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Image Privacy Prediction Using Deep Neural Networks
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Images today are increasingly shared online on social networking sites such as Facebook, Flickr, and Instagram.
Image sharing occurs not only within a group of friends but also more and more outside a user’s social circles
for purposes of social discovery. Despite that current social networking sites allow users to change their
privacy preferences, this is often a cumbersome task for the vast majority of users on the Web, who face
difficulties in assigning and managing privacy settings. When these privacy settings are used inappropriately,
online image sharing can potentially lead to unwanted disclosures and privacy violations. Thus, automatically
predicting images’ privacy to warn users about private or sensitive content before uploading these images on
social networking sites has become a necessity in our current interconnected world.

In this paper, we explore learning models to automatically predict appropriate images’ privacy as private
or public using carefully identified image-specific features. We study deep visual semantic features that are
derived from various layers of Convolutional Neural Networks (CNNs) as well as textual features such as user
tags and deep tags generated from deep CNNs. Particularly, we extract deep (visual and tag) features from
four pre-trained CNN architectures for object recognition, i.e., AlexNet, GoogLeNet, VGG-16, and ResNet,
and compare their performance for image privacy prediction. The results of our experiments obtained on a
Flickr dataset of 32, 000 images show that ResNet yeilds the best results for this task among all four networks.
We also fine-tune the pre-trained CNN architectures on our privacy dataset and compare their performance
with the models trained on pre-trained features. The results show that even though the overall performance
obtained using the fine-tuned networks is comparable to that of pre-trained networks, the fine-tuned networks
provide an improved performance for the private class. The results also show that the learning models trained
on features extracted from ResNet outperform the state-of-the-art models for image privacy prediction. We
further investigate the combination of user tags and deep tags derived from CNN architectures using two
settings: (1) Support Vector Machines trained on the bag-of-tags features; and (2) text-based CNN. We compare
these models with the models trained on ResNet visual features and show that, even though the models
trained on the visual features perform better than those trained on the tag features, the combination of deep
visual features with image tags shows improvements in performance over the individual feature sets. We also
compare our models with prior privacy prediction approaches and show that for private class, we achieve
an improvement of ≈ 10% over prior CNN-based privacy prediction approaches. Our code, features, and the
dataset used in experiments are available at https://github.com/ashwinitonge/deepprivate.git.
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1 INTRODUCTION
Online image sharing through social networking sites such as Facebook, Flickr, and Instagram is
on the rise, and so is the sharing of private or sensitive images, which can lead to potential threats
to users’ privacy when inappropriate privacy settings are used in these platforms. Many users
quickly share private images of themselves and their family and friends, without carefully thinking
about the consequences of unwanted disclosure and privacy violations [Ahern et al. 2007; Zerr
et al. 2012b]. For example, it is common now to take photos at cocktail parties and share them on
social networking sites without much hesitation. The smartphones facilitate the sharing of photos
virtually at any time with people all around the world. These photos can potentially reveal a user’s
personal and social habits and may be used in the detriment of the photos’ owner.
Gross and Acquisti [2005] analyzed more than 4,000 Carnegie Mellon University students’

Facebook profiles and outlined potential threats to privacy. The authors found that users often
provide personal information generously on social networking sites, but they rarely change default
privacy settings, which could jeopardize their privacy. In a parallel study, Lipford et al. [2008] showed
that, although current social networking sites allow users to change their privacy preferences,
the vast majority of users on the Web face difficulties in assigning and managing privacy settings.
Interestingly, Orekondy et al. [2017] showed that, even when users change their privacy settings
to comply with their personal privacy preference, they often misjudge the private information in
images, which fails to enforce their own privacy preferences. Not surprising, employers these days
often perform background checks for their future employees using social networks and about 8% of
companies have already fired employees due to their inappropriate social media content [Waters and
Ackerman 2011]. A study carried out by the Pew Research center reported that 11% of users of social
networks regret the posted content [Madden 2012]. The Director of the AI Research at Facebook,
Yann LeCun [2017] urges the development of a digital assistant to warn people about private or
sensitive content before embarrassing photos are shared with everyone on social networks.
Identifying private or sensitive content from images is inherently difficult because images’

privacy is dependent on the owners’ personality traits, the significant variations in the individual
preferences about sharing, their level of awareness towards privacy [Taddicken 2014; Zhong et al.
2017] and Contextual Integrity [Nissenbaum 2009]. Still, images’ privacy is not purely subjective,
but generic patterns of privacy exist. Consider, for example, the images shown in Figure 1, which
are manually annotated and consistently rated as private and public by multiple annotators in
a study conducted by Zerr et al. [2012b,a]. An image is considered to be private if it belongs to
the private sphere (e.g., portraits, family, friends, home) or contains information that can not be
shared with everybody on the Web (e.g., private documents), whereas the remaining images are
considered to be public [Zerr et al. 2012b]. Notice that the presence of people generally pinpoints
to private images, although this is not always true. For example, an image of a musical band in
concert is considered to be public. Similarly, images with no people in them could be private, e.g.,
images with door keys, music notes, legal documents, or someone’s art are considered to be private.
Indeed, Laxton et al. [2008] described a “tele-duplication attack” that allows an adversary to create
a physical key duplicate simply from an image.
Researchers showed that generic patterns of images’ privacy can be automatically identified

when a large set of images are considered for analysis and investigated binary prediction models
based on user tags and image content features such as SIFT (Scale Invariant Feature Transform)
and RGB (Red Green Blue) [Squicciarini et al. 2014, 2017a; Zerr et al. 2012b]. More recently, several
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private images public images

Fig. 1. Examples of images manually identified as private (left) and public (right).

studies [Tonge and Caragea 2016, 2018; Tran et al. 2016] started to explore privacy frameworks
that leverage the benefits of Convolutional Neural Networks (CNNs) for object recognition since,
intuitively, the objects present in images significantly impact images’ privacy (as can be seen from
Figure 1). However, these studies used only the AlexNet architecture of CNNs on small dataset
sizes. To date, many deep CNN architectures have been developed and achieve state-of-the-art
performance on object recognition. These CNNs include GoogLeNet [Szegedy et al. 2014], VGG-16
[Simonyan and Zisserman 2014], and ResNet [He et al. 2016a] (in addition to AlexNet [Krizhevsky
et al. 2012]). Towards this end, in this paper, we present an extensive study to carefully identify
the CNN architectures and features derived from these CNNs that can adequately predict the class
of an image as private or public. Our research is motivated by the fact that increasingly, online
users’ privacy is routinely compromised by using social and content sharing applications [Zheleva
and Getoor 2009]. Our models can help users to better manage their participation in online image
sharing sites by identifying the sensitive content from the images so that it becomes easier for
regular users to control the amount of personal information that they share through these images.

Our contributions are as follows:
• We study deep visual semantic features and deep image tags derived from CNN architec-
tures pre-trained on the ImageNet dataset and use them in conjunction with Support Vector
Machine (SVM) classifiers for image privacy prediction. Specifically, we extract deep fea-
tures from four successful (pre-trained) CNN architectures for object recognition, AlexNet,
GoogLeNet, VGG-16, and ResNet and compare their performance on the task of privacy
prediction. We use a large Flickr dataset of 32, 000 images for our experiments and find that
ResNet produces the best features for privacy prediction compared with the other CNNs.

• We fine-tune the pre-trained CNN architectures on our privacy dataset and use the softmax
function to predict the images’ privacy as public or private. We compare the fine-tuned CNNs
with the SVM models obtained on the features derived from the pre-trained CNNs and show
that, although the overall performance obtained by the fine-tuned CNNs is comparable to
that of SVM models, the fine-tuned networks provide improved recall for the private class as
compared to the SVM models trained on the pre-trained features.

• We show that the best feature representation produced by ResNet outperforms several
baselines for image privacy prediction that consider CNN-based models and SVM models
trained on traditional visual features such as SIFT and global GIST descriptor.

• Next, we investigate the combination of user tags and deep tags derived from CNNs in two
settings: (1) using SVM on the bag-of-tags features; and (2) applying the text CNN [Kim
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2014] on the combination of user tags and deep tags for privacy prediction using the softmax
function. We compare these models with the models trained on the most promising visual
features extracted from ResNet (obtained from our study). Our results show that the models
trained on the visual features perform better than those trained on the tag features.

• Finally, we explore the combination of deep visual features with image tags and show further
improvement in performance over the individual sets of features.

The rest of the paper is organized as follows. We summarize prior work in Section 2. In Section
3, we describe the problem statement in details. Section 4 describes the image features obtained
from various CNNs for privacy prediction, whereas in Section 5, we provide details about the
dataset that we use to evaluate our models. In Section 6, we present the experiments and describe
the experimental setting and results. We finish our analysis in Section 7, where we provide a
brief discussion of our main findings, interesting applications of our work, future directions, and
conclude the paper.

2 RELATEDWORK
Emerging privacy violations in social networks have started to attract various researchers to this
field [Zheleva and Getoor 2009]. Researchers also provided public awareness of privacy risks
associated with images shared online [Henne et al. 2013; Xu et al. 2015]. Along this line, several
works are carried out to study users’ privacy concerns in social networks, privacy decisions about
sharing resources, and the risk associated with them [Ghazinour et al. 2013; Gross and Acquisti
2005; Ilia et al. 2015; Krishnamurthy and Wills 2008; Parra-Arnau et al. 2014; Parra-Arnau et al.
2012; Simpson 2008].

Moreover, several works on privacy analysis examined privacy decisions and considerations in
mobile and online photo sharing [Ahern et al. 2007; Besmer and Lipford 2009; Gross and Acquisti
2005; Jones and O’Neill 2011]. For example, Ahern et al. [2007] explored critical aspects of privacy
such as users’ consideration for privacy decisions, content and context based patterns of privacy
decisions, and how different users adjust their privacy decisions and behavior towards personal
information disclosure. The authors concluded that applications that could support and influence
users’ privacy decision-making process should be developed. Jones and O’Neill [2011] reinforced
the role of privacy-relevant image concepts. For instance, the authors determined that people are
more reluctant to share photos capturing social relationships than photos taken for functional
purposes; certain settings such as work, bars, concerts cause users to share less. Besmer and Lipford
[2009] mentioned that users want to regain control over their shared content, but meanwhile, they
feel that configuring proper privacy settings for each image is a burden.
More recent and related to our line of work are the automated image privacy approaches that

have been explored along four lines of research: social group based approaches, in which users’
profiles are used to partition the friends’ lists into multiple groups or circles, and the friends from the
same circle are assumed to share similar privacy preferences; location-based approaches, in which
location contexts are used to control the location-based privacy disclosures; tag-based approaches,
in which tags are used for privacy setting recommendations; and visual-based approaches, in which
the visual content of images is leveraged for privacy prediction.

Social group based approaches. Several works emerged to provide the automated privacy decisions
for images shared online based on the social groups or circles [Bonneau et al. 2009a,b; Christin et al.
2013; Danezis 2009; Fang and LeFevre 2010; Joshi and Zhang 2009; Kepez and Yolum 2016; Klemperer
et al. 2012; Mannan and van Oorschot 2008; Pesce et al. 2012; Petkos et al. 2015; Squicciarini et al.
2012, 2015, 2009; Watson et al. 2015; Yuan et al. 2017; Zerr et al. 2012b]. For example, Christin
et al. [2013] proposed an approach to share content with the users within privacy bubbles. Privacy
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bubbles represent the private sphere of the users and the access to the content is provided by
the bubble creator to people within the bubble. Bonneau et al. [2009b] introduced the notion of
privacy suites which recommend users a set of privacy settings that “expert” users or the trusted
friends have already established so that ordinary users can either directly accept a setting or
perform minor modifications only. Fang and LeFevre [2010] developed a privacy assistant to help
users grant privileges to their friends. The approach takes as input the privacy preferences for the
selected friends and then, using these labels, constructs a classifier to assign privacy labels to the
rest of the (unlabeled) friends based on their profiles. Danezis [2009] generated privacy settings
based on the policy that the information produced within the social circle should remain in that
circle itself. Along these lines, Adu-Oppong et al. [2008] obtained privacy settings by forming
clusters of friends by partitioning a user’s friends’ list. Yuan et al. [2017] proposed an approach
for context-dependent and privacy-aware photo sharing. This approach uses the semantics of the
photo and the requester’s contextual information in order to define whether an access to the photo
will be granted or not at a certain context. These social group based approaches mostly considered
the user trustworthiness, but ignored the image content sensitiveness, and thus, they may not
necessarily provide appropriate privacy settings for online images as the privacy preferences might
change according to sensitiveness of the image content.

Location-based approaches. These approaches [Baokar 2016; Bilogrevic et al. 2016; Choi et al. 2017;
Fisher et al. 2012; Freudiger et al. 2012; Friedland and Sommer 2010; Olejnik et al. 2017; Ravichandran
et al. 2009; Shokri et al. 2011; Toch 2014; Yuan et al. 2017; Zhao et al. 2014] leverage geo-tags, visual
landmarks and other location contexts to control the location-based privacy disclosures. The geo-
tags can be provided manually via social tagging or by adding location information automatically
through the digital cameras or smart-phones having GPS. The location can also be inferred by
identifying places from the shared images through the computer vision techniques.

Tag-based approaches. Previous work in the context of tag-based access control policies and privacy
prediction for images [Apostolova and Demner-Fushman 2009; De Choudhury et al. 2009; Klemperer
et al. 2012; Kurtan and Yolum 2018; Mannan and van Oorschot 2008; Pesce et al. 2012; Ra et al.
2013; Squicciarini et al. 2012, 2015, 2017b; Vyas et al. 2009; Yeung et al. 2009; Zerr et al. 2012b]
showed initial success in tying user tags with access control rules. For example, Squicciarini et al.
[2012, 2017b], Zerr et al. [2012b], and Vyas et al. [2009] explored learning models for image privacy
prediction using user tags and found that user tags are informative for predicting images’ privacy.
Moreover, Squicciarini et al. [2015] proposed an Adaptive Privacy Policy Prediction framework to
help users control access for their shared images. The authors investigated social context, image
content, and metadata as potential indicators of privacy preferences. Klemperer et al. [2012] studied
whether the user annotated tags help to create and maintain access-control policies more intuitively.
However, the scarcity of tags for many online images [Sundaram et al. 2012] and the dimensions of
user tags precluded an accurate analysis of images’ privacy. Hence, in our previous work, [Tonge
and Caragea 2016, 2018; Tonge et al. 2018a,b], we explored automatic image tagging and showed that
the predicted tags combined with user tags can improve the overall privacy prediction performance.

Visual-based approaches. Several works used visual features derived from the images’ content and
showed that they are informative for predicting images’ privacy settings [Buschek et al. 2015;
Dufaux and Ebrahimi 2008; Hu et al. 2016; Kuang et al. 2017; Nakashima et al. 2011, 2012, 2016;
Orekondy et al. 2018; Shamma and Uddin 2014; Squicciarini et al. 2014, 2017a; Tonge and Caragea
2016, 2018; Tran et al. 2016; von Zezschwitz et al. 2016; Wu et al. 2018; Yu et al. 2017a, 2018; Yuan
et al. 2018; Zerr et al. 2012b; Zhang et al. 2005]. For example, Buschek et al. [2015] presented an
approach to assigning privacy to shared images using metadata (location, time, shot details) and
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visual features (faces, colors, edges). Zerr et al. [2012b] proposed privacy-aware image classification
and learned classifiers on Flickr images. The authors considered image tags and visual features
such as color histograms, faces, edge-direction coherence, and Scale Invariant Feature Transform
(SIFT) for the privacy classification task. SIFT as well as GIST are among the most widely used
traditional features for image analysis in computer vision. SIFT [Lowe 2004] detects scale, rotation,
and translation invariant key-points of objects in images and extracts a pool of visual features,
which are represented as a “bag-of-visual-words.” GIST [Oliva and Torralba 2001] encodes global
descriptors for images and extracts a set of perceptual dimensions (naturalness, openness, roughness,
expansion, and ruggedness) that represent the dominant spatial structure of the scene. Squicciarini
et al. [2014, 2017a] performed an in-depth analysis of image privacy classification using Flickr
images and found that SIFT and image tags work best for predicting privacy of users’ images.

Recently, the computer vision community has shifted towards Convolutional Neural Networks
(CNNs) for tasks such as object detection [Sermanet et al. 2014, 2013] and semantic segmentation
[Farabet et al. 2013]. CNNs have acquired state-of-the-art results on ImageNet for object recognition
[Russakovsky et al. 2015] using supervised learning [Krizhevsky et al. 2012]. Given the recent
success of CNNs, several researchers [Kuang et al. 2017; Tonge and Caragea 2016, 2018; Tran
et al. 2016; Yu et al. 2017a, 2018] showed promising privacy prediction results compared with
visual features such as SIFT and GIST. Yu et al. [2017b] adopted CNNs to achieve semantic image
segmentation and also learned object-privacy relatedness to identify privacy-sensitive objects.

Using CNNs, some works started to explore personalized privacy prediction models [Orekondy
et al. 2017; Spyromitros-Xioufis et al. 2016; Zhong et al. 2017]. For example, Spyromitros-Xioufis
et al. [2016] used features extracted from CNNs to provide personalized image privacy classification.
Zhong et al. [2017] proposed a Group-Based Personalized Model for image privacy classification in
online social media sites that learns a set of archetypical privacy models (groups) and associates
a given user with one of these groups. Orekondy et al. [2017] defined a set of privacy attributes,
which were first predicted from the image content and then used these attributes in combination
with users’ preferences to estimate personalized privacy risk. CNNs were also used in another
body of privacy related work such as multi-party privacy conflict detection [Zhong et al. 2018] and
automatic redaction of sensitive image content [Orekondy et al. 2018].
Although there is evidence that individuals’ sharing behavior is unique, Zhong et al. [2017]

argued that personalized models generally require large amounts of user data to learn reliable
models, and are time and space consuming to train and store models for each user, while taking into
account possible sudden changes of users’ sharing activities and privacy preferences. Orekondy et al.
[2017] tried to resolve some of these limitations by clustering users’ privacy profiles and training a
single classifier that maps the target user into one of these clusters to estimate the personalized
privacy score. However, the users’ privacy profiles are obtained using a set of attributes. which are
defined based on the Personally Identifiable Information [McCallister et al. 2010], the US Privacy
Act of 1974 and official online social network rules, instead of collecting opinions about sensitive
content from the actual users of social networking sites. Hence, the definition of sensitive content
may not meet a user’s actual social networking needs, which limits their applicability in a real-world
usage scenario [Li et al. 2018]. We recognize that progress should be made on both directions to
improve hybrid approaches of generic and personalized models. Thus, in this paper, we aim to
study “deep” features derived from CNNs, by abstracting out users’ privacy preferences and sharing
behavior and focus on generic features.
In contrast to the above approaches, we aim to identify a set of “deep” features that have the

highest discriminative power for image privacy prediction and to flag images that contain private
or sensitive content before they are shared on social networking sites. To our knowledge, this is
the first study to provide a detailed analysis of various CNN architectures for privacy prediction.
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Our comprehensive set of experiments can provide the diverse community, Privacy Enhancing
Technologies (PETS) developer, researchers, policymakers, and practitioners with evidence about
the best CNN architecture and features for the image privacy prediction task, especially since the
results obtained outperformed other complex approaches, on a large dataset of 32, 000 images.

3 PROBLEM STATEMENT
Our goal is to accurately identify private or sensitive content from images before they are shared on
social networking sites. Precisely, given an image, we aim to learn models to classify the image into
one of the two classes: private or public, based on generic patterns of privacy. Private images belong
to the private sphere (e.g., self-portraits, family, friends, someone’s home) or contain information
that one would not share with everyone else (e.g., private documents). Public images capture
content that can be seen by everyone without incurring privacy violations. To achieve our goal, we
extract a variety of features from several CNNs and identify those features that have the highest
discriminative power for image privacy prediction.

As the privacy of an image can be determined by the presence of one or more objects described
by the visual content and the description associated with it in the form of tags, we consider both
visual features and image tags for our analysis. For the purpose of this study, we did not consider
other contextual information about images (e.g., personal information about the image owner or
the owner social network activities, which may or may not be available or easily accessible) since
our goal is to predict the privacy of an image solely from the image’s content itself. We rely on the
assumption that, although privacy is a subjective matter, generic patterns of images’ privacy exist
that can be extracted from the images’ visual content and textual tags.

We describe the feature representations considered for our analysis in the next section.

4 IMAGE ENCODINGS
In this section, we provide details on visual content encodings and tag content encodings derived
from various CNNs (pre-trained and fine-tuned) to carefully identify the most informative feature
representations for image privacy prediction. Particularly, we explore four CNN architectures,
AlexNet [Krizhevsky et al. 2012], GoogLeNet [Szegedy et al. 2014], VGG-16 [Simonyan and Zisser-
man 2014], and ResNet [He et al. 2016a] to derive features for all images in our dataset, which are
labeled as private or public. The choice of these architectures is motivated by their good perfor-
mance on the large scale ImageNet object recognition challenge [Russakovsky et al. 2015]. We also
leverage a text-based CNN architecture used for sentence classification [Kim 2014] and apply it to
images’ textual tags for privacy prediction.

4.1 Preliminary: Convolutional Neural Networks
CNN is a type of feed-forward artificial neural network. The learning units in the network are called
neurons. These neurons learn to convert input data, eg., a picture of a dog, into its corresponding
label, i.e., “dog,” through automated object recognition. The bottom layers of a CNN consist of
interleaved convolution and pooling layers, and the top layers consist of fully-connected (fc) layers,
and a probability (prob) layer obtained by applying the softmax function to the input from the
previous fc layer, which represents the probability distribution over the available categories for an
input image. As we ascend through an architecture, the network acquires: (1) lower layers features
(color blobs, lines, corners); (2) middle layer features (textures resulted from a combination of lower
layers); and (3) higher (deeper) layer features (high-level image content like objects obtained by
combining middle layers). Since online images may contain multiple objects, we consider features
extracted from deeper layers as they help to encode the objects precisely.
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PicAlert Dataset
Image

VGG-16 CNN pre-trained on ImageNet
224×224×3 224×224×64

112×112×128

56×56×256
28×28×512

14×14×512
7×7×512

1×1×4096 1×1×1000

Pre-trained
Vectors

convolution+ReLU
max pooling
fully connected+ReLU (fc6-V, fc7-V, fc8-V)
softmax (prob-V)

SVM

Private / Public

Privacy Prediction

Fig. 2. Image encoding using pre-trained CNN: (1) We employ a CNN (e.g., VGG-16) pre-trained on the
ImageNet object dataset. (2) We derive high-level features from the image’s visual content using fully
connected layers (fc6-V, fc7-V, and fc8-V) and probability layer (softmax) of the pre-trained network. The
pictorial representation of VGG is adapted from the image given at: https://github.com/durandtibo/deep_
archi_latex.

4.2 Features Derived Through Pre-Trained CNNs
We describe a diverse set of features derived from CNN architectures pre-trained on the ILSVRC-
2012 object classification subset of the ImageNet dataset that contains 1000 object categories and
1.2 million images [Russakovsky et al. 2015]. We consider powerful features obtained from various
fully-connected layers of a CNN that are generated by the previous convolutional layers, and use
them to learn a decision function whose sign represents the class (private or public) assigned to an
input image x. The activations of the fully connected layers capture the complete object contained
in the region of interest. Hence, we use the activations of the fully-connected layers of a CNN as a
feature vector. For image encoding, we also use the probability (prob) layer obtained by applying
the softmax function to the output of the (last) fully-connected layer. We extract features from the
four pre-trained CNNs as follows.
The AlexNet architecture implements an eight-layer network; the first five layers of AlexNet

are convolutional, and the remaining three layers are fully-connected. We extract features from
the three fully-connected layers, which are referred as fc6-A, fc7-A, and fc8-A, and from the output
layer denoted as “prob-A.” The dimensions of fc6-A, fc7-A, fc8-A, and prob-A are 4096, 4096, 1000,
and 1000, respectively.
The GoogLeNet architecture implements a 22 layer deep network with Inception architecture.

The architecture is a combination of all layers with their output filter bank concatenated so as
to form input for the next stage. We extract features from the last two layers named as “loss3-
G/classifier” (InnerProduct layer) and the output layer denoted as “prob-G.” The dimension of
loss3-G and prob-G is 1000.
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The VGG-16 architecture implements a 16 layer deep network; a stack of convolutional layers
with a very small receptive filed: 3× 3 followed by fully-connected layers. The architecture contains
13 convolutional layers and 3 fully-connected layers. The number of channels of the convolutional
layers starts from 64 in the first layer and then increases by a factor of 2 after each max-pooling
layers until it reaches 512. We refer to features extracted from the fully-connected layers as fc6-V,
fc7-V, fc8-V, and the output layer as “prob-V.” The dimensions of fc6-V, fc7-V, fc8-V, and prob-V are
4096, 4096, 1000, and 1000, respectively.

The ResNet (or Residual network) alleviates the vanishing gradient problem by introducing short
paths to carry gradient throughout the extent of very deep networks and allows the construction
of deeper architectures. A residual unit with an identity mapping is defined as:

X l+1 = X l + F(X l )

where X l is the input and X l+1 is the output of the residual unit; F is a residual function, e.g., a
stack of two 3× 3 convolution layers in [He et al. 2016a]. The main idea of the residual learning is to
learn the additive residual function F with respect to X l [He et al. 2016b]. Intuitively, ResNets can
be explained by considering residual functions as paths through which information can propagate
easily. This interprets as ResNets learn more complex feature representations which are combined
with the shallower descriptions obtained from previous layers. We refer to features extracted from
the fully-connected layer as fc-R and the output layer as “prob-R.” The dimension of fc-R and prob-R
is 1000.
The feature extraction using the pre-trained network for an input image from our dataset is

shown in Figure 2. In the figure, we show VGG-16 as the pre-trained network for illustrating the
feature extraction.

4.3 Fine-tuned CNN
For this type of encoding, models trained on a large dataset (e.g., the ImageNet dataset) are fine-tuned
using a smaller dataset (e.g., the privacy-labeled dataset). Fine-tuning a network is a procedure based
on the concept of transfer learning [Bengio 2012; Donahue et al. 2013]. This strategy fine-tunes
the weights of the pre-trained network by continuing the back-propagation on the small dataset,
i.e., privacy dataset in our scenario. The features become more dataset-specific after fine-tuning,
and hence, are distinct from the features obtained from the pre-trained CNN. We modify the last
fully-connected layer of all four network architectures, AlexNet, GoogLeNet, VGG-16, and ResNet
by changing the output units from 1000 (object categories) to 2 (with respect to privacy classes)
(e.g., changing fc8 with 1000 output units to fc8-P with 2 output units). We initialize the weights
of all the layers of this modified architectures with the weights of the respective layers obtained
from the pre-trained networks. We train the network by iterating through all the layers of the
networks using the privacy data. We use the softmax function to predict the privacy of an image.
Precisely, we use the probability distribution over 2 privacy classes for the input image obtained by
applying the softmax function over the modified last fully-connected layer (e.g. fc8-P in VGG-16) of
the fine-tuned networks (see Figure 3, second network, blue rectangle). The conditional probability
distribution over 2 privacy classes can be defined using a softmax function as given below:

P(y = Pr |z) =
exp(zPr )

exp(zPu ) + exp(zPr )
, P(y = Pu |z) =

exp(zPu )
exp(zPu ) + exp(zPr )

where, in our case, z is the output of the modified last fully connected layer (e.g., the fc8-P layer of
VGG-16) and Pr and Pu denote private and public class, respectively. The fine-tuning process using
VGG-16 is shown in Figure 3.
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Object Dataset (ImageNet)
Image

VGG-16 CNN pre-trained on ImageNet
224×224×3 224×224×64

112×112×128

56×56×256
28×28×512

14×14×512
7×7×512

1×1×4096 1×1×1000

convolution+ReLU
max pooling
fully connected+ReLU
softmax (1000 object classes)

Transfer Learning

Privacy Dataset (PicAlert)
Image

VGG-16 CNN fine-tuned on PicAlert
224×224×3 224×224×64

112×112×128

56×56×256
28×28×512

14×14×512
7×7×512

1×1×4096 1×1×2

convolution+ReLU
max pooling
fully connected+ReLU
modified fully connected layer (fc8-P)
softmax (2 privacy classes)

Private / Public

fc8-P

Fig. 3. Image encoding using fine-tuned CNN: (1) We modify the last fully-connected layer of the pre-trained
network (top network) by changing the output units from 1000 (object categories) to 2 (privacy classes). (2)
To train the modified network (bottom network) on privacy dataset, we first adopt weights of all the layers of
the pre-trained network as initial weights and then iterate through all the layers using privacy data. (3) To
make a prediction for an input image (privacy dataset), we use the probability distribution over 2 privacy
classes (softmax layer, yellow rectangle) for the input image obtained by applying the softmax function over
the last modified fully-connected layer (fc8-P, bottom network) of the fine-tuned network. The pictorial
representation of VGG is adapted from the image given at: https://github.com/durandtibo/deep_archi_latex.
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PicAlert Dataset
Image

Deep Tags

Maillot,
Miniskirt, Wig,
Brassiere, Bra

User Tags

Birthday,
Party, People,
Night, Life

· · · People Maillot Birthday · · · Portrait Miniskirt Bra · · ·
· · · 1 1 1 · · · 0 1 1 · · ·

Tag vector (Binary)

Private/Public

Fig. 4. Image encoding using tag features: We encode the combination of user tags and deep tags using
binary vector representation, showing presence and absence of tags from tag vocabulary V . We set 1 if a tag
is present in the tag set or 0 otherwise. We refer to this model as Bag-of-Tags (BoT) model.

4.4 Image Tags (Bag-of-Tags model)
Prior works on privacy prediction [Squicciarini et al. 2014, 2017b; Tonge and Caragea 2016; Zerr
et al. 2012b] found that the tags associated with images are indicative of their sensitive content.
Tags are also crucial for image-related applications such as indexing, sharing, searching, content
detection and social discovery [Bischoff et al. 2008; Gao et al. 2011; Hollenstein and Purves 2010;
Tang et al. 2009]. Since not all images on social networking sites have user tags or the set of user
tags is very sparse [Sundaram et al. 2012], we use an automatic technique to annotate images
with tags based on their visual content as described in our previous work [Tonge and Caragea
2016]. Precisely, we predict top k object categories from the probability distribution extracted
from a pre-trained CNN. These top k categories are images’ deep tags, used to describe an image.
For example, we obtain deep tags such as “Maillot,” “Wig,” “Brassiere,” “Bra,” “Miniskirt” for the
picture in Figure 4 (only top 5 deep tags are shown in the figure). Note that the deep tags give
some description about the image, but still some relevant tags such as “people” and “women” are
not included since the 1000 object categories of the ImageNet dataset do not contain these tags.
Images on social networking sites also give additional information about them through the tags
assigned by the user. We call these tags “User Tags.” Examples of user tags for the image in Figure 4
are: “Birthday Party,” “Night Life,” “People,” etc. For user tags, we remove special characters and
numbers, as they do not provide any information with respect to privacy.

We combine deep tags and user tags and generate a binary vector representation for the tag set
of an image, illustrating presence or absence of tags from tag vocabulary V . Particularly, we create
a vector of size |V |, wherein, for all tags in the tag set, we set 1 on the position of the tag in the
vocabulary (V ) and 0 otherwise. We refer to this model as a Bag-of-Tags (BoT) model and show its
pictorial representation in Figure 4.

4.5 Tag CNN
CNN based models have achieved exceptional results for various NLP tasks such as semantic
parsing [Yih et al. 2014], search query retrieval, sentence modeling [Kalchbrenner et al. 2014],
sentence classification [Kim 2014], and other traditional NLP tasks [Collobert et al. 2011]. Kim
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Fig. 5. CNN architecture for tag content to classify an image as public or private using image tags.

[2014] developed a CNN architecture for sentence level classification task. A sentence contains
keywords in the form of objects, subjects, and verbs that help in the classification task. Image tags
are nothing but keywords that are used to describe an image. Thus, for privacy prediction, we
employ the CNN architecture from [Kim 2014] that has proven adequate for sentence classification.
The CNN architecture by Kim [2014] (shown in Figure 5) is a variant of the CNN proposed by

Collobert et al. [2011]. This architecture contains one layer of convolution on top of word vectors
obtained from an unsupervised neural language model. The first layer embeds words (tags in our
case) into the word vectors. The word vectors are first initialized with the word vectors that were
trained on 100 billion words of Google News (Word2Vec), given by Le and Mikolov [2014]. Words
that are not present in the set of pre-trained words are initialized randomly. As in Kim [2014], we
use two different channels, one with static, pre-trained Word2Vec embeddings, and one non-static,
in which we fine-tuned the Word2Vec embeddings on our privacy dataset. The next layer performs
convolutions on the two channels of embedded word vectors using multiple filter sizes of 3, 4, and
5, where we use 128 filters from each size and produce a tag feature representation. A max-pooling
operation [Collobert et al. 2011] over a feature map is applied to take the maximum value of the
features to capture the most important feature of each feature map. These features are passed
to a fully connected softmax layer to obtain the probability distribution over privacy labels. An
illustration of the Tag CNN model can be seen in Figure 5 (which is adapted from Kim [2014]).

5 DATASET
We evaluated our approach on a subset of 32, 000 Flickr images sampled from the PicAlert dataset,
made available by Zerr et al. [2012b,a]. PicAlert consists of Flickr images on various subjects,
which are manually labeled as public or private by external viewers. The dataset contains photos
uploaded on Flickr during the period from January to April 2010. The data have been labeled by six
teams providing a total of 81 users of ages between 10 and 59 years. One of the teams included
graduate computer science students working together at a research center, whereas other teams
contained users of social platforms. Users were instructed to consider that their camera has taken
these pictures and to mark them as “private,” “public,” or “undecidable.” The guideline to select
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the label is given as private images belong to the private sphere (like self-portraits, family, friends,
someone’s home) or contain information that one would not share with everyone else (such as
private documents). The remaining images are labeled as public. In case no decision could be made,
the image was marked as undecidable. Each image was shown to at least two different users. In the
event of disagreement, the photos were presented to additional users. We only consider images
that are labeled as public or private.
For all experiments, our 32, 000 images dataset is split into train and test sets of 27, 000 and

5, 000 images, respectively. Each experiment is repeated five times with a different train/test split
(obtained using five different random seeds), and the final results are averaged across the five runs.
The public and private images are in the ratio of 3:1 in both train and test sets.

6 EXPERIMENTS, RESULTS AND OBSERVATIONS
In this section, we perform a broad spectrum of experiments to evaluate features extracted from
various deep architectures in order to understand which architecture can capture the complex
privacy characteristics and help to distinguish between privacy classes. We first choose the machine
learning classifier between generative models, ensemble methods, and discriminative algorithms
for privacy prediction (see Subsection 6.1). Then, we use the chosen classifier to examine the visual
features extracted from all four deep architectures AlexNet, GoogLeNet, VGG-16, and ResNet pre-
trained on object data (see Subsection 6.2). We further investigate these architectures by fine-tuning
them on the privacy data (see Subsection 6.3). Next, we compare the performance of models trained
on the highest performing features with that of the state-of-the-art models and baseline approaches
for privacy prediction (see Subsection 6.4). Additionally, we show the performance of the deep
tags obtained through all four pre-trained networks and also study the combination of deep tags
and user tags in details for privacy prediction. We show the tag performance in two settings: (1)
Bag-of-Tags models and (2) Tag CNN. We analyze the most promising features derived from both
visual and tag encodings for privacy classification (see Subsection 6.5). We also provide a detailed
analysis of the most informative tags for privacy prediction. Finally, we show the performance of
the models trained on the fusion of visual and most informative tag features (see Subsection 6.6).

6.1 Classification Experiments for Features Derived From Pre-Trained CNNs
We first determine the classifier that works best with the features derived from the pre-trained
CNNs. We study the performance of the features using the following classification algorithms:
Naive Bayes (NB), Random Forest (RF), Logistic Regression (LR) and Support Vector Machine (SVM).
NB is a generative model, whereas RF is an ensemble method using decision trees, and SVM and LR
are discriminative algorithms. We evaluate the performance of these classifiers using the features
derived from the last fully-connected layer of all the architectures, i.e., fc8-A of AlexNet, loss3-G
of GoogLeNet, fc8-V of VGG-16, and fc-R of ResNet. Figure 6 shows the performance of these
classifiers in terms of F1-measure for all four architectures. From the figure, we notice that almost
all the classifiers perform similarly except NB which performs worse. For example, for Alexnet,
with NB we get an F1-measure of 0.781, whereas SVM obtains an F1-measure of 0.849. We can
also observe that, generally, SVM and LR perform better than RF. For example, for ResNet, using
SVM, we get an F1-measure of 0.872, whereas with RF we get an F1-measure of 0.848. SVM and LR
perform comparably to each other for almost all the architectures except for ResNet. For ResNet,
we obtain F1-measure of 0.872 and 0.865 using SVM and LR, respectively. The results of SVM over
the LR classifier are statistically significant for p-values < 0.05. Thus, we chose to use SVM with
the features derived from pre-trained CNNs for all of our next experiments.

To evaluate the proposed features, we used the SVM Weka implementation and chose the hyper-
parameters that gave the best performance using 10-fold cross-validation on the training set. We
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(a) AlexNet (b) GoogLeNet

(c) VGG (d) ResNet

Fig. 6. Performance of various classifiers (LR, NB, RF, SVM) using the features derived from all four architec-
tures AlexNet, GoogLeNet, VGG, and ResNet.

experimented with C = {0.001, 0.01, 1.0, · · · , 10.0}, kernels: Polynomial and RBF, the γ parameter
in RBF, and the degree d of a polynomial. Hyper-parameters shown in all subsequent tables follow
the format: “R/P,C,γ /d” where “R” denotes “RBF” and “P” denotes “Polynomial” kernel.

6.2 The Impact of the CNN Architecture on the Privacy Prediction
In this experiment, we aim to determine which architecture performs best for privacy prediction
by investigating the performance of privacy prediction models based on visual semantic features
extracted from all four architectures, AlexNet, GoogLeNet, VGG-16, and ResNet pre-trained on
object data of ImageNet. We extract deep visual features: (1) fc6-A, fc7-A, fc8-A and “prob-A” from
AlexNet, (2) loss3-G and “prob-G” from GoogLeNet, (3) fc6-V, fc7-V, fc8-V and “prob-V” from VGG-
16, and (4) fc-R and “prob-R” from ResNet. For AlexNet and GoogLeNet, we used the pre-trained
networks that come with the CAFFE open-source framework for CNNs [Jia et al. 2014]. For VGG-16,
we used an improved version of pre-trained models presented by the VGG-16 team in the ILSVRC-
2014 competition [Simonyan and Zisserman 2014]. For ResNet, we use the ResNet pre-trained
models of 101 layers given by He et al. [2016a].

Table 1 shows the performance (Accuracy, F1-measure, Precision, Recall) of SVMs trained on the
features extracted from all four pre-trained networks. From the table, we can observe that the models
trained on the features extracted from ResNet consistently yield the best performance. For example,
ResNet achieves an F1-measure of 0.872 as compared with 0.849, 0.861, 0.864 achieved by AlexNet,
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Overall Private Public
Features H-Param Acc % F1 Prec Re F1 Prec Re F1 Prec Re

AlexNet

fc6-A R,1.0,0.05 82.29 0.82 0.819 0.823 0.613 0.639 0.591 0.885 0.875 0.895
fc7-A R,2.0,0.01 82.97 0.827 0.825 0.83 0.627 0.656 0.602 0.889 0.878 0.901
fc8-A R,1.0,0.05 85.51 0.849 0.849 0.855 0.661 0.746 0.595 0.908 0.881 0.936

prob-A R,5.0,1.0 82.76 0.815 0.816 0.828 0.568 0.704 0.477 0.892 0.851 0.937

GoogLeNet

loss3-G P,0.001,2.0 86.42 0.861 0.86 0.864 0.695 0.746 0.652 0.913 0.895 0.93

prob-G R,50.0,0.05 82.66 0.815 0.816 0.827 0.573 0.694 0.488 0.891 0.853 0.933

VGG-16

fc6-V R,1.0,0.01 83.85 0.837 0.836 0.839 0.652 0.67 0.636 0.895 0.888 0.902
fc7-V R,2.0,0.01 84.43 0.843 0.842 0.844 0.663 0.684 0.644 0.899 0.891 0.907
fc8-V R,2.0,0.05 86.72 0.864 0.863 0.867 0.7 0.758 0.65 0.915 0.895 0.935

prob-V R,2.0,0.05 81.72 0.801 0.804 0.817 0.528 0.687 0.429 0.887 0.84 0.939

ResNet

fc-R R,1.0,0.05 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943

prob-R R,2.0,0.05 80.6 0.784 0.789 0.806 0.473 0.67 0.366 0.881 0.826 0.943
Table 1. Comparison of SVMs trained on features extracted from pre-trained architectures AlexNet,
GoogLeNet, VGG-16 and ResNet. The best performance is shown in bold and blue color. The best performance
for each network is shown in italics and orange color.

GoogLeNet, and VGG-16, respectively. These results suggest that the deep Residual Networks
have more representational abilities compared to the other networks, and are more effective for
predicting appropriate privacy classes of images. Additionally, ResNets are substantially deeper
than their “plain” counterparts, which allows extracting various image-specific features that are
beneficial for learning images’ privacy characteristics better. Since privacy involves understanding
the complicated relationship between the objects present in images, the features derived from
ResNet prove to be more adequate than the features obtained by simply stacking convolutional
layers. In Table 1, we also show the class-specific privacy prediction performance in order to
identify which features characterize the private class effectively as sharing private images on the
Web with everyone is not desirable. Interestingly, we found that the model trained on features
obtained from ResNet provides improved F1-measure, precision, and recall for the private class.
Precisely, F1-measure for the private class improves from 0.661 (for AlexNet) to 0.717 (for ResNet),
yielding an improvement of 6%. Similarly, for precision and recall, we obtain an increase of 4% and
7%, respectively, using ResNet features over the AlexNet features.

From Table 1, we also notice that the overall best performance (shown in orange and blue color)
obtained for each network is higher than ≈ 85% in terms of all compared measures (overall -
Accuracy, F1-measure, precision and recall). Note that a naive baseline which classifies every image
as “public” obtains an accuracy of 75%. Additionally, analyzing the results obtained by the VGG-16
features, we notice that as we ascend the fully-connected layers of the VGG-16 network from fc6-V
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Fig. 7. Box plot of F1-measure (overall) obtained
for the best-performing features derived from
each CNN over five random splits.

Fig. 8. Precision-recall curves for the private class
obtained using features extracted from all four archi-
tectures, AlexNet (fc8), GoogLeNet (loss3), VGG-16
(fc8-V), and ResNet (fc-R).

to fc8-V, the F1-measure improves from 0.837 to 0.864 (see Table 1). Similarly, for AlexNet, the
F1-measure improves from 0.82 (for fc6-A) to 0.849 (for fc8-A). This shows that the high-level object
interpretations obtained through the last fully-connected layer helped to derive better privacy
characteristics. Moreover, it is worth noting that “prob” features perform worse than the features
extracted from the fully-connected layers (on all architectures). For example, prob-G obtains an
F1-measure of 0.815, whereas loss3-G achieves an F1-measure of 0.861. One possible explanation
could be that squashing the values at the previous layer (e.g., loss3-G in GoogleNet) through the
softmax function, which yields the “prob” layer, produces a non-linearity that is less useful for SVM
compared to the untransformed values. We also experimented with a combination of features, e.g.,
fc7-A concatenated with fc8-A, but we did not obtain a significant improvement over the individual
(fc7-A and fc8-A) features.

We also analyze the performance by showing the box plots of F1-measure in Figure 7, obtained
for the most promising features of all the architectures over the five random splits of the dataset.
The figure indicates that the model trained on ResNet features is statistically significantly better
than the models that are trained on the features derived from the other architectures. We further
compare features derived through all the architectures using precision-recall curves given in Figure
8. The curves show again that features derived from ResNet perform better than the features
obtained from the other architectures, for a recall ranging from 0.5 to 0.8. For example, for a recall
of 0.7, we achieve a precision of 0.75, 0.8, 0.8 and 0.85 for AlexNet, GoogLeNet, VGG-16, and
ResNet, respectively.

6.3 Fine-Tuned Networks vs. Pre-Trained Networks
Previous works showed that the features transferred from the network pre-trained on the object
dataset to the privacy data achieved a good performance [Tran et al. 2016]. Moreover, many other
works used “transfer learning” to get more dataset specific features [Bengio 2012; Donahue et al.
2013]. Thus, we determine the performance of fine-tuned networks on the privacy dataset. We
compare fine-tuned networks of all four architectures with the deep features obtained from pre-
trained networks. We refer to the fine-tuned networks of AlexNet, GoogLeNet, VGG-16, and ResNet
as “ft-A,” “ft-G,” “ft-V,” and “ft-R,” respectively. For fine-tuning, we used the same CNN architectures
pre-trained on the object dataset, and employed in previous experiments. To fine-tune the networks,
we experiment with the three types of settings: (1) fine-tune the last fully-connected layer (that has
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Overall Private Public
Features H-Param Acc % F1 Prec Re F1 Prec Re F1 Prec Re

Fine-tuned AlexNet
ft-A fc 85.01 0.846 0.845 0.851 0.657 0.723 0.606 0.904 0.883 0.926
ft-A fc-all 85.14 0.849 0.847 0.852 0.669 0.713 0.632 0.904 0.889 0.92
ft-A all 85.07 0.848 0.847 0.851 0.67 0.707 0.638 0.904 0.89 0.917
Pre-trained AlexNet
fc8-A R,1,0.05 85.51 0.849 0.849 0.855 0.661 0.746 0.595 0.908 0.881 0.936

Fine-tuned GoogLeNet
ft-G fc 86.27 0.86 0.859 0.863 0.694 0.74 0.653 0.911 0.895 0.928
ft-G all 86.77 0.867 0.867 0.868 0.717 0.732 0.705 0.914 0.909 0.919
Pre-trained GoogLeNet
loss3-G P,0.001,2 86.42 0.861 0.86 0.864 0.695 0.746 0.652 0.913 0.895 0.930

Fine-tuned VGG-16
ft-V fc 86.74 0.864 0.865 0.869 0.695 0.782 0.631 0.916 0.891 0.944

ft-V fc-all 86.92 0.869 0.87 0.869 0.722 0.73 0.717 0.914 0.912 0.917
ft-V all 86.76 0.867 0.867 0.868 0.718 0.729 0.709 0.913 0.91 0.917
Pre-trained VGG-16
fc8-V R,2,0.05 86.72 0.864 0.863 0.867 0.700 0.758 0.65 0.915 0.895 0.935

Fine-tuned ResNet
ft-R fc 87.23 0.87 0.869 0.873 0.717 0.759 0.68 0.918 0.903 0.932
ft-R all 86.19 0.856 0.856 0.863 0.672 0.776 0.594 0.913 0.881 0.946

Pre-trained ResNet
fc-R R,1,0.05 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943

Table 2. Fine-tuned networks vs. Pre-trained networks. The best performance is shown in bold and blue color.
The performance measures that are higher after fine-tuning a CNN over pre-trained features are shown in
italics and orange color.

two output units corresponding to 2 privacy classes) with higher learning rates as compared to the
learning rates of the rest of the layers of the networks (0.001 vs. 0.0001), referred as “fc.” (2) fine-tune
all the fully-connected layers of the networks with higher learning rates and convolutional layers
are learned with smaller learning rates. We refer to this setting as “fc-all.” (3) fine-tune all layers
with the same learning rates and denoted as “all.” Note that since ResNet and GoogLeNet have only
one fully-connected layer, we report the performance obtained only using “fc,” and “all” settings.
The very low learning rate avoids substantial learning of the pre-trained layers. In other words,
due to a very low learning rate (0.0001), pre-trained layers learn very slowly as compared to the
layers that have a higher learning rate (0.001) to learn the required weights for privacy data.

Table 2 shows the performance comparison of the models obtained by fine-tuning architectures
on privacy data and the models trained on the features derived from the pre-trained networks. We
notice that we get mostly similar results when we fine-tune pre-trained models on our privacy
dataset as compared to the models trained on the features derived from the pre-trained architectures.
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Time (Hours)
Architecture fc layers all layers
AlexNet 0.16 0.21
GoogLeNet 0.20 0.23
VGG 0.99 0.99
ResNet 0.23 0.34

Table 3. Computational Cost for fine-tuning the four CNN architectures.

However, we get improved recall for the private class when we fine-tune the networks on the
privacy dataset. For example, the fine-tuned VGG-16 network gets an improvement of 6.7% in the
recall for the private class (see ft-V, fc-all setting vs. fc8-V) over the models trained on the features
extracted from the pre-trained VGG-16. The performance measures that are higher after fine-tuning
a CNN over pre-trained features are shown in italics and orange color for each network. We notice
that the fine-tuned VGG gives the best performance for the F1-measure and recall of the private
class (shown in bold and blue color). However, the models trained on the features derived from the
pre-trained ResNet yield the best overall performance (shown in bold and blue color).

We also compare the computational cost of these architectures. To train the architectures on our
privacy dataset, we used AWS EC2 p2.xlarge instance. The instance has NVIDIA K80 GPU, four
vCPUs and 61 GiB of host memory. Table 3 shows the time taken to generate the best models using
AlexNet, GoogLeNet, VGG, and ResNet architectures. From the table, we can see that AlexNet
obtained the best model by fine-tuning all layers and fully-connected (fc) layers in 0.21 and
0.16 hours, respectively. We notice that for AlexNet, GoogLeNet, and VGG, as the depth of the
architecture increases, the convergence time also increases. It is interesting to note that ResNet
converged faster than VGG even though ResNet (101 layers) is much deeper than VGG (16 layers)
and yields the best performance.

Next, we compare the models trained on fc-R features that achieve the highest performance with
prior privacy prediction approaches in the next subsection.

6.4 ResNet Features-Based Models vs. Prior Works
We compare the performance of the state-of-the-art works on privacy prediction, as detailed below,
with the models trained using ResNet features, i.e., fc-R.

1. PCNH privacy framework [Tran et al. 2016]: This framework combines features obtained
from two architectures: one that extracts convolutional features (size = 24, referred as Convolu-
tional CNN), and another that extracts object features (size = 24, referred as Object CNN). The
Convolutional CNN contains two convolutional layers and three fully-connected layers of size
512, 512, 24, respectively. The object CNN is an extension of AlexNet architecture that appends
three fully-connected layers of size 512, 512, and 24, at the end of the last fully-connected layer of
AlexNet and form a deep network of 11 layers. The two CNNs are connected at the output layer.
The PCNH framework is first trained on the ImageNet dataset and then fine-tuned on a small
privacy dataset of 7, 200 images.
2. AlexNet features [Tonge and Caragea 2016, 2018]: We consider the model trained on the

features extracted from the last fully-connected layer of AlexNet, i.e., fc8-A as another baseline,
since in our previous works we achieved a good performance using these features for privacy
prediction.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2018.



Image Privacy Prediction Using Deep Neural Networks 39:19

Overall Private Public

Features H-Param Acc % F1 Prec Re F1 Prec Re F1 Prec Re

Highest performing CNN architecture

fc-R R,1.0,0.05 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943

#1 PCNH framework

PCNH − 83.13 0.824 0.823 0.831 0.624 0.704 0.561 0.891 0.863 0.921

#2 AlexNet Deep Features

fc8-A R,1.0,0.05 85.51 0.849 0.849 0.855 0.661 0.746 0.595 0.908 0.881 0.936

#3 SIFT & GIST models

SIFT P,1.0,2.0 77.31 0.674 0.598 0.773 0.002 0.058 0.001 0.87 0.772 0.995
GIST R,0.001,0.5 77.33 0.674 0.598 0.773 0.002 0.058 0.001 0.87 0.772 0.995
SIFT &
GIST

R,0.05,0.5 72.67 0.704 0.691 0.727 0.27 0.343 0.223 0.832 0.793 0.874

#4 Rule-based models

Rule-1 − 77.35 0.683 0.694 0.672 0.509 0.47 0.556 0.853 0.875 0.832
Rule-2 − 77.93 0.673 0.704 0.644 0.458 0.373 0.593 0.897 0.914 0.88

Table 4. Highest performing visual features (fc-R) vs. Prior works.

3. SIFT & GIST [Squicciarini et al. 2014, 2017a; Zerr et al. 2012b]: We also consider classifiers
trained on the best performing features between SIFT, GIST, and their combination as our baselines.
Our choice of these features is motivated by their good performance over other visual features such
as colors, patterns, and edge directions in prior works [Squicciarini et al. 2014; Zerr et al. 2012b].
For SIFT, we construct a vocabulary of 128 visual words for our experiments. We tried different
numbers of visual words such as 500, 1000, etc., but we did not get a significant improvement over
the 128 visual words. For a given image, GIST is computed by first convolving the image with 32
Gabor filters at 4 scale and 8 orientations, which produces 32 feature maps; second, dividing the
feature map into a 4 × 4 grid and averaging feature values of each cell; and third, concatenating
these 16 averaged values for 32 feature maps, which results in a feature vector of 512 (16 × 32)
length.

3. Rule-based classifiers: We also compare the performance of models trained on ResNet
features fc-R with two rule-based classifiers which predict an image as private if it contains persons.
Otherwise, the image is classified as public. For the first rule-based classifier, we detect front and
profile faces by using Viola-Jones algorithm [Viola and Jones 2001]. For the second rule-based
classifier, we consider user tags such as “women,” “men,” “people.” Recall that these tags are not
present in the set of 1, 000 categories of the ILSVRC-2012 subset of the ImageNet dataset, and hence,
we restrict to user tags only. If an image contains one of these tags or detects a face, we consider it
as “private,” otherwise “public.”
Table 4 compares the performance of models trained on fc-R features (the highest performing

features obtained from our previous experiments) with the performance obtained by prior works.
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As can be seen from the table, the deep features extracted from the pre-trained ResNet achieve
the highest performance, and hence, are able to learn the privacy characteristics better than the
prior works with respect to both the classes. Precisely, using fc-R features, F1-measure improves
from 0.824 obtained by PCNH framework to 0.872 obtained by fc-R features, providing an overall
improvement of 5%. Moreover, for the private class, fc-R features yield an improvement of 9.8%
in F1-measure over the more sophisticated PCNH framework (from 0.624, PCNH to 0.717, fc-R
features).
One possible explanation could be that the object CNN of PCNH framework is formed by

appending more fully-connected layers to the AlexNet architecture and the increase in the number
of complex non-linear layers (fully-connected layers) introduces more parameters to learn. At the
same time, with a relatively small amount of training data (PicAlert vs. ImageNet), the object CNN
model can over-fit. On the other hand, as images’ privacy greatly depends on the objects in images,
we believe that the low-level features controlling the distinct attributes of the objects (e.g., edges
of swim-suit vs. short pants) obtained through the convolutional layers can better approximate
the privacy function compared with adding more non-linear layers (as in PCNH). This is justified
by the results, where the network with more convolutional layers, i.e., ResNet achieves a better
performance as compared to the network with more fully-connected layers, i.e., PCNH. Additionally,
even though PCNH attempted to capture convolutional features using Convolutional CNN, both
CNN (convolutional and object) vary in their discriminative power and thus obtaining an optimal
unification of convolutional CNN and object CNN is difficult. Moreover, PCNH is required to first
train on ImageNet and then fine-tune on the PicAlert dataset. Training a deep network such as
PCNH two times significantly increases the processing power and time. Through our experiments,
we found that the features derived from the state-of-the-art ResNet model can reduce the overhead
of re-training and achieve a better performance for privacy prediction.

As discussed before, the models trained on ResNet features outperform those trained on AlexNet
features. Interestingly, the best performing baseline among all baselines corresponds to the SVM
trained on the deep features extracted from the AlexNet architecture. For example, the SVM trained
on the AlexNet features (fc8-A) yields an F1-measure of 0.849 as compared with the F1-measure of
0.824 achieved by the PCNH framework. We hypothesize that this is due to the model complexity
and the small size of the privacy dataset used to train the PCNH framework. For example, merging
two CNNs (as in PCNH) that vary in depth, width, and optimization algorithm can become very
complex and thus the framework potentially has more local minima, that may not yield the best
possible results. Additionally, unlike Tran et al. [2016], that used 800 test images in their evaluation,
we evaluate the models on a large set of test images (5, 000), containing a large variety of image
subjects. The features derived from the various layers of AlexNet reduce the overhead of training
the complex structure and still achieve a good performance for privacy prediction.

Another interesting aspect to note is that, although we showed earlier that the fine-tuned network
(in this case VGG-16) does not show a significant improvement over the ResNet pre-trained features
(see Table 2), our fine-tuning approach yields better results compared to the PCNH framework. For
example, fine-tuned VGG-16 (ft-V) achieves an F1-measure of 0.869, whereas PCNH achieves an
F1-measure of 0.824 (see Tables 2 and 4). The possible reasons could be that we use a larger privacy
dataset to fine-tune a simpler architecture, unlike PCNH that merges two convolutional neural
networks. Additionally, we fine-tune the VGG-16 model presented by Simonyan and Zisserman
[2014], contrary to PCNH that required estimating optimal network parameters to train the merged
architecture on the ImageNet dataset.
As expected, we can see from Table 4 that the baseline models trained on SIFT/GIST and the

rule-based models are the lowest performing models. For example, the fc-R based models achieve
improvement in performance as high as 17% over SIFT/GIST models. With a paired T-test, the
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(a) Precision-Recall curves (b) Threshold curves

Fig. 9. Precision-Recall and Threshold curves for the private class obtained using ResNet features (fc-R) and
prior works.

improvements over the prior approaches for F1-measure are statistically significant for p-values
< 0.05. It is also interesting to note that rules based on facial features exhibit better performance
than SIFT and GIST and suggest that feature representing persons are helpful to predict private
images. However, fc-R features outperform the rule-based models based on facial features by more
than 10% in terms of all measures.

We further analyze fc-R features and compare their performance with the prior works through
precision-recall curves shown in Figure 9 (a). As can be seen from the figure, the SVM trained on
ResNet features achieve a precision of 0.8 or higher for recall values up to 0.8, and outperforms the
prior works.

The performance measures shown in previous experiments are calculated using a classification
threshold of 0.5. In order to see how the performance measures vary for different classification
thresholds, we plot the threshold curve and show this in Figure 9 (b). From the figure, we can see
that the precision increases from ≈ 0.68 to ≈ 0.97 at a slower rate with the classification threshold.
The recall slowly decreases to 0.8 for a threshold value of ≈ 0.4, and the F1-measure remains
comparatively constant until ≈ 0.75. At a threshold of ≈ 0.4, we get equal precision and recall of
≈ 0.78, which corresponds to the breakeven point. In the figure, we also show the false negative
rate and false positive rate, so that depending on a user’s need (high precision or high recall), the
classifier can run at the desired threshold. Also, to reduce the number of content-sensitive images
shared with everyone on the Web, lower false negative (FN) rates are desired. From Figure 9 (b), we
can see that we achieve lower FN rates up to ≈ 0.4 for the threshold values up to 0.8.

6.5 Best Performing Visual Features vs. Tag Features
Image tags provide relevant cues for privacy-aware image retrieval [Zerr et al. 2012b] and can
become an essential tool for surfacing the hidden content of the deep Web without exposing
sensitive details. Additionally, previous works showed that user tags performed better or on par
compared with visual features [Squicciarini et al. 2014; Tonge and Caragea 2016, 2018; Zerr et al.
2012b]. For example, in our previous work [Tonge and Caragea 2016, 2018], we showed that the
combination of user tags and deep tags derived from AlexNet performs comparably to the AlexNet
based visual features. Hence, in this experiment, we compare the performance of fc-R features
with the tag features. For deep tags, we follow the same approach as in our previous work [Tonge
and Caragea 2016, 2018] and consider the top k = 10 object labels since k = 10 worked best.
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Overall Private Public
Features H-Param Acc % F1 Prec Re F1 Prec Re F1 Prec Re
Best performing CNN architecture
fc-R R,1.0,0.05 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943

#1 User Tags (BoT)
UT R,2.0,0.05 78.63 0.777 0.772 0.786 0.496 0.565 0.442 0.865 0.837 0.894
#2 Deep Tags (BoT)
DT-A R,1.0,0.1 83.34 0.825 0.824 0.833 0.601 0.699 0.529 0.895 0.863 0.929
DT-G R,1.0,0.05 83.59 0.828 0.827 0.836 0.606 0.699 0.534 0.896 0.866 0.929
DT-V P,1.0,1.0 83.42 0.826 0.825 0.834 0.607 0.698 0.537 0.895 0.865 0.927
DT-R P,1.0,1.0 83.78 0.833 0.831 0.838 0.631 0.688 0.584 0.896 0.876 0.917
#3 User Tags & Deep Tags
UT+DT-
R (BoT)

R,1.0,0.05 84.33 0.84 0.839 0.843 0.67 0.709 0.636 0.897 0.882 0.913

Tag CNN − 85.13 0.855 0.855 0.854 0.706 0.700 0.712 0.901 0.903 0.898

Table 5. Visual features vs. Tag features.

“DT-A,” “DT-G,” “DT-V,” and “DT-R” denote deep tags generated by AlexNet, GoogLeNet, VGG-16,
and ResNet, respectively. Deep tags are generated using the probability distribution over 1, 000
object categories for the input image obtained by applying the softmax function over the last
fully-connected layer of the respective CNN.
Table 5 compares the performance obtained using models trained on fc-R features with the

performance of models trained on the tag features. We consider tag features as: (1) user tags (UT);
(2) deep tags (DT) obtained from all architectures; (3) Bag-of-Tags (BoT) model trained on the
combination of user tags and deep tag features that yield the best overall F1-measure; and (4) Tag
CNN applied to the combination of user tags and best performing deep tags (as in step 3 above).
As can be seen from the table, the visual features extracted from ResNet outperform the user tags
and deep tags independently as well as their combination. The models trained on fc-R features
achieve an improvement of 2% over the CNN trained on the combination of user tags and deep
tags (Tag CNN). Additionally, the models trained on fc-R features yield an increase of 9.5% in the
F1-measure over the user tags alone and an increase of 4% over the best performing deep tags, i.e.,
DT-R (among the deep tags of the four architectures).
From Table 5, we also observe that the Tag CNN performs better than the Bag-of-Tags model

(DT-R+UT), yielding an improvement of 3.0% in the F1-measure of private class. Additionally, even
though the visual features (fc-R) yield overall a better performance than the tag features, for the
private class, the F1-measure (0.717) of the visual features (fc-R) is comparable to the F1-measure
(0.706) of the Tag CNN. It is also interesting to note that the Visual CNN (fc-R) achieves an increase
of 8% in the precision (private class) over the Tag CNN whereas the Tag CNN obtains an improved
recall (private class) of 5% over the Visual CNN.

In order to see how precision varies for different recall values, we also show the precision-recall
curves for the visual and tag features in Figure 10. To avoid clutter we show the precision-recall
curves for deep tags derived through ResNet and the combination of user tags and deep tags (DT-R)
using BoT model. From the curves, we can see that the ResNet visual features perform better than
the tag features, for a wide range of recall values from 0.3 to 0.8.
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Fig. 10. Precision-Recall curves for the private class obtained using visual features (fc-R) and tag features as
user tags (UT), deep tags (DT-R), the combination of user tags and deep tags (UT + DT-R).

Features
(a) (b) (c) (d) (e) (f)

Visual private private public public public private
Tags private private private private private public

Fig. 11. Privacy predictions obtained by image content encodings.

We further analyze both the type of image encodings (visual & tag) by examining the privacy
predictions obtained for anecdotal examples using both the encodings.

6.5.1 Anecdotal Examples: In order to understand the quality of predictions obtained by visual
and tag features, we show privacy predictions for some samples obtained by both type of features.
Figure 11 shows the predictions obtained using SVM models trained on the visual features and
those trained on the combination of user tags and deep tags. Correct predictions are shown in
italics and green in color. We can see that for images (a) and (b), the models trained on image
tags (UT+DT) and visual features provide correct predictions. The tags such as “groom,” “bride,”
“wedding,” “photography” describe the picture (a) adequately, and hence, using these tags appropriate
predictions are obtained. Similarly, visual features identify the required objects, and a relationship
between the objects and provide an accurate prediction for these images. Consider now examples (c)
and (d). For these images, visual features capture the required objects to make accurate predictions,
whereas, image tags such as “bruins,” “fight,” of image (c) and “cute,” “wool,” “bonnet” of image (d)
do not provide adequate information about the picture and hence, yield an incorrect prediction.
However, tags such as “hockey,” “sports” for image (c) and “toy,” “doll” for image (d) would have
helped to make an appropriate prediction. We also show some examples, (e) and (f), for which
visual features fail to predict correct privacy classes. Particularly, for image (f), we notice that
visual features capture object information that identifies the image as private. On the other hand,
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Rank 1-10 Rank 11-20 Rank 21-30 Rank 31-40 Rank 41-50
people pyjama maillot promontory jersey
wig jammies girl t-shirt mole

portrait sweatshirt suit of clothes foreland groin
bow-tie outdoor ice lolly headland bulwark

neck brace lakeside suit bandeau seawall
groom lakeshore lollipop miniskirt seacoast

bridegroom sun blocker two-piece breakwater indoor
laboratory coat sunscreen tank suit vale stethoscope

hair spray sunglasses bikini hand blower valley
shower cap military uniform swimming cap jetty head

Table 6. Top 50 highly informative tags. We use the combination of deep tags and user tags (DT+UT) to
calculate the information gain. User tags are shown in bold.

the image tags such as “festival” and “sport” (describing the scene) provide additional information
(over the object information) that helps the tag-based classifier to identify the picture as public.

Next, we provide the detailed analysis of image tags with respect to privacy.

6.5.2 Analysis of Image Tags with Respect to Privacy Classes: We provide an analysis of the
deep tags (capturing the visual content of the image) and user tags to learn their correlation with
the private and public classes. First, we rank the combination of user tags and deep tags based on
their information gain on the train set. Table 6 shows top 50 tags with high information gain. From
the table, we observe that the tags such as “maillot,” “two-piece,” “sandbar” provide high correlation
to the privacy classes. We also notice that deep tags (objects) given in regular font contribute to a
significant section of top 50 highly informative tags. Secondly, we rank both the tags (user and deep
tags) based on their frequency in public and private classes. We show 50 most frequent tags for
each privacy class using word clouds in Figure 12. The tags with larger word size depict a higher
frequency of the tag. We notice that tags such as “indoor,” “people,” “portrait” occur more frequently
in the private class, whereas tags such as “outdoor,” “lakeside,” “fountain,” occur more frequently in
the public class.
We also observe that some informative tags overlap in both public and private clouds (see

Figure 12, e.g., “indoor”). Thus, we analyze other tags that co-occur with the overlapping tags to
further discriminate between their association with the public and private classes. To inspect the
overlapping tags, we create two graphs with respect to public and private classes. For the public
graph, we consider each tag as a node in the graph and draw an edge between the two nodes if
both the tags belong to the same public image. Likewise, we construct another graph using private
images. Figure 13 shows portions of both public and private graphs for “indoor” tag. To reduce the
complexity of visualization, we only display nodes with stronger edges that have the co-occurrence
greater than a certain threshold. Note that stronger edges (edges with higher width) represent
the high co-occurrence coefficient between two nodes (in our case, tags). From the graphs, we
observe that the overlapping tag “indoor” tends to have different highly co-occurring tags for public
and private classes. For example, the “indoor” tag shows high co-occurrence with tags such as
“people,” “bath,” “coat,” “bowtie,” “bra” (tags describing private class) in the private graph. On the
other hand, in the public graph, the tag shows high co-occurrence with “dust,” “light,” “hankey,”
“bakeshop,” “rubber,” and so forth (tags describing public class). Even though some tags in the graph
have comparatively low co-occurrence, the tags occurring in the private graph tend to associate
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(a) Private (b) Public

Fig. 12. High frequency tag clouds with respect to public and private images.

(a) Private (b) Public

Fig. 13. Tag association graphs.

with the private class, whereas the tags from the public graph are more inclined towards the public
class.
We further analyze the privacy differences of top 10 private and public image subjects. We

consider “outdoor,” “indoor,” “fountain,” “lakeshore,” and “coast” for the public class. On the other
hand, we consider “indoor,” “people,” “wig,” “portrait,” “outdoor,” “groom,” and “maillot” for the
private class. Note that since images may have various tags associated with them, an image can
be counted towards more than one tag. Given that the dataset contains three times more public
images than private images (3 : 1 public to private ratio), we count 3 for each private image as
opposed to the public class where we count 1 for each public image for a fair comparison. The ratio
of private to public content for a specific tag is shown in Figure 14 (a). For example, out of the total
images that possess the “indoor” tag, 60% images are of private class. From the figure, we observe
that tags except for “indoor” show a significant difference in the inclination towards public and
private classes. We also plot the frequency of top 1000 tags normalized by the dataset size in Figure
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14 (b). The plot shows that the top 200 tags befall in 3% − 30% of the dataset with very few tags
occurring in around 20% of the dataset. We also observe that most of the tags lie below 3% of the
dataset showing the variation in the images’ subjects and complexity of the dataset which justifies
the fact that increasing the number of images increases the challenges of the problem statement.

(a) Ratio of private to public images for top 10 tags (b) Tag frequency of top 1000 tags

Fig. 14. Analysis of top frequently occurring tags.

6.6 Fusion of Visual and Tag Features for Image Privacy Prediction
Visual encoding and tag encoding capture different aspects of images. Thus, we add the top 350 cor-
related tags to the visual features fc-R and evaluate their performance for privacy prediction. We ex-
periment with the number of top correlated tags = {10, 20, · · · , 50, 100, · · · , 500, 1000, 5000, 10000}.
However, we get the best results with the top 350 correlated tags. Table 7 shows the results obtained
using SVMs trained on fc-R and the combination of fc-R with the top 350 correlated user tags
(fc-R+tag). The results reveal that adding the highly correlated tags improves the privacy prediction
performance. Precisely, we get a significant improvement of 4% on F1-measure of private class over
the performance obtained using visual features fc-R. Note that, in our previous works [Tonge and
Caragea 2016, 2018] and Subsection 6.5 (where we compare visual and tag features), we described
visual content using tags (deep tags) and combined with the user tag to achieve a better performance.
However, the combination of user tags and deep tags (combining one type of encoding) yields
a lower performance as compared to the combination of user tags and fc-R features (combining
two types of encodings). Precisely, the combination of user tags (UT) and fc-R features yields an
improvement of 5% in the F1-measure of private class (refer Tables 5 and 7) over the combination
of user tags and deep tags.

Overall Private Public
Features Acc % F1 Prec Re F1 Prec Re F1 Prec Re
fc-R 87.58 0.872 0.872 0.876 0.717 0.783 0.662 0.92 0.899 0.943
fc-R+UT 88.29 0.881 0.88 0.883 0.753 0.799 0.713 0.923 0.907 0.94

Table 7. Results for the combination of visual and tag features.
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7 CONCLUSION
In this paper, we provide a comprehensive study of the deep features derived from various CNN
architectures of increasing depth to discover the best features that can provide an accurate privacy
prediction for online images. Specifically, we explored features obtained from various layers of the
pre-trained CNNs such as AlexNet, GoogLeNet, VGG-16, and ResNet and used them with SVM
classifiers to predict an image’s privacy as private or public. We also fine-tuned these architectures
on a privacy dataset. The study reveals that the SVM models trained on features derived from
ResNet perform better than the models trained on the features derived from AlexNet, GoogLeNet,
and VGG-16. We found that the overall performance obtained using models trained on the features
derived through pre-trained networks is comparable to the fine-tuned architectures. However,
fine-tuned networks provide improved performance for the private class as compared to the models
trained on pre-trained features. The results show remarkable improvements in the performance of
image privacy prediction as compared to prior works. Additionally, models trained on the deep
features outperform rule-based models that classify images as private if they contain people. We
also investigate the combination of user tags and deep tags derived from CNN architectures in two
settings: (1) using SVM on the bag-of-tags features; and (2) applying the text CNN over these tags.
We thoroughly compare these models with the models trained on the highest performing visual
features obtained for privacy prediction. We further provide a detailed analysis of tags that gives
insights for the most informative tags for privacy prediction. We finally show that the combination
of deep visual features with these informative tags yields improvement in the performance over
the individual sets of features (visual and tag).
The result of our classification task is expected to aid other very practical applications. For

example, images today are often stored in the cloud (e.g., Dropbox or iCloud) as a form of file
backup to prevent their loss from physical damages and they are vulnerable to unwanted exposure
when the storage provider is compromised. Our work can alert users before uploading their private
(or sensitive) images to the cloud systems to control the amount of personal information (eg. social
security number) shared through images.
In the future, using this study, an architecture can be developed, that will incorporate other

contextual information about images such as personal information about the image owner, owner’s
privacy preferences or the owner social network activities, in addition to the visual content of the
image. Another interesting direction is to extend these CNN architectures to describe and localize
the sensitive content in private images, that will enhance model interpretability.
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