Ensemble Co-Training Algorithm With a Validation Set

Input:

L - labeled set; U - unlabeled set; T - test set; I - classification algorithm; n - number of iterations; e -
number of iterations back to include in the ensemble

Output:

ET - extended training set

h - classifier

Apply_Co_Traininд

ET ← L
CI ← 0 // The index of the iteration that will be chosen by the algorithm

for all iterations i ≤ n do

CI ← i
h1 ← TrainClassi f ier (I ,πx1 (ET ))
// save the first classifier for iteration i

SaveClassi f ierPerIteration(i, 1,h1)
h2 ← TrainClassi f ier (I ,πx2 (ET ))
// save the second classifier for iteration i

SaveClassi f ierPerIteration(i, 2,h2)
// evaluate the performance of the ensemble (by distribution summation) of the latest e classifiers on the validation set

VALi ← ApplyDistributionSummation(V , e, i )
// if the performance on the validation set is worse than in the previous iteration, stop

if VALi < VALi−1 then
CI − −; // revert to the previous training iteration

break; // terminate the training process

end if

// label all unlabeled instances with h1

L1 ← ApplyClassi f ier (h1,πx1 (U ))
// label all unlabeled instances with h2

L2 ← ApplyClassi f ier (h2,πx2 (U ))
// add instances with highest confidence in L1 and remove them from the unlabelled sett

ET ← ET ∪ SelectSamplesW ithHiдhestCof idence (L1)
// add instances with highest confidence in L2 and remove them from the unlabelled set

ET ← ET ∪ SelectSamplesW ithHiдhestCof idence (L2)
end for

// create the ensemble by combining the classifications of the e latest classifiers from iteration CI on the test set using distribution

summation

return ApplyDistributionSummation(T , e,CI ).

We believe that the work presented here can be expanded in several interesting directions:

(1) Exploration of additional stopping criteria. Since the use of validation sets, although pro-
viding valuable insights into the inner workings of the co-training algorithm, do not fully
produce the desired improvement, we are interested in exploring othermethods to achieve
this goal. We plan to apply metalearning and deep reinforcement learning [49] to train a
neural net capable of automatically determining when to terminate the training process.
Additional advantages of this approach may be the ability to better train the ensemble
model given a fixed training “budget” [33].
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(2) A more intelligent selection of classifiers for the ensemble. Currently, the last X classifiers
are chosen without regard to their similarity. A more advanced approach that takes one
(or several) representatives from each group may produce better results.

(3) Labeling different numbers of items per class during training. We currently add the same
number of instances from each class during the training phase. A different approachwould
be adding a different number of instances per each class based on criteria such as dataset
imbalance or level of certainty by each classifier.

(4) The evaluation of the proposed methods in other domains. In this study, we focused on text
data. It would be interesting to apply the proposed approaches to other types of data for
which multiple modalities are available, such as image data.

(5) Applying our approach to additional versions of the co-training algorithm. As our approach
has proven itself effective when applied on the standard co-training algorithm, evaluat-
ing it on additional variations may provide additional improvement. We believe that one
promising “candidate” for such an enhancement is the tri-training algorithm [57].

APPENDIX

A FULL RESULTS OF ALL EXPERIMENTS
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