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Improving Researcher Homepage Classification with Unlabeled Data
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A classifier that determines if a webpage is relevant to a specified set of topics comprises a key component
for focused crawling. Can a classifier that is tuned to perform well on training datasets continue to filter out
irrelevant pages in the face of changing content on the Web? We investigate this question in the context of
identifying researcher homepages. We show experimentally that classifiers trained on existing datasets of
academic homepages underperform on “non-homepages” present on current-day academic websites. As an
alternative to obtaining labeled datasets to retrain classifiers for the new content, in this article we ask the
following question: “How can we effectively use the unlabeled data readily available from academic websites
to improve researcher homepage classification?”

We design novel URL-based features and use them in conjunction with content-based features for repre-
senting homepages. Within the co-training framework, these sets of features can be treated as complemen-
tary views enabling us to effectively use unlabeled data and obtain remarkable improvements in homepage
identification on the current-day academic websites. We also propose a novel technique for “learning a
conforming pair of classifiers” that mimics co-training. Our algorithm seeks to minimize a loss (objective)
function quantifying the difference in predictions from the two views afforded by co-training. We argue that
this loss formulation provides insights for understanding co-training and can be used even in the absence of
a validation dataset.

Our next set of findings pertains to the evaluation of other state-of-the-art techniques for classifying
homepages. First, we apply feature selection (FS) and feature hashing (FH) techniques independently and
in conjunction with co-training to academic homepages. FS is a well-known technique for removing redun-
dant and unnecessary features from the data representation, whereas FH is a technique that uses hash
functions for efficient encoding of features. We show that FS can be effectively combined with co-training to
obtain further improvements in identifying homepages. However, using hashed feature representations, a
performance degradation is observed possibly due to feature collisions.

Finally, we evaluate other semisupervised algorithms for homepage classification. We show that although
several algorithms are effective in using information from the unlabeled instances, co-training that explicitly
harnesses the feature split in the underlying instances outperforms approaches that combine content and
URL features into a single view.
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1. MOTIVATION

Professional homepages of researchers, which typically summarize research interests,
publications, and other metadata related to researchers, are shown to be rich sources of
information for digital libraries [Gollapalli et al. 2011]. Researchers’ homepages (also
referred to as academic homepages or simply homepages in this article) have been
successfully employed in tasks such as expertise search [Balog et al. 2007], extraction
of academic networks, author profile extraction, and disambiguation [Tang et al. 2008],
as they provide crucial evidence for improving these tasks in digital libraries.

Furthermore, digital library systems such as CiteSeer,1 ArnetMiner,2 and Google
Scholar3 are primarily interested in obtaining and tracking researchers’ homepages to
retrieve appropriate scientific research publications. For instance, in an independent
experiment where paper titles from DBLP4 were used to search the Web, we were able
to obtain about 35% of the papers available online for free from the author homepages.

Given the infeasibility of collecting the entire content on the Web, a focused crawler
aims to minimize the use of network bandwidth and hardware by selectively crawling
only pages relevant to a (specified) set of topics [Chakrabarti et al. 1999]. A key com-
ponent for such a crawler is a classification module that identifies whether a webpage
being accessed during the crawl process is potentially useful to the collection. For digi-
tal libraries, the “yield” of such crawlers highly depends on the accuracy of researcher
homepage classification.

Supervised methods for learning homepage classifiers rely on the availability of large
amounts of labeled data. A widely used labeled dataset for webpage classification is
the WebKB dataset5 that was collected in 1997. However, due to recent changes in the
information content on academic websites, this dataset is becoming outdated. For ex-
ample, there are now pages on academic websites that are related to various activities,
such as invited talks, news, and events that do not occur in the WebKB dataset. We
refer to university, department, and research center websites as academic websites in
this article. Compared to a few decades back, it is easier now to find faculty information,
links to their homepages, information on research groups, course related notes and doc-
uments, and research papers from academic websites. Similarly, job postings, seminar
announcements, and notices are also being uploaded onto departmental websites in
recent times [Ortega-Priego et al. 2006].

How can a homepage classifier keep up in the face of the changing types of pages
on the Web? Specifically, given a classifier that identifies homepages with reasonable
accuracy (as measured on the training datasets), how does it perform in the potentially
different deployment environment? Semisupervised methods that can exploit large
amounts of unlabeled data together with limited amounts of labeled data for learning
accurate classifiers have received significant attention in recent research in machine
learning due to the fact that labeling examples for any supervised learning problem
requires intensive human labor [Nigam et al. 2000].

1http://citeseerx.ist.psu.edu.
2http://arnetminer.org/.
3http://scholar.google.com/.
4Details of this experiment are described in Section 9.
5http://www.cs.cmu.edu/∼webkb/.
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Against this background, one question that can be raised is this: can we design
techniques to effectively adjust the previously trained classifier to the changing and
diverse content on the Web while minimizing the human effort required for labeling
new data, and under what conditions can such an adjustment be possible? The research
that we describe in this article addresses specifically this question.

Contributions and organization. We address the homepage classification problem
using the (readily available) unlabeled data from academic websites, originally intro-
duced in Gollapalli et al. [2013].6 In this extended work, we augment our contributions
to academic homepage classification with our findings from a larger spectrum of ex-
periments using other state-of-the-art classification approaches and newer datasets,
specifically created for this task. Our contributions are summarized as follows:

—We show that with the classifiers trained on existing datasets for researcher home-
page classification, we incorrectly identify pages of types not seen in the training
datasets as homepages, resulting in an unacceptable yield from the perspective of a
focused crawler.

—We design novel features based on URL surface patterns and terms to complement
term and HTML features extracted from the content of homepages and show that
these two sets of features can be treated as independent “views” for a researcher
homepage. In a co-training setup, these views enable us to use the unlabeled data to
successfully adapt classifiers to the changing academic environments.

We show co-training experiments on three different datasets. Our first dataset
consists of homepages of computer science researchers from several U.S. universi-
ties previously used in Gollapalli et al. [2013]. We also include experiments on two
newly constructed datasets: (1) a dataset compiled from ArnetMiner, which contains
homepages of computer science researchers from research institutes and non-U.S.
universities, and (2) a multidisciplinary homepage (MH) dataset, which contains
homepages of researchers from disciplines other than computer science, such as
physics, chemistry, and environmental sciences. The positive results obtained on all
three datasets illustrate the generalizability of our proposed features and methods
in identifying researcher homepages.

—Next, we design an iterative algorithm based on mini-batch gradient descent to
minimize the disparity between the classifiers’ predictions on the two views used
in co-training. We show that with this formulation, we can effectively mimic the
co-training process without requiring a validation dataset to track its progress.

—We study the feature selection (FS) and feature hashing (FH) techniques on the two
views of homepages independently and in conjunction with co-training. FS removes
redundant and irrelevant features from the data representation [Yang and Pedersen
1997; Forman 2003], whereas FH eliminates the need for a look-up dictionary by
implicitly encoding it into a hash function [Weinberger et al. 2009]. We show that
FS effectively improves homepage classification by removing the nondiscriminative
features, whereas FH results in performance degradation.

—Finally, we answer the question “Is the two-view approach better for classifying
homepages?” by performing a comprehensive set of experiments using other state-
of-the-art semisupervised approaches that treat the URL and content features as a
single view. We show that although most of these techniques improve the classifi-
cation performance over the base classifiers using unlabeled instances, co-training
that explicitly harnesses the split of features emerges as the winner.

Although in this article we focus on the design of accurate approaches for researcher
homepage classification, our objective is to integrate this classification component in

6http://www.cse.unt.edu/∼ccaragea/papers/www13.pdf.
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the context of focused crawling and to improve retrieval and indexing of scientific
publications in digital libraries such as CiteSeer and ArnetMiner. In these usage envi-
ronments, since maintaining up-to-date collections of research literature is of primary
importance, having an accurate list of homepage URLs for frequent, periodic tracking
is both feasible and scalable compared to examining the entire content at academic
websites each time.

The rest of the article is organized as follows. We briefly summarize closely related
work in Section 2. Researcher homepage classification is discussed in Section 3. We
elaborate on details of our co-training experiments and learning conforming predictor
pairs in Section 4. FS and FH techniques are briefly described in Section 5, whereas the
list of other semisupervised approaches that we studied for homepage classification is
presented in Section 6. Experimental setup, datasets, evaluation measures, and results
are discussed in Section 7. We include discussions and preliminary experiments related
to a potential future direction in multiview learning in Section 8, followed by a summary
and future extensions to our work in Section 10.

2. RELATED WORK

Researcher homepage classification is a well-studied webpage classification problem in
the context of digital libraries such as CiteSeer [Li et al. 2006] and ArnetMiner [Tang
et al. 2008]. Typically, content-based term features and HTML structure-based features
are used for classifying webpages [Qi and Davison 2009]. We propose the use of URL
features as additional evidence for homepage identification. A smaller set (compared to
ours) of URL-based features (presence of part of the name, presence of the character “∼,”
etc.), was used in isolating homepages among the search engine results for researcher
name queries by Tang et al. [2008].

The problem of gathering a high-quality researcher homepage collection was studied
for Japanese websites by Wang and Oyama [2006] using on-page and anchor text
features. Tang et al. [2008] studied homepage acquisition from search engine results
using researcher names as queries. In contrast, we seek to apply focused crawling using
a seed list of academic websites (where researcher homepages are typically hosted) to
acquire such a collection. The quality of this collection depends crucially on the accuracy
of our content (term) and URL-based classifiers.

Term features are commonly used for addressing classification problems involving
textual data [Manning et al. 2008]. We summarize some relevant previous work involv-
ing URL features to show their general effectiveness in addressing tasks pertaining to
the Web.

Kan and Thi [2005] used URL features to predict the prestige of a webpage as
modeled by PageRank, whereas Baykan et al. [2011] identified the topic of a webpage
without examining the content on the page using tokens from the URL string. Bar-
Yossef et al. [2009] and Koppula et al. [2010] addressed the webpage de-duplication
problem using URLs extracted from query and Web server logs. Their goal was to
identify duplicate URLs that result from aliasing and redirections on Web servers,
which generally make crawling and indexing inefficient. Shih and Karger [2004] used
URL features for improving applications such as ad blocking and recommendation.
URL strings were also used to design efficient algorithms for large-scale clustering on
websites that publish webpages by running scripts against databases [Blanco et al.
2011]. All of these works illustrate that several webpage classification, clustering,
and extraction tasks can be handled effectively based on URL features alone, thereby
avoiding the overhead of examining content of webpages.

Focused crawling first proposed by Bra et al. is a rich area of research on the Web [Bra
et al. 1994; Junghoo Cho et al. 1998]. Chakrabarti et al. [1999] present a discussion
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Table I. Feature Types and the Size of Feature Sets Used
in Homepage Identification

Type of Features Features (#)
Content based
Top unigrams 18,674
Number of tables/links/images on the page 3
Unigrams from anchor text on the page 30
URL based
Top unigrams and bigrams from URL strings,
surface pattern and wordnet features 1,039

on the main components involved in building a focused crawler. Although focused
crawling is our motivating application, this article deals with the classifier component
of the crawler and not with the crawler itself.

We show that the focused crawling scenario presents novel challenges in using a
pretrained homepage classifier in identifying relevant pages. Specifically, the classifier
needs to be attuned to the changing types of pages on the Web. Co-training is pro-
posed as a solution for addressing this challenge for homepage classification. Blum and
Mitchell [1998] first proposed co-training, an approach for semisupervised learning
when the number of labeled examples available for training is limited, and applied it
to webpage classification. This approach requires having two views of features for the
instances and has been shown to work well when the two views satisfy certain assump-
tions on “sufficiency” and “independence” [Nigam and Ghani 2000]. Recent research
proposes techniques for decomposing the feature set into two views when such a split
is not naturally available [Chen et al. 2011; Du et al. 2011].

Multiview learning (of which co-training is a special case, with two views) is typi-
cally addressed by maximizing “consensus” or agreement among the different views
[Sindhwani et al. 2005; Long et al. 2008; Christoudias et al. 2008]. Most solutions
to multiview learning tend to frame the problem in terms of a global optimization
problem and simultaneously learn classifiers for all of the underlying views. In some
cases, the solutions depend on underlying classification algorithms used [Ghani 2002;
Brefeld and Scheffer 2004]. Although our proposed algorithm based on mini-batch
gradient descent seeks to maximize consensus as well, our approach is a generic
technique assuming only that the underlying classifiers output initial “parameter
vectors” that are altered using a simple, iterative algorithm.

3. FEATURES FOR HOMEPAGE CLASSIFICATION

Webpage or text classification is typically handled using “bag-of-words” approaches.
Specifically, the frequently occurring and discerning terms are collected from training
data to form a feature dictionary that is used to represent instances as normalized
term frequency or TFIDF vectors [Manning et al. 2008]. Homepage classification was
previously studied as a text classification problem using term features [Nigam et al.
1998, 1999]. Previous work on the same problem also used other content-based features
related to the HTML structure of the page, such as the number of images/tables on
the page, and the terms commonly found in anchor text of homepages [Gollapalli
et al. 2011]. In this study, we extracted both content- and URL-based features from our
training sets. These features and the size of feature sets are summarized in Table I. The
term dictionaries contain terms that occur in at least three documents (i.e., webpages)
and at least five times in the training set.

In addition to term dictionaries, we hypothesize that the URL strings of homepages
can provide additional evidence for identifying homepages. Hence, we design novel
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Table II. Example URLs with Partial Sets of Extracted Features
(Shown on the Next Line After Each URL)

URL
(1) www.cs.columbia.edu/robotics/projects/visual_control/allen-realtime.html

SEQBEGIN_robotics, robotics, projects, hyphenatedword, hyphenatedword
(2) www.cs.ucla.edu/events/events-archive/2011/limits-of-communication

events, hyphenatedword, NUMBER, hyphenatedword
(3) http://www.cc.gatech.edu/hg/image/63622?f=ccfeature

QMARK, hg, image, NONDICTWORD, NONDICTWORD_SEQEND
(4) http://www.cs.umd.edu/∼djacobs/index.html

TILDENONDICT, index
(5) www.cs.umd.edu/∼djacobs/CMSC828/CMSC828.htm

TILDENONDICT, ALPHANUM, ALPHANUM

URL-based features based on surface patterns and their presence in WordNet.7 The
URL-based features are explained next.

3.1. URL Strings as Additional Evidence

The idea of using URL strings in academic homepage identification comes from an error
analysis of a crawl obtained with the content-based classifier. Consider some example
URLs that we encountered in our crawl, which are listed in Table II.

With some knowledge in academic browsing, one can confidently guess that the web-
pages at the URLs (1), (2), and (3) are unlikely to be researcher homepages. Similarly,
among URLs (4) and (5), whereas the former seems to be a homepage, the latter seems
to lead to a course page. The preceding conjectures are based on the presumption that
the URL strings are not “arbitrary,” but instead conventions are observed that are
indicative of the target content at the URL. For instance, in the previous examples,
words such as “projects,” “events,” and alphanumeric patterns of the terms in the URL
indicate that the URLs, (1), (2), (3), and (5) are most possibly not researcher homepages.

Treating “/” as delimiters, we extract features from the URL string following the
domain name of a webpage. The list of all unigrams and bigrams from URL strings that
occur more than three times in the training dataset comprise the URL-term dictionary.
For terms in the URL not present in this dictionary, we look for their presence in
WordNet to check if they are common words or proper nouns. WordNet is a large,
lexical database of nouns, verbs, adjectives, and adverbs for English, organized as a
concept graph [Miller 1995; Fellbaum 1998].

In addition, we capture the surface patterns of the URLs including the presence
of hyphenated or underscored words, alphanumeric patterns, long words (i.e., words
having greater than 30 characters), question marks, and characters such as the
tilde. These features are designed to filter out the URLs that commonly represent
course pages, announcements, calendars, and other autogenerated content. For in-
stance, a typical homepage URL string in computer science departments has the
name of the researcher following the tilde character after the domain name (e.g.,
http://people.cs.umass.edu/∼mccallum/).

This pattern is usually captured by our “TILDENONDICT” feature, where mccallum
is a nondictionary term. Partial sets of extracted features are shown along with the
URLs listed in Table II.

The preceding sets of features perform very well on the training datasets as shown
in Section 7. In this work, we are particularly interested to study how these classifiers
perform “in the wild.” We also note here that a classifier that can make accurate
predictions using URL features can be quite beneficial from the perspective of efficiency

7http://wordnet.princeton.edu/.
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for a focused crawler. A crawler can potentially bypass examining the content of a page
if a confident decision can be made based on the URL string. However, we may not
be able to always extract features from the URL strings. For instance, consider the
following URLs from our crawls:

http://john.blitzer.com/
http://clgiles.ist.psu.edu/
http://ben.adida.net/

In these cases, it is not clear from the URL string that the target content refers to aca-
demic homepages. Even if complicated name extraction–based features were designed
for the preceding cases, it is rare to find academic homepages with “.com” and “.net”
domain suffixes. Based on the URL alone, we cannot be confident if the target con-
tent is an academic homepage or a company/personal homepage. For the second case,
“clgiles” could refer to a machine name. In addition to the preceding cases, given that
feature dictionaries typically comprise features that meet a frequency requirement, we
may not be able to extract features for all URLs. In our training datasets (Section 7),
we were unable to extract URL features for about 27% of the instances. Therefore,
content-based and URL features complement each other, whereas identifying home-
page instances and a focused crawler might be required to use either or both of these
sets of features.

4. USING CO-TRAINING FOR HOMEPAGE CLASSIFICATION

We show in our experiments (Section 7) that although content-based features perform
extremely well on the training datasets, they are not very successful on the validation
and test sets that were collected from the current-day academic websites. On the other
hand, URL features show good performance on both training and validation datasets.
However, as pointed out in the previous section, we may not be able to extract URL
features for all instances, and it is therefore imperative to have an accurate content-
based classifier as well.

We now address these questions: Can we adapt the content-based classifier to perform
well in the deployment environment with the help of the URL-based classifier? Can
the two classifiers “teach” each other so as to perform better in the new environment,
using the co-training approach? Since the URL and content features provide evidence
for classifying a webpage instance independently, intuitively it appears possible that
there are instances in which the URL classifier makes mistakes, which the content-
based classifier identifies correctly and vice versa.

Blum and Mitchell [1998] proposed co-training in the context of webpage classifica-
tion. In their datasets, webpages are representable in terms of two distinct views: using
terms on webpages and terms in the anchor text of hyperlinks pointing to these pages.
When few labeled examples were available for training, they showed that co-training
could be used to obtain predictions on the unlabeled data to enlarge the training
set. Blum and Mitchell’s experiments and the subsequent experiments by Nigam and
Ghani [2000] showed that when a natural split of features is available, co-training that
explicitly leverages this split has the potential to outperform classifiers that do not.

We study the applicability and extension of co-training for our problem. Although the
essential motivation is to make use of the naturally available feature split and enable
classifiers to learn from each other, we highlight the following aspects of our setup.
Previous studies and benefits from co-training were illustrated on datasets where the
unlabeled data is arguably from a similar distribution. In other words, the positive and
negative instances in the labeled datasets are representative of those in the unlabeled
data. This is in contrast to our case, where our positive class is fairly well defined
(homepages), whereas the negative class is described in terms of “not positive.” More
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ALGORITHM 1: Procedure for Co-Training
Input: L, U , ‘s’
L1 ← L, L2 ← L
ρ1 ← φ, ρ2 ← φ
while U �= φ do

Compute ρ1 using |L+
1 |

|L−
1 | , ρ2 using |L+

2 |
|L−

2 | .

Train classifier C1 using (L1
1, ρ1).

Train classifier C2 using (L2
2, ρ2).

S ← φ
Sample ‘s’ examples from U and move them to S.
U ← U \ S
S1, S2 ← GetConf identEgs(S, C1, C2)
L1 ← L1 ∪ S1, L2 ← L2 ∪ S2

end while
Output: Classifiers C1, C2.

precisely, although our training dataset has examples for the negative class, webpages
encountered during the crawls can belong to types not encountered in the labeled data.
We present an error analysis in Section 7 that illustrates the “new” types of webpages
encountered in our crawl, potentially causing the pretrained content-based classifiers
to underperform during crawling.

The number of negative instances encountered during our crawls is higher com-
pared to the number of positive instances. Although this aspect was noticed during our
experiments, a previous estimation experiment using mark-recapture methods had in-
dicated that academic homepages comprise a minute fraction of the Web [Gollapalli
et al. 2011]. We can expect this imbalance to become more prominent as more exam-
ples are sampled over the co-training rounds. In the algorithm studied by Blum and
Mitchell, the ratio between the number of positive and negative instances added from
the unlabeled data is maintained to be the same as that in the training dataset during
each iteration of co-training [Blum and Mitchell 1998]. We argue that avoiding this
constraint is better in our scenario, as we want the datasets to be more representative
of the changing distribution.

Most classification algorithms are sensitive to the number of positive and negative
instances available in the training data and are known to learn biased classifiers in
case of severe imbalance [Bishop 2006; Liu and Zhou 2006]. We employ the idea of
altering the misclassification costs for the underlying classifiers during each round of
co-training to handle this problem. For example, if the training dataset has 10 positive
and 100 negative instances, we can set the penalty incurred on making mistakes on a
negative instance to be one-tenth the penalty incurred on making mistakes on a positive
instance. For most implementations of classification algorithms, the mis-classification
costs can be specified as a parameter during the training process [Hall et al. 2009].

Our co-training setup is detailed in Algorithm 1. L and U represent the labeled and
unlabeled datasets, respectively, available at each iteration. They comprise instances
with both views (content- and URL-based feature sets). For a round of co-training, we
train classifiers, C1 and C2, on the two available views, using misclassification costs, ρ1
and ρ2, respectively. Next, “s” number of examples are sampled without replacement
into S from the unlabeled data, and C1 and C2 are used to obtain predictions for these
instances. The GetConf identEgs method is a generic placeholder that stands for a
function that determines what instances from S are chosen for addition in subsequent
rounds of co-training. We use the notation L+

1 to represent the positive instances in the
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set L1, whereas L1
1 indicates that view 1 (or feature set 1) of the examples in L1 is being

used.
Based on previous studies in co-training [Blum and Mitchell 1998; Nigam and Ghani

2000], we studied the following strategies for this function:

—AddBoth: In this scheme, we add all examples from S that are labeled by C1 or
C2 confidently to the training set for the next round. This approach is similar to
self-training used in semisupervised learning where confidently predicted unlabeled
instances are added to the training set for retraining the classifier in subsequent
rounds [Zhu 2005]. In contrast to self-training, which uses a single view, in AddBoth,
confident predictions are obtained from two sources (view 1 and 2) for addition into
subsequent rounds.

—AddCross: In this scheme, examples from S, confidently labeled by C1 are added
to view 2 for the next round and vice versa. In other words, we use the examples
confidently labeled by one classifier while training the other classifier in the next
round. Cross-addition also seems resilient to handling the possibility of cascaded
errors over the iterations. If a classifier makes a confident but incorrect prediction,
we would like to avoid feeding this example in the next round to the same classifier—a
common problem in self-training [Zhu 2005].

—AddCrossRC: This scheme is similar to AddCross with the additional ratio constraint
(RC) on the number of positive and negative instances added in each round. This
constraint was originally studied by Blum and Mitchell [1998] and ensures that the
ratio of the number of positive and negative instances added in each round is the
same as that in the initial labeled dataset.

The co-training algorithm is general and can be applied with any choice of classifiers
on the two views. Blum and Mitchell provided a PAC-style analysis of co-training with
probabilistic classifiers and showed that co-training works when the assumptions on
sufficiency and independence are met. In other words, each view should be sufficient
to predict the class label, and the two views are independent given the class label.
Recent studies have proposed relaxed criteria under which co-training techniques still
work [Balcan et al. 2005]. However, in practice, it is tricky to judge if co-training works
for a problem and to verify if the assumptions are satisfied [Du et al. 2011]. These
questions are more relevant in context of recent research in obtaining two views from a
single view when two views are not naturally available for applying co-training [Chen
et al. 2011]. With this context, we now discuss our formulation of the effect obtained
with co-training in terms of a loss function. This formulation allows us to track whether
the co-training process is beneficial for a given problem, even without the use of a
validation dataset.

4.1. Learning Conforming Predictors on Unlabeled Data

We assume that classifiers C1 and C2 trained on the two views are parameterized in
terms of their weight vectors, w1 and w2. Most classification algorithms, such as sup-
port vector machines (SVMs) and maximum entropy (MaxEnt), output weight vectors
capturing the importance of each feature as part of the training process [Bishop 2006].

One can expect co-training to benefit a classification problem if one classifier (e.g.,
C1) can “guide” the other (C2) on examples on which the latter makes mistakes. This
guidance is provided by adding examples confidently labeled by C1 to the subsequent
round of training C2. This observation hints at the possibility of directly manipulating
C2, based on C1’s prediction for an example that C2 is not confident about. This effect
can be achieved by optimizing a function that directly captures the mismatch in the
predictions of the two classifiers.
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Elaborating further, given that the concept classes “positive” and “negative” are still
the same on unlabeled data, if C1 and C2 are accurate, they would make similar predic-
tions on the unlabeled data. This intuition is the basis for “consensus maximization,”
widely adopted in multiview learning, of which co-training is a special case with two
views [Sindhwani et al. 2005; Long et al. 2008; Christoudias et al. 2008]. The mismatch
in predictions by C1 and C2 on unlabeled data can be quantified using a loss function.
The mean squared error loss function commonly used in machine learning captures
this loss as such:

LU (w1, w2) = 1
|U |

∑

u∈U

( f1(w1, u) − f2(w2, u))2
.

The preceding formulation captures the average squared difference in predictions from
the two views on unlabeled data. Here, w1 and w2 correspond to the parameter vectors
corresponding to C1 and C2, respectively, and u refers to an example from U , having
two views, u1 and u2. For a given example, u = (u1, u2), the functions f1 and f2 act on
u1 and u2, respectively, and make the predictions from C1 and C2 comparable. These
functions could be generic (e.g., a function that outputs the probability that the instance
is positive) or classifier dependent (e.g., a function that outputs scaled distances from
the separating hyperplane in case of SVMs). Minimizing L corresponds to adjusting
the weight vectors, w1 and w2, so that they make similar predictions on U .

In contrast to multiview learning methods, where learning the classifiers is folded
into a global objective function in sophisticated ways [Sindhwani et al. 2005; Long et al.
2008; Christoudias et al. 2008], we adopt a simpler approach that works off the initial
parameter vectors and iteratively modifies them in a “co-training like” manner. Note
that this initialization plays a crucial role in avoiding trivial solutions (e.g., w1, w2 = 0)
that are potentially possible since the loss is optimized only on unlabeled instances.
Our proposed technique for obtaining the “pair of conforming classifiers” is described
in Algorithm 2.

In Algorithm 2, we start with the original parameter vectors w1 and w2 from clas-
sifiers C1 and C2, respectively, and iteratively adjust these vectors so that the values
of f1(w1, u1) and f2(w2, u2) look similar for all u ∈ U . The input parameter, #oIters,
refers to the number of times the inner loop comprising the two gradient descent steps
is executed, whereas the #i Iters, and α are parameters for the gradient descent algo-
rithm. Overall, the values of #oIters, #i Iters, and α control the rate of convergence of
the algorithm and can be set experimentally. These parameters can be set based on the
base classifiers used, noting when the decrease in the objective function value is below
a threshold. Adaptive tuning of these parameters by tracking the change in the value
of the objective function in every iteration is a subject for future study [Nocedal and
Wright 2006].

In each iteration, we employ mini-batch gradient descent to minimize the loss func-
tion, once with respect to w1 and next with respect to w2. The mini-batch gradient
descent algorithm is a hybrid approach often used for large-scale machine learning
problems. This approach combines the best of stochastic (online) gradient descent and
batch gradient descent to obtain fast convergence during optimization by running gra-
dient descent on small batches of randomly selected examples [Dekel et al. 2012].

In our algorithm, in each iteration, a small batch of instances are randomly sampled
from the unlabeled data, U, and the loss function defined using instances for which
w1 makes confident predictions from this sampled set. This loss is minimized using
gradient descent to adjust w2. A similar process is then applied for adjusting w1 using
confident predictions from w2. In effect, as the algorithm proceeds, we are adjusting
the parameters of each classifier so that it makes predictions that are aligned with
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ALGORITHM 2: Learning a Pair of Conforming Classifiers
Input: w1, w2, U , ‘s’, #oIters, #iIters, α
o = 0
while o ≤ #oIters do

%Perform Mini-batch Gradient Descent to obtain a new w2
i = 0
while i ≤ #i Iters do

S = φ. Sample ‘s’ examples from U into Ut
for u ∈ Ut do

if f1(u1, w1) is confident then
Add u to S

end if
end for
w2 ← w2 − α

∂LS
∂w2

.
i ← i + 1

end while
%Perform Mini-batch Gradient Descent to obtain a new w1
i = 0
while i ≤ #i Iters do

S = φ. Sample ‘s’ examples from U into Ut.
for u ∈ Ut do

if f2(u2, w2) is confident then
Add u to S

end if
end for
w1 ← w1 − α

∂LS
∂w1

.
i ← i + 1

end while
o ← o + 1

end while
Output: w1, w2

those of the other classifier’s confident predictions. Upon convergence, both w1 and w2
are adjusted so that they make conforming predictions on the unlabeled data.

In our experiments, we used the differentiable, logistic sigmoid function for f1 and
f2. Typically, classifiers use the parameter vector, w, for computing decision values for
each instance. In other words, given an instance x, the dot product value, 〈w, x〉, is used
for determining the label assignment for the instance. This value can be “squashed”
to a number between 0 and 1, indicating that the probability that the instance has a
particular label with the logistic function [Bishop 2006]:

P(t) = 1
1 + e−t with

dP(t)
dt

= P(t) · (1 − P(t)).

Given the simple form for the derivative, we can directly use the values of f1 and
f2 (that we compute anyway) for computing the gradients in Algorithm 2. Although
the effect obtained by Algorithm 2 is similar to that of co-training, the conformity loss
directly measures the effect of co-training as it is being applied. In contrast, Algorithm 1
is typically terminated either when no more examples are available or by tracking the
performance on a validation dataset.

We provide a preliminary, experimental demonstration of the connection between
co-training and our proposed algorithm in Section 7. A more detailed analysis, study of
other choices for the loss function L and the functions, f1 and f2, are a subject of future
work. Nevertheless, quantifying the discrepancy in predictions from the two views and
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an algorithm to directly address this aspect is an exciting step in understanding when
co-training works. In Section 7, we show that our method can be used in lieu of a
validation dataset for tracking the performance of co-training.

5. FEATURE SELECTION AND FEATURE HASHING

FS and FH methods involve different means of changing the feature representation
used as input to machine learning algorithms. These methods have been widely used
for text classification problems (e.g., see Yang and Pedersen [1997], Forman [2003],
Weinberger et al. [2009], Shi et al. [2009], Forman and Kirshenbaum [2008], Langford
et al. [2007], and Caragea et al. [2012]). In text classification, a document is generally
represented using bag-of-words and n-gram approaches, which result in a dictionary
of size d of all words or n-grams for a collection of documents. A text document is then
represented as a vector x with as many entries as the number of words or n-grams in
the dictionary. The entry k in x can record the frequency of word or n-gram k in the
document, denoted by xk, using appropriate normalization. Forman [2003] presented
an extensive empirical analysis of FS for text classification and showed that FS applied
to bag-of-words can make a learning task more accurate and efficient. Weinberger et al.
[2009] and Shi et al. [2009] successfully used FH for a large-scale personalized email
filtering problem and newswire article classification, respectively.

Given the success of FS and FH methods for large-scale text-related tasks, we study
their applicability for homepage classification (independently and in conjunction with
co-training). These methods are described next:

(1) FS methods target the removal of noninformative features using measures such as
mutual information, correlation, or information gain (IG). We study FS using IG
for homepage classification. Yang and Pedersen [1997] performed a comparative
study of FS techniques on several corpora and reported IG to be among the most
effective ones for text classification. IG measures the decrease in entropy given the
information regarding the presence or absence of a feature. The “worth” of a feature
with respect to a class is measured using IG(C, f ) = H( f ) − H(C| f ), where C, f,
and H refer to the class label, feature, and entropy function, respectively [Bishop
2006].

(2) FH is a technique that eliminates the need for a look-up dictionary by implicitly
encoding it into a hash function h.8 For a text document, each token is directly
mapped, using h, into a hash key, which represents the index of the token in the
hashed feature vector. Note that multiple tokens can be mapped, through h, into
the same hash key. Each index in the hashed vector stores the sum of “frequency
counts” of all tokens that are hashed together into the same hash key. Weinberger
et al. [2009] proved that for a feature vector x such that ‖x‖2 = 1, the length
of x is preserved with high probability for sufficiently large dimensions (or hash
sizes) and sufficiently small magnitude of x, such as ‖x‖∞ (lower and upper bounds
are theoretically derived). As a consequence, for sufficiently large dimensions, not
many collisions occur in the data due to hashing, thus resulting in performances
similar to the bag-of-words approach. Hashing was effectively used in large-scale
classification [Weinberger et al. 2009] and Web-related applications such as jointly
modeling friendship and interest networks in social networks for interest targeting
and friendship prediction [Yang et al. 2011].

Our goal in studying FS and FH for homepage classification is to answer the following
questions:

8Note that h can be any hash function, such as hashCode() of the Java String class, or murmurHash function
available online at http://sites.google.com/site/murmurhash/.

ACM Transactions on the Web, Vol. 9, No. 4, Article 17, Publication date: October 2015.

http://sites.google.com/site/murmurhash/


Improving Researcher Homepage Classification with Unlabeled Data 17:13

—How does the performance of FS and FH compare to that of bag-of-words for home-
page classification?

—Is there value in combining FS and FH with co-training?

We compare the classification performance using all features, features selected using
IG, and hash features obtained using hashCode() of the Java String class.

6. SEMISUPERVISED LEARNING

Semisupervised learning pertains to the use of unlabeled examples along with a few
labeled examples for estimating parameters of machine learning algorithms [Bishop
2006]. The co-training [Blum and Mitchell 1998] algorithm is a generic procedure for
including unlabeled instances into the learning process without reference to specific
classification algorithms such as naive Bayes (NB) or SVMs. In contrast, in other
semisupervised techniques, parameters are estimated using both labeled and unlabeled
instances by including terms pertaining to both in the underlying objective functions
(e.g., using regularization). Consequently, several existing classification algorithms
have specific semisupervised variations. We compare co-training with the following
semisupervised learning methods. Their choice is motivated with a view to choose
state-of-the-art techniques in each category of models, namely probablistic (generative
and discriminative) and nonprobabilistic [Bishop 2006]:

(1) Naive Bayes multinomial with expectation maximization (NBM-EM): Nigam et al.
[2000] suggest computing probabilistic labels on unlabeled examples and using
them while estimating parameters for naive Bayes (NB) models. They use an it-
erative procedure based on the EM principle to repeatedly reassign probabilities
over unlabeled examples until convergence is obtained. This procedure was shown
to work well when the underlying data conforms to the generative assumptions of
the model. Weighing factors for unlabeled instances and mixture models per class
were also studied as extensions to the original formulation when such assumptions
are violated [Nigam et al. 2000].

(2) Generalized expectation (GE): Feature labeling was recently proposed by Druck
et al. [2008] for discriminative classifiers. “Supervision” is provided in these mod-
els using (feature, label) affinities rather than fully annotated instances. As an
example, consider the text classification problem where the documents are to be
classified into classes: homepage (+ve) versus nonhomepage (−ve). Even without
looking at the entire document for assigning a label, from domain knowledge one
can expect phrases such as my research or my research interests to be more as-
sociated with the positive class rather than the negative class. This intuition is
captured by labeled features that express distributions such as { ‘my research’: +ve
= 0.9, −ve = 0.1}. For MaxEnt models, the objective function is suitably extended
to incorporate these distributions in terms of expectation constraints. GE [Mann
and McCallum 2010] and posterior regularization (PR) [Ganchev et al. 2010] can
be used to enforce these expectation constraints while learning the models. Druck
et al. [2008] proposed automated techniques for extracting labeled features given
a labeled dataset.

(3) Transductive support vector machines (TSVMs): TSVMs were proposed by Vap-
nik [1995] for improving the generalization accuracy of SVMs with the help of
unlabeled data. This is achieved by adding an additional regularization term for
unlabeled data to the objective function optimized by SVM. The test data (on which
predictions are to be obtained) are used as unlabeled data to adjust the margin of
classification in a transductive setting in TSVMs. TSVMs were shown to perform
well on text classification problems because they inherently take co-occurrence
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Table III. List of Seed URLs

http://www.cs.wisc.edu, http://www.cs.umich.edu, http://www.cs.umd.edu,
http://www.cs.ucla.edu, http://www.cis.upenn.edu, http://www.cs.columbia.edu,
http://www.cs.princeton.edu, http://www.eecs.berkeley.edu, http://www.cs.washington.edu,
http://www.cs.brown.edu, http://www.cs.utexas.edu, http://www.cs.cornell.edu,
http://www.eecs.mit.edu, http://cs.illinois.edu, http://www.cc.gatech.edu,
http://www.cse.ucsd.edu

properties exhibited by words in text documents into account while adjusting the
margin for separation [Joachims 1999].

7. EXPERIMENTS

We summarize our experiments next:

(1) We demonstrate the performance of both content- and URL-based features on the
training and validation datasets.

(2) Next, we show that co-training can successfully address the problem of mismatch
in the training and deployment environments for homepage classification.

(3) Then, we show that our proposed algorithm (Algorithm 2) achieves the same effect
as co-training.

(4) We then evaluate FS and FH for homepage classification in conjunction with co-
training and demonstrate that co-training out-performs all semisupervised ap-
proaches discussed in Section 6.

(5) Finally, we provide experiments on two newly created datasets to illustrate the gen-
eralizability of our proposed features and methods. Specifically, we include results
of co-training on a dataset comprising of homepages from non-U.S. universities as
well as research institutes and another dataset that has homepages of researchers
from subject areas other than computer science.

7.1. Datasets

We describe the datasets available for studying academic homepage classification for
the computer science discipline. The WebKB dataset was used previously by several re-
searchers for studying webpage and text classification including semisupervised learn-
ing and co-training [Blum and Mitchell 1998; McCallum and Nigam 1999; Nigam et al.
1999, 2000]. The WebKB collection contains 8,282 academic webpages from computer
science departments of four universities: Cornell, Washington, Texas, and Wisconsin,
categorized into seven categories (student, faculty, staff, department, course, project,
and other). The “other” class comprises pages that cannot be fit into the remaining six
classes, such as a publications page that links to a page belonging to a faculty page.
This collection was obtained in 1997 and is not quite representative in terms of the
types of webpages available on the academic websites of the current day as shown in
the error analysis that we present shortly. Another set of author-provided homepages
are available from the bibliographic resource for computer science and related areas,
DBLP.9 Although this collection of 6,000 homepages is more recent, we do not have
negative instances as part of this dataset.

To mimic the deployment scenario, we crawled the university websites listed in
Table III. These websites were selected arbitrarily from the list of top U.S. graduate
schools in computer science (obtained from rankings in U.S. News & World Report10).
We seeded our crawl with these URLs and used the open-source crawling software

9http://www.informatik.uni-trier.de/∼ley/db/.
10http://www.usnews.com/.
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Table IV. Datasets Description

Training(WebKB+DBLP) Unlabeled(Crawl) Test(Crawl) Validation(Crawl)
9263/4719 143145 1600/89 500/42

Note: a/b represents a instances out of which b are labeled positive.

Heritrix11 (version 1.14.3) for obtaining all webpages of content-type “text/html,” within
a depth of five starting at the parent URL. In total, we were able to obtain 162,369
webpages using this process. This crawl was performed in April 2012 and hence repre-
sents a relatively recent snapshot of content at these URLs. Note that this setup was
used for the purpose of experiments. Our final goal is to embed accurate classifiers into
the crawler so as to avoid obtaining webpages that are not homepages.

To validate the performance of our classifiers, we randomly selected sets of 100
webpages from each of the 16 universities listed in Table III and manually labeled
them. From the remaining pages, another set of 500 pages were randomly chosen for
validating or tuning the methods described in Sections 4, 5, and 6. For our experiments,
we only consider instances for which both the views are available—that is, pages from
which we are able to extract both URL and content features. For labeled instances
from DBLP (6,000 instances) and WebKB (8,282 instances), this could be done for
9,263 cases.We could extract both content and URL features for 145,245 out of 162,369
crawled pages. These pages are spread across unlabeled dataset (143,145 instances),
validation dataset (500 instances), and test dataset (1,600 instances). A summary of
the datasets12 just described is shown in Table IV.

7.2. The ArnetMiner Dataset

The datasets described in the previous section are dominated by instances obtained
from university websites located in the United States. Do the URL and content features
continue to work well with homepages obtained from research institutes rather than
university homepages? How well do our proposed methods generalize on (English)
academic homepages obtained from other (non-U.S.) countries? Datasets that contain
these types of homepages are not publicly available. Hence, we created a representative
dataset compiled from ArnetMiner that we refer to as the AM dataset.

Tang et al. [2008] studied metadata extraction from researcher homepages as part
of their ArnetMiner system. Their publicly available dataset contains 898 homepages
annotated for researcher metadata. This dataset neither has examples of nonhome-
pages nor does it have the URL information corresponding to the webpages. To address
these shortcomings, we created the AM dataset as described next:

—From the profiling dataset, a subset of researchers was selected randomly. The home-
pages corresponding to the researchers in this subset were located online by search-
ing for the researcher name using the popular search engine Google. Next, a few links
on the domain that hosts the homepage were manually examined to collect negative
examples for our dataset. The AM dataset compiled in this fashion contains URLs
and webpages pertaining to 113 homepages and 126 nonhomepages. The top-level
and the country-code top-level domain names extracted from the URLs of these web-
pages are listed in Table V. As can be seen from these domain names, several pages
in the AM dataset are from countries other than the United States. The dataset also
has pages from nonuniversity websites such as “.com, .gov, .org.”

11https://webarchive.jira.com/browse/HER.
12All raw datasets, dictionaries, and feature files are available upon request.
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Table V. Number of Webpages per Hostname
in the URLs for the AM Dataset

edu 24 com 24 it 19 ca 17 uk 16
org 12 de 11 jp 9 fr 8 pl 7
kr 7 il 7 gov 6 es 6 cz 6
au 6 sg 5 fi 5 be 5 tw 4
se 4 dk 4 br 4 no 3 nl 3
cn 3 sk 2 net 2 ie 2 hk 2
at 2 pt 1 in 1 eu 1

7.3. Homepage Dataset for Researchers from Diverse Disciplines

We now address this question: Are homepages of researchers from other disciplines and
subject areas similar to homepages of researchers from computer science and related
areas? Intuitively, we expect some similarities to persist among researcher homepages
across disciplines. For instance, cue phrases such as “publications,” “faculty,” “grants,”
and “research interests” may occur on homepages from other disciplines as well, such as
mathematics and chemistry. How well do the URL and content-based features proposed
by us generalize across disciplines? In particular, since we have labeled datasets of
homepages of researchers in computer science and related areas, can we use them to
identify homepages of researchers in other disciplines? To answer these questions, we
collected the MH dataset, a dataset that includes homepages and nonhomepages from
diverse disciplines.

The E-print network13 provides a listing of webpages related to researchers from a
variety of disciplines, including environmental sciences, mathematics, and chemistry.
These webpages include researcher homepages, group or lab homepages, and publica-
tion listings. To mimic our crawl scenario accurately, we collected the MH dataset as
follows. After obtaining the webpages from E-prints, we randomly selected subsets of
author names from five disciplines: biotechnology, chemistry, environmental sciences,
geosciences, and mathematics. For each discipline, we manually located about 30 re-
searcher homepages on the respective institute or university website using Google.
From the same website, for every researcher homepage located, we collected about 3
nonhomepages to comprise the negative instances. In total, we were able to collect 149
researcher homepages and 448 nonhomepages to comprise the MH dataset. We discuss
the performance of our classifiers on this dataset in Section 7.11.

7.4. Classification Experiments

Precision, recall, and F1 are standard measures to evaluate the performance of classifi-
cation algorithms [Manning et al. 2008]. Weighted measures were proposed to evaluate
classifiers on datasets that are highly imbalanced with respect to the number of exam-
ples from different classes [Witten et al. 2011]. Let pp and np denote the proportions
of positive and negative examples in a dataset (pp + np = 1). If Precp denotes the pre-
cision of the positive class and Precn that of the negative class, the weighted precision
is given by pp × Precp + np × Precn. The other measures, recall and F1, are similarly
scaled using pp and np values to obtain their weighted counterparts. We use weighted
measures to evaluate classification performance in our experiments.

We study the performance of our content-based and URL features using the
classification algorithms: NB, NBM, random forests (RF), SVMs using a linear kernel
(SVM), and MaxEnt. NB and NBM are generative models, whereas RF is an ensemble
method using decision trees. Discriminative algorithms such as SVMs [Vapnik 1995;
Cristianini and Shawe-Taylor 2000] and MaxEnt classifiers [Nigam et al. 1999] are

13http://www.osti.gov/eprints/pathways/.
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Fig. 1. Performance of various feature sets on homepage classification. Fivefold cross-validation perfor-
mance is compared with that obtained on the validation dataset obtained from crawls.

being used extensively for text classification problems in recent times. These methods
output parameter vectors as part of the training process that can be manipulated
directly in our Algorithm 2. Further details on different classification algorithms
and their parameters can be found in a standard machine learning textbook (e.g.,
Bishop [2006]). The NB algorithm is well studied in the context of co-training and its
theoretical analysis, although co-training is a classifier-independent technique. For
text classification, the NBM classifier is different from NB in terms of its modeling of
term counts using multinomial distributions [McCallum and Nigam 1999].

7.4.1. Classification Performance and Error Analysis. Figure 1(a) and (b) show the weighted
F1 measure on our training WebKB+DBLP (fivefold cross-validation) and validation
crawl datasets using the classification algorithms with content-based and URL fea-
tures, respectively. We used classifier implementations provided by Weka [Hall et al.
2009], libSVM [Chang and Lin 2011], and Mallet [McCallum 2002]. Where applicable,
we tuned the parameters on the training datasets for the best performance (e.g., the C
parameter for SVM and number of trees in RF). Similarly, to handle potential imbal-
ance in instances belonging to different classes during co-training, we use appropriate
misclassification costs (the CostMatrix option in Weka and the “w” setting in libSVM).

As Figure 1(a) and (b) illustrate, discriminative algorithms such as SVM and Max-
Ent generally outperform the generative models such as NB and NBM on the home-
page identification task using both content and URL features. Based on these results,
for all subsequent experiments, we chose the better performing of all classification
algorithms—NBM, SVMs, and MaxEnt—for further study. The performance of URL-
based classifiers is typically higher compared to that of content-based classifiers, espe-
cially on the validation set that was collected from the crawled data. We performed an
error analysis on the validation set and noticed that the content-based classifiers suffer
from a high false-positive rate, incorrectly labeling negative instances as positive. The
WebKB dataset includes negative instances coming from types such as course, depart-
ment, and project-related pages. However, about 212 out of the 500 validation instances
could not be categorized into any of the seven types present in WebKB. Instead, we can
capture these pages under the following new types:

(1) Webpages related to colloquium, seminars, lectures, publications, papers, talks,
and slides.

(2) Webpages that describe code, widgets, scripts, and datasets.
(3) Webpages related to department activities such as picnics, pages with embedded

photos, and personal pages.
(4) Webpages pertaining to information on news, events, highlights, faq, and forms.
(5) Webpages pertaining to alumni-related information, job, and contest calls.
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Table VI. Features Ranked Using Information Gain on Training and Crawl (test+validation) Datasets

URL Content
Training Crawl Training Crawl

TILDENODICT ALPHANUMBER gmt university
TILDENODICT_SEQEND TILDENODICT server computer
ALPHANUMBER ALPHANUMBER_ALPHANUMBER type science
NONDICTWORD HYPHENATEDWORD html department
courses ALPHANUMBER_SEQEND content numImages
ALPHANUMBER_SEQEND TILDENODICT_SEQEND text numLinks
users_NONDICTWORD QMARK date cs
users NUMBER professor box
NONDICTWORD_SEQEND courses university ri
homes NUMBER_SEQEND research providence
Note: The overlapping features from both sets are shown in bold. The relatively high overlap in URL
features explains why they perform well in both training and deployment environments.

Given that our validation set only comprises 500 instances, it is reasonable to suspect
that other types of webpages exist in our crawled collection. We used IG [Bishop 2006]
on the training and crawl (test+validation) datasets to understand the feature-class
correlation between the two datasets. The top-10 features ranked by this measure,
shown in Table VI, also point to the difference between the two environments. However,
our aim is not to model new types of webpages; rather, we wish to learn a discriminator
that isolates academic homepages from nonhomepages. In our experiments, we noticed
that webpages belonging to the preceding new types (1) and (2) were often misclassified
as academic homepages. However, surface patterns and cue words such as “seminars”
in the URLs are effective for classifying these instances correctly.

We now evaluate the following approaches for improving the performance of content-
based classifiers for the new environment. First, we trained a one-class SVM (lin-
ear kernel) for identifying homepages. One-class classifiers learn discriminators for
a class by using just the positive instances without explicitly modeling the other
classes [Schölkopf et al. 2000; Yu et al. 2004]. One-class methods are typically used
for outlier and novelty detection. However, one-class SVMs do not work as well as
binary classifiers for our problem on the training datasets. Their performance on the
validation set is better, but not comparable to the best-performing classifiers on the
validation set (see Figure 1(a)–(c), 1C-SVM).

Next, we learned classifiers on the combined set of features for each instance (con-
tent+URL). The performance of these classifiers is shown in Figure 1(c). As the figure
indicates, when compared to Figure 1(a) and (b), using the combined set of features
on the validation set is better than using content features alone, but still worse than
using URL features alone.

7.4.2. Feature Extraction and Classification Times. As discussed in Section 2, several pre-
vious works noted the efficiency advantages in using a short URL-based string for
performing Web-based tasks. This benefit is particularly significant in the context of
focused crawling. If a webpage can be classified accurately based on the URL string
alone, the overhead of downloading and parsing the webpage to make a content-based
decision can be avoided. We provide the classifier training, prediction, and feature ex-
traction times for our feature sets in Table VII. We show runtime results for NBM,
SVMs, and MaxEnt (chosen due to reasons explained in the previous section). We per-
formed all experiments five times with no other process running on our experimental
machine14 and summarize the average times in Table VII.

14All experiments for this work were run on a 16-core, 800MHz, 32GB RAM, AMD Opteron, Linux server.
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Table VII. Average Feature Extraction and Prediction Times per Instance
and Time for Training the Classifiers

Classifier Features Model Training Time (ms) Average Prediction Time (ms)
MaxEnt Content 2,927.8 2.2524
SVM Content 103,850.0 9.7064
NBM Content 513.4 0.0604
MaxEnt URL 1,233.6 1.0620
SVM URL 3,236.8 0.18320
NBM URL 110.4 0.0156
Average time to extract URL features per instance 0.1009
Average time to extract content features per instance 4.8353
Average time to parse webpage content per instance 2.1433

Note: All times are in milliseconds (ms).

The training times of the classifiers depend on the number of features, the number
of training instances, the actual algorithms used for parameter estimation, and their
implementations. For example, the NBM classifiers only use the counts of features seen
during training for computing model parameters, whereas the MaxEnt and SVM train-
ers estimate model parameters by formulating and solving an optimization problem
over the training instances. Despite these factors, it is clear from Table VII that the
URL-based classifiers are orders of magnitude faster during training and prediction
phases compared to the content-based classifiers.

We also specify the times for extracting content and URL features per training
instance (webpage) in Table VII. In an actual crawl, we also need to account for the
(content) download times. Since our experiments were performed in the offline setup,
we were unable to record these times in the table. However, webpage download times
depend on other settings in the crawler, such as timeout/retry intervals and external
factors such as Web traffic and robots.txt settings on the Web servers of crawl sites.
As the numbers in Table VII indicate, from the perspective of efficiency it is clearly
advantageous when an accurate decision can be made based on URL strings alone. The
download, HTML parsing, and content feature extraction overhead can potentially be
avoided when accurate URL-based classification is possible.

7.5. Self-Training Experiments

Self-training, an iterative approach commonly used in semisupervised learning, works
as follows. Unlabeled examples, predicted confidently by the classifier in one iteration,
are added back to enlarge the training dataset that is used to retrain the classifier for
the subsequent iteration [Yarowsky 1995]. The intuition behind self-training has been
compared to pseudorelevance feedback employed in information retrieval [Nigam and
Ghani 2000; Manning et al. 2008]. Although this approach was successfully applied to
some problems before, it is known to suffer from cascaded errors resulting in the final
classifier being less effective than the initial one for some applications [Zhu 2005].

We evaluate the performance of self-training on the validation dataset using our sets
of features. The results of self-training on content features using different training
algorithms is illustrated in Figure 2(a). As can be seen in this figure, compared to
the performance at iteration 1 (start of the self-training process), the validation per-
formances as the iterations proceed are not significantly better. Indeed, depending on
the classification algorithm, decreased accuracy can be observed on the validation set
(MaxEnt). In our experiments, we found self-training to not benefit the URL classifier
or the classifier trained using the combined set of content and URL features. This
behavior is illustrated using the NBM classifier in Figure 2(b).
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Fig. 2. Performance on the validation dataset with self-training.

Fig. 3. Performance on the validation dataset with co-training on URL and content features with the
AddCross scheme.

7.6. Co-Training Experiments

We studied co-training (Algorithm 1) using the different schemes, AddBoth, AddCross,
and AddCrossRC for selecting unlabeled instances for the next round. We use the same
type of algorithm for training classifiers on both views (e.g., SVM for URL features as
well as for content-based features). We sampled 5,000 instances from the unlabeled
dataset in each iteration and consider an instance for addition only if a prediction
was made for this instance with a confidence probability ≥0.9. We set the number of
co-training iterations to 20. The performance on the validation dataset was found to
converge for both URL and content classifiers with these settings. Note that the labeled
training set is WebKB+DBLP, whereas the unlabeled training set is the data from our
crawl.

Figure 3 shows the performance of co-training with content-based and URL classi-
fiers on the validation set using AddCross. Co-training successfully manages to pull up
the performance of the content-based classifiers using the unlabeled data. The URL
classifiers being more stable add relevant instances to the labeled datasets over suc-
cessive rounds, enabling the content-based classifier to retrain itself over the iterations
and learn to discriminate better among the current-day pages on the Web. Although the
initial rounds do not result in improvements in the performance for the URL classifier,
once the content-based classifiers are up in accuracy, they are able to provide useful
examples to the URL classifiers, in turn resulting in improvements even for the URL
classifier (Figure 3(b)).

We evaluated the different schemes—AddBoth, AddCross, and AddCrossRC—for
adding unlabeled examples during co-training. Figure 4 illustrates these runs using
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Fig. 4. Co-training schemes (NBM). Fig. 5. GD with MaxEnt (content). Fig. 6. GD with MaxEnt (URL).

Fig. 7. GD: Content (SVM). Fig. 8. GD: URL (SVM). Fig. 9. ObjVal vs. F1.

the NBM classifier on URL and content features. As can be noticed in these plots,
different addition schemes result in different co-training performance using the NBM
classifier. However, with SVM and MaxEnt algorithms as base classifiers, we noticed
no significant differences in the performance using the different schemes. The Add-
CrossRC scheme also performs similarly, except it takes longer to converge as only a
constant number of examples (p + n) are added in each iteration, where p : n is the
ratio of positive to negative instances, in the original labeled set. In general, AddCross
performs either better than or on par with the other schemes. Since in Algorithm 2 we
use a similar scheme as in co-training for adding instances from the unlabeled to the
labeled set, we chose AddCross for comparisons with gradient descent shown in the
next section.

Not accounting for class imbalance via the misclassification costs results in per-
formance degradation over the co-training iterations. This happens due to the large
number of negative instances in the unlabeled data that are moved to the training set
during co-training iterations. On training with these skewed datasets, the performance
on the positive class reduces drastically over the co-training iterations for both the Ad-
dBoth and AddCross schemes. The performance on AddCrossRC is not affected due to
the RC being maintained over the iterations, as we started with an almost balanced
training dataset (see Table IV for data distribution).

7.7. Gradient Descent Experiments

Figures 5 and 6 show a run of Algorithm 2 with initial weight vectors obtained with
MaxEnt classifiers on content and URL features, respectively. The initial vectors are
obtained by running the MaxEnt trainer over the labeled (training) dataset. The figures
show the classification performance on the validation set after the termination of each
iteration (from 1 to 20) of Algorithm 2, which minimizes the loss function in each
round. Similar plots with the initial weight vectors obtained from SVMs are shown in
Figures 7 and 8.
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Fig. 10. Reducing value of the squared-error loss as
co-training progresses.

Fig. 11. Features that are most affected after run-
ning Algorithm 2 on MaxEnt weight vectors.

The figures also show the comparison of the proposed gradient descent algorithm
with co-training. We plot the maximum F1 score that was obtained with co-training
experiments (previous section) alongside the curves in Figures 5 through 8 to illustrate
that our proposed algorithm in effect attains similar performance improvements that
are possible with co-training. Although these plots show the F1 variation over the
validation set, note that the validation set is not used for tracking the optimization
process. Instead, the algorithm can terminate either after a preset number of iterations
or by explicitly tracking the objective value for convergence. Each iteration of the
algorithm involves running mini-batch gradient descent twice, once for each classifier.

We observed the objective values to be converging in about 20 iterations when the
algorithm is initialized with the weight vectors from MaxEnt, whereas it takes about 50
iterations with those from SVM. These values correspond to the #oIters in Algorithm 2.
The #i Iters and α values for mini-batch gradient descent were set to 50 and 0.1,
respectively, in all experiments. About 1% of unlabeled data was randomly sampled
in each round, and examples that were predicted with at least 90% confidence were
used for computing the loss function that is minimized with gradient descent. The
#i Iters and α values affect the rate of convergence for gradient descent. We chose
these values based on experimentation instead of adaptively using techniques such as
line search [Nocedal and Wright 2006]. Experimenting with these parameters is left
for future work. With the settings just described, the runtimes for convergence were
similar to that of co-training. In general, depending on the classification algorithms
used, the co-training experiments took times ranging between 5 minutes and 4 hours
on our experimental machine (described in Section 7.4.2).

We plot the F1 on the validation dataset against the computed objective function
value in Figure 9. The plot depicts the close correspondence between reducing the
discrepancy between predictions based on the two views and the improved performance
on the validation dataset. We also illustrate the connection between the effect of co-
training and our proposed loss function by plotting the value of our loss function on
unlabeled data available in that iteration as co-training progresses in Figure 10. This
plot highlights the fact that when co-training works, it seems to be due to the reducing
discrepancy between the predictions from the two views used in co-training. The list
of top-10 features that undergo the most change in the MaxEnt weight vectors after
Algorithm 2 converges are shown in Figure 11.

Table VIII compares the performance obtained with co-training and the gradient
descent algorithms. The “After-CT” entries show the performance of classifiers ob-
tained after co-training was employed with unlabeled data and terminated after con-
vergence was attained on the validation datasets (typically in about 20 iterations). The
“After-GD” entries use the weight vectors (classifiers) obtained after running
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Table VIII. Performance on the Test Dataset Using Content
Features after Co-Training (CT) and Gradient Descent (GD)

Method Precision Recall F1
SVM (Before) 0.9413 0.4947 0.6048
SVM (After CT) 0.9147 0.8167 0.8559
SVM (After GD) 0.9175 0.8826 0.8977
MaxEnt (Before) 0.8806 0.4167 0.5380
MaxEnt (After CT) 0.9234 0.9295 0.9262
MaxEnt (After GD) 0.9272 0.9401 0.9158

Fig. 12. FS and FH experiments with NBM.

Algorithm 2, starting with the original weight vectors. As can be seen in this table, the
performance of our proposed algorithm closely matches the performance obtained with
co-training.

7.8. Feature Selection and Feature Hashing Experiments

In this section, we present results of our FS and FH experiments on the various sets of
features using the NBM classifier. Figure 12 shows the performance on the validation
dataset with different numbers of chosen content, URL, and content+URL features.
The points indicate the F1 obtained on the validation dataset for a given percentage
of the total features in the corresponding view. For example, 1% of 1,039 URL features
corresponds to the top-10 URL features selected using IG on the FS curve and refers
to the number of hash buckets used in FH.

From Figure 12, we notice that when compared to the performance including all fea-
tures (the point corresponding to 100% on the FS curve), several other configurations
that yield better validation performance compared to this point are possible. Indeed,
we can see several points higher on y-axis compared to the point corresponding to FS
100%. These observations are consistent with previous research. FS that removes non-
informative features obtains benefits over including all features, whereas FH performs
similarly or worse compared with classifiers that use all features. Note that the point
corresponding to 100% on the FH curve differs from the setting when all features are
included due to potential collisions caused by the hash function. However, when using
hashed features, due to the encoding via the hash function, there is no need to store
dictionaries while generating the feature representations, thus making them efficient
for large-scale classification problems [Weinberger et al. 2009; Caragea et al. 2012].

As illustrated in Figure 12(c), even with FS or FH, the performance obtained using
the combined set of features (content+URL) is lower than that obtained by the individ-
ual classifiers after co-training. From Figure 12(b), we can see that using FS and FH,
the URL classifier has configurations for which the performance is even better than
that obtained with co-training and all features. This observation motivates our next
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Fig. 13. Performance on the test dataset with FS and FH.

Table IX. Performance on the Test Dataset
after Co-Training/Self-Training

Features Precision Recall F1
URL (All) 0.944 0.731 0.800
—with FS 0.936 0.761 0.822
—with FH 0.933 0.455 0.567
Content (All) 0.934 0.803 0.850
—with FS 0.918 0.847 0.876
—with FH 0.921 0.423 0.537
Content+URL (All) 0.941 0.651 0.740
—with FS 0.941 0.742 0.808
—with FH 0.939 0.646 0.736

set of experiments, where we check the performance of co-training after applying FS
and FH on the URL and content views independently.

The performances before and after applying co-training and self-training with all
features (All) and with features selected using IG (FS), and with hashed feature repre-
sentations (FH), are shown on content, URL, and content+URL features in Figure 13(a),
(b), and (c), respectively, on the test dataset. The number of features (or hash buckets)
that give the best performance on the validation set (previous experiment) are used
in this experiment. We can see that FS combined with co-training can offer further
improvements in identifying homepages.

Table IX shows the performance on the test dataset after co-training (or self-training)
using all features (All), top selected features by IG (FS), and hash features (FH). We
see from the table that when compared to using all features, first performing FS and
then applying co-training or self-training results in about 2% to 9% F1 improvements
on the test dataset. However, the performance using hashed representations degrades
when jointly used with co-training. A potential reason for this behavior could be that
collisions happen during the co-training iterations in such a way that features observed
in unlabeled instances (but not in labeled instances) get mapped via the hash function
to the same aggregated feature (“bucket”), resulting in accumulation of noise over the
iterations.

7.9. Comparison with Other Semisupervised Learning Approaches

The co-training algorithm enhances the content classifier performance using predic-
tions from the URL classifier on unlabeled data. For a fair comparison, we combine the
URL and content features to form a single view before applying the semisupervised
learning algorithms discussed in Section 6. Our experiments indicate that this setting
enables semisupervised algorithms to harness co-occurrence properties of features to
yield improvements over the base classifiers. In contrast, minimal or no improvements
are noticed when semisupervised learning is used with content features only.
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Fig. 14. Comparison of semisupervised methods.

We describe our experiments with the semisupervised techniques listed in Section 6:
NBM-EM, GE, and TSVM. We show the performance on the validation dataset for
different parameters of the algorithms in Figure 14. Since our objective is to improve
the content-based classifier for cases where URL features are absent (Section 3), we
explicitly tune the parameters using the content features of the validation datasets for
the final evaluation (on the test dataset).

In Figure 14, the “Basic” plots refer to the base performance when the classifier is
trained using content features of labeled instances and evaluated on the content view
of the validation instances. The “After CT” plots refer to performance of the content
classifier after co-training. The “Combined” plots show the performance NBM-EM,
GE, and TSVM using the combined (URL and content) set of features, whereas the
“Content” plots show the performance using content features only. These plots show
performance of the semisupervised algorithms for different choices of parameters as
described later.

Figure 14(a) shows the performance of the NBM-EM model with different settings
of weights for unlabeled instances. The performance degrades over the EM iterations
for a wide range of weight choices. It was observed in previous studies that this be-
havior is common when the underlying data does not conform to the assumed gener-
ative distribution, and mixture distributions were proposed as a solution to fix this
problem [Nigam et al. 2000]. Although this seems like a possible explanation for low
performance of NBM-EM for our problem, in the homepage crawling setting, given the
different and diverse types of “negative instances” encountered during the crawl, it is
not possible to estimate the mixture parameters a priori (Section 7.4).

Next, we experiment with the MaxEnt classifier. For using the feature labeling frame-
work, we have a choice of options: using labeled training instances versus validation
instances in the transductive setting, PR and GE for enforcing the feature constraints
and labeled features extracted using a previously proposed heuristic, or IG as suggested
in Druck et al. [2008]. We experimented with these options in Mallet [McCallum 2002]
and show the best setting (GE with labeled instances and labeled features extracted
based on IG) in Figure 14(b). The plots show performance of the GE trainer using
different numbers of labeled features.

For TSVMs, the data on which predictions are to be made is included during training
as unlabeled data (the transductive setup). We used the TSVM implementation pro-
vided in the SVMLight package.15 Figure 14(c) illustrates the sensitivity of TSVMs to
the value of the margin parameter, “C.”

Both GE and TSVMs yield improvements over the base classifiers (Basic plots) when
the combined view of features is used (Figure 14(b) and (c)). The Basic plots refer to
the performance when the classifiers are trained on labeled instances only (without

15http://svmlight.joachims.org/.
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Table X. Performance on the Test Dataset with Different
Semisupervised Approaches

Method Precision Recall F1
Naive Bayes Multinomial

Basic 0.932 0.689 0.770
Co-training 0.934 0.803 0.850

Maximum Entropy
Basic 0.8806 0.4167 0.5380
Co-training 0.9234 0.9295 0.9262
GET (Combined) 0.8817 0.7265 0.7925

Support Vector Machines
Basic 0.9413 0.4947 0.6048
Co-training 0.9147 0.8167 0.8559
TSVM (Combined) 0.8691 0.6409 0.7334

Table XI. Co-Training and Self-Training
on the AM dataset (NBM)

Feature Set Precision Recall F1
URL 0.613 0.586 0.573
—after CT 0.703 0.703 0.703
Content 0.755 0.745 0.744
—after CT 0.76 0.753 0.753
Content+URL 0.646 0.636 0.634
—after ST 0.649 0.649 0.649

Note: The sample sizes are set to 10, and the
algorithms are run in transductive mode.

any unlabeled data). The algorithms when run on combined view are able to harness
co-occurrence with URL features to show improvements beyond the Basic performance
using unlabeled data. In contrast, using content features alone, the algorithms do not
show significant improvements.

As can be seen in Figure 14(b) and (c), co-training outperforms both GE and TSVMs
by a large margin on the validation dataset. Based on these experiments, we choose
the best-performing semisupervised approaches and parameter settings for the final
evaluation on the test dataset in Table X.

7.10. Performance on the AM Dataset

We show the results of co-training and self-training using the AM dataset to illustrate
the applicability of our proposed techniques to webpages from other academic domains.
As described in Section 7.2, the AM dataset is a small collection of webpages from
research institutes and non-U.S. universities. Table XI shows the performance, on the
AM dataset before and after co-training (AddCrossRC, Section 4), of the URL and
content classifiers trained on the DBLP+WebKB dataset (see Table IV for the dataset
description) using NBM. Since unlabeled data from appropriate domains is unavailable
for the AM dataset, we run the co-training algorithm in transductive mode. In this
configuration, the test (AM) data on which predictions are to be made is treated as
unlabeled data [Blum and Mitchell 1998; Nigam and Ghani 2000].

Notice that in contrast to the experiments on datasets related to U.S. universities,
the content-based classifier does better than the URL classifier on the AM dataset in
Table XI. The reason for this behavior is indicated in Figure 15, where we show the
top-10 URL features on the training and AM datasets based on IG. It appears that
the URL features corresponding to the non-U.S. webpages are different from those in
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Fig. 15. Overlap in the top-10 features (IG) of train-
ing and AM datasets.

Fig. 16. Comparison performance with random
splits and original split.

Table XII. Performance of URL and Content Classifiers on the Institute Webpages
from the ArnetMiner Dataset and the MH Dataset

Dataset Pos/Neg Instances Features Precision Recall F1
MH (Other Disciplines) 149/448 URL 0.832 0.743 0.761

Content 0.797 0.649 0.673
AM (Research Institutes) 18/26 URL 0.582 0.578 0.580

Content 0.739 0.721 0.724
Note: The URL and content classifiers were trained using the NBM algorithm and co-
training on the training and unlabeled datasets from Table IV.

the training dataset, unlike our previous test dataset based on U.S. university crawls
(Table VI). This difference once again highlights why it is beneficial to have accurate
and separate classifiers on the two independent views. Depending on the environment,
one set of features may be more valuable for discriminating the correct set of pages.
The encouraging improvements in the classification measures on the AM dataset after
co-training show that our proposed techniques have the potential to work well on
webpages from other academic domains.

7.11. Performance on Webpages from Research Institutes and Diverse Disciplines

Table XII summarizes the performance of our URL and content classifiers on the
MH dataset described in Section 7.3. The table also includes the performance of our
classifiers on webpages corresponding to researchers from research institutes avail-
able from the AM dataset. In other words, the entries in the AM dataset with URLs
from “.com/.gov/.net/.org” websites (Table V) are evaluated separately. Since our train-
ing datasets are based on datasets from U.S. university websites of computer science
departments, our goal in this experiment is to evaluate the generalizability of our
proposed features and classifiers on datasets from diverse disciplines (different from
computer science) as well as from research institutes.

As can be seen from the table, the performance of our features and classifiers,
trained on computer science–related webpages, generalize well on both datasets: the
MH dataset and the AM Research Institutes homepage dataset.

8. FUTURE DIRECTION: LEARNING FEATURE SPLITS

In classification problems related to webpages and images, multiple views such as URLs
and target page content, and tagged text and pixel features, are directly available.
However, consider a classification problem when such a feature split exists but is not
known. Instead, all features are available as a combined set. Based on the experimental
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Table XIII. Web Search Results Based on DBLP Paper Titles
from 2014

Total Number of Searches 100
Number of papers not found on the Web 22
Number of papers available for a fee 54
Numbe of papers available for free (nonhomepage) 25
Number of papers available from author homepages 12
Overlap between “fees” and “free” 4
Overlap between “free” and “from homepages” 3

results presented so far, it can be concluded that when a split of features is available, co-
training that explicitly makes use of this split tends to outperform other semisupervised
approaches that use a single view. So, given a combined set of features, how can we
find a feature split if it exists? Additionally, what comprises a good split?

To motivate the preceding future direction, we combined all content and URL fea-
tures available with the homepage instances and performed multiple runs of co-training
using random split of features into two balanced views. The results of co-training with
these splits, including the original split of features into URL and content views, are il-
lustrated using the “product classifier” performance curves in Figure 16. In co-training,
the classifiers from the two views independently estimate predictive distributions for a
test instance. Blum and Mitchell [1998] proposed using the normalized product of class
probabilities from the independent views to obtain a single predictive distribution for
an instance (which we refer to as the product classifier).

As illustrated in Figure 16, a “wrong” split of features could result in performance
degradation compared to that obtained using the URL and content split. However,
what is more interesting is that other splits of features are possible that can yield even
better classification performance than that obtained with the known split. We propose
finding such splits as a future direction to pursue in co-training research.

9. A DISCUSSION ON RESEARCH PAPERS AVAILABILITY FROM AUTHOR HOMEPAGES

Back in 2001, Lawrence performed a correlation analysis between the citations accu-
mulated by papers and their online availability [Lawrence 2001]. The conclusion of
this analysis was as follows: “Articles freely available online are more highly cited.
For greater impact and faster scientific progress, authors and publishers should aim
to make research easy to access.” In this era, when researchers have access to the
online space via their professional homepages, we examine if researchers indeed make
their research publications available online to the extent that is possible (e.g., subject
to copyright rules). Hence, to understand research paper availability from authors’
homepages, we performed two experiments, as detailed next.

In the first experiment, we did a simple search on Google using paper titles available
from DBLP to determine the online availability of the corresponding papers. The XML
records from DBLP were parsed16 to obtain a list of 198,849 paper titles published in
the year 2014. From these titles, we randomly selected 100 titles and performed the
following experiment on the Web using the popular search engine Google. We used the
paper title in quotes as the query string (for exact match) and restricted the search
results to be PDF files (using the option filetype:pdf ).17 We summarize the results of
this experiment in Table XIII.

16http://dblp.uni-trier.de/xml/.
17The Web searches were performed by a graduate student from the University of North Texas who has
significant experience with academic webpages. The search was done during the third week of January
2015.

ACM Transactions on the Web, Vol. 9, No. 4, Article 17, Publication date: October 2015.



Improving Researcher Homepage Classification with Unlabeled Data 17:29

From the 100 Web searches, we were able to locate 54 papers on publisher websites
such as ACM and Springer for a fee; 25 papers were available for free on websites
such as ResearchGate, conference websites, and so on; and 12 papers were available
from the homepages of at least one of the authors of the papers searched for. About
9/12= 75% of the titles/papers found on author homepages were not found on other free
websites. Note that the numbers in Table XIII do not add up to 100 due to overlaps.
Overall, out of the 100 titles, we found the corresponding papers available online either
for a fee or for free for 78 titles (and did not find the papers on the Web for 22 titles).
Based on these numbers, about 12/78= 15% of the papers available online can be
recovered from author homepages. From the perspective of an automated, free-access
digital library such as CiteSeer, the papers available from homepages constitute about
12/(25 + 12 − 3)= 35% of the overall “obtainable” content.

In the second experiment, we obtained the datasets of crawled PDF documents used
in a previous study by Caragea et al. [2014]. These datasets consist of two sets of
1,000 manually labeled PDF documents sampled in the years 2011 and 2014 from the
CiteSeer crawls. Each PDF document is annotated using one of the labels from the
set = {paper, slides, book, thesis, CV, others}. The label “paper” refers to a research
paper, whereas the label “others” is used for documents that cannot be annotated using
one of the other labels in the set. In addition to the actual PDF file, the URL at which
the document was obtained is recorded in these datasets.

We randomly selected 200 documents from each dataset (i.e., the 2011 and 2014
datasets) such that 100 documents were selected from those labeled as “paper” and
the other 100 were selected from those labeled as “others” (in each dataset). We thus
obtained a total of 400 documents and manually examined their URLs to record if the
documents were obtained from an author homepage. We found that 58/200= 29% of
the documents marked as “paper” were obtained from author homepages, whereas only
one out of the 200 documents marked as “other” was obtained from a homepage. Based
on these numbers, we can conclude that author homepages are indeed a good source for
crawling research publications and avoiding “junk” (from the perspective of scientific
digital libraries).

10. CONCLUSIONS

We studied the problem of adapting a classifier trained on a labeled dataset of webpages
to a related environment containing newer types of webpages in the context of focused
crawling for researcher homepages. We showed that co-training techniques, which use
two different views of the data, can effectively incorporate unlabeled data to improve
the classification performance in the deployment (crawling) scenario.

Although our evaluation is specifically for homepage classification, we posit that our
findings hold for other problems or domains. It is reasonable to expect a mismatch
in training/test environments in any focused crawling situation, given the changing
types of pages on the Web. Intuitively, we can expect our techniques to work well when
the following criterion is met: a view v1 must be able to predict at least one unlabeled
example confidently that view v2 cannot and vice versa. When this condition is satisfied,
the views can “help each other” over the iterations.

We also proposed a novel formulation of co-training in terms of a loss function. This
loss can be directly minimized via a mini-batch gradient descent algorithm. Our results
indicate that even without a validation set, one can track the effect of the co-training
process via our loss function. We also showed extensive comparisons using FS, FH, and
other semisupervised learning approaches with co-training. From our experiments, on
the homepage classification task, it appears that co-training that explicitly harnesses
the split of features into two independent views outperforms other semisupervised
approaches that treat all features as a single view.
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In the future, it would be interesting to explore other aspects of our algorithm for
learning “conforming pairs of classifiers” as well as other forms of the loss function
and function choices for comparing classifier predictions. It would also be interesting
to explore classifiers’ performance when small fractions of the newer types of web-
pages, manually labeled, will be added to the training sets. For focused crawling, our
motivating scenario, we will study the benefits of folding in our proposed URL and
content-based classifiers into the crawl process both in terms of yield and efficiency.
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