
Learning Classifiers from Large Databases Using Statistical Queries

Neeraj Koul, Cornelia Caragea, and Vasant Honavar
Iowa State University, Ames -IA 50011
{neeraj,cornelia,honavar}@cs.iastate.edu

Vikas Bahirwani and Doina Caragea
Kansas State University, Manhattan, KS - 66506

{vikas,dcaragea }@ksu.edu

Abstract

1 We describe an approach to learning predictive mod-
els from large databases in settings where direct access to
data is not available because of massive size of data, access
restrictions, or bandwidth requirements. We outline some
techniques for minimizing the number of statistical queries
needed; and for efficiently coping with missing values in
the data. We provide open source implementation of the de-
cision tree and Naive bayes algorithms to demonstrate the
feasibility of the proposed approach.

1 Learning Using Statistical Queries

Advances in virtually every area of human endeavor are
being increasingly driven by our ability to acquire knowl-
edge from vast amounts of data. Most current approaches to
learning from data assume direct access to data. However,
in many practical applications, the large size, access re-
strictions, memory and bandwidth constraints, and in some
instances, privacy considerations prohibit direct access to
data. Hence, there is an urgent need for scalable approach to
learning predictive models from large datasets (that cannot
fit in the memory available on the device where the learn-
ing algorithm is executed). To address this need, especially
in settings where the data reside in distributed repositories,
Caragea et al. [3, 4] have introduced a general strategy for
transforming a broad class of standard learning algorithms
that assume in memory access to a dataset into algorithms
that interact with the data source(s) only through statistical
queries or procedures that can be executed on the remote
data sources. This involves separating a learning algorithm
into two components: (i) a statistical query 2 generation

1This research was supported in part by the grant IIS 0711356 from the
National Science Foundation.

2A statistic is simply a function of a dataset; A statistical query returns
a statistic (e.g., the number of instances in the dataset that have a specified
value for a specified attribute.)

component that poses a set of statistical queries to be an-
swered by a data source and (ii) a hypothesis construction
component that uses the resulting statistics to modify a par-
tially constructed hypothesis (and may further invoke the
statistical query component as needed). The implementa-
tion of this strategy in practice requires effective methods
for minimizing the cost of statistical queries, and for cop-
ing with missing values in data. This paper describes an
approach to learning predictive models (e.g., decision trees)
from large databases using statistical queries that is guaran-
teed to yield the same results as those obtained by the corre-
sponding learning algorithms when they have direct access
to data.

We assume that each data source D has an data de-
scriptor Desc(D) which describes the structure of the
data (attributes and their domains) over which the pre-
dictive model is to be built. Formally Desc(D) =<
A,C,V > where A = {a1, a2, . . . , an} is the set of at-
tributes, C /∈ A a special attribute corresponding to the
class label, V = {Va1 , · · ·Van , VC} a set of domains where
Vai = {vi1 · · · vimi} is the set of possible values of at-
tribute ai (mi = |Vai |) and VC the set of possible class
labels. To keep things simple, we assume that all the at-
tributes are nominal. Given Desc(D) the instance space
I = Va1 × Va2 × Va3 · · ·Van . In this paper we assume
that the data source is a relational database. Desc(D) im-
plicitly specifies the schema of the database as follows: the
dataset is stored in a table named D and it has columns
{a1, a2, . . . , an} corresponding to the attributes in A, and
the column C corresponds to the class label. A dataset D
is a multiset whose elements belong to I × VC . Desc(D)
is used to formulate the queries that are posed against the
dataset D. Suppose the data source D supports a set of
primitive queries QD. In our setting the primitive queries
correspond to count queries against D. When D is a re-
lational database, the count queries take the form: Select
Count(*) from D where C = ck AND ai = vij represented as

S(D,C = ck, ai = vij).
We assume that the system expresses statistical queries

against D in its own statistical query language Λ. A query
planner Π that transforms a query q(sD) expressed in Λ
for a statistic sD into a plan for answering sD using some
subset of the primitive statistical queries QD. We assume
that the query planner Π has at its disposal, a set of opera-
tors O that can be used to combine the answers to queries
in QD to obtain a statistic sD. In the case where QD cor-
respond to count queries, O may include +,−. A query
plan for sD, denoted by plan(sD), is simply an expression
tree that successively combines the answers to the primi-
tive queries to obtain the answer to query sD (expressed in
the query language that is understood by the query plan-
ner): Each leaf nodes correspond to a primitive query in
QD and each non-leaf nodes corresponds to an operator in
O. We assume that the planner Π is guaranteed to produce
a correct plan plan(sD) for every statistic sD that is ex-
pressible in Λ. In general, there might be multiple query
plans that can produce a given statistic sD. For example,
the plans Select Count(∗) from D where C = ck and∑
vi
j
∈Vi S(D,C = ck, ai = vij) yields the same statistic.

While the first of these two plans may seem like the ob-
vious one to choose, if all of answers to primitive queries
used by the second plan are available to the system (per-
haps because of other queries that have been executed and
the results cached), it might be preferable to simply reuse
the available results by choosing the second plan.

The learning algorithm L, when executed against a
dataset D, generates at each step i, a set of statisti-
cal queries Si(D) = {sD(i, 1) · · · sD(i, ni)} where each
query in Si is expressed in Λ. Let Plan(Si(D)) =
{plan(sD(i, 1)) · · · plan(SD(i, ni))} be the set of plans
generated by the query planner for the set of queries Si(D).
We denote by Q(plan(sD(i, j))), the set of the primi-
tive queries used in the plan plan(sD(i, j)). Note that
Q(Plan(Si(D))) denotes the subset of primitive queries
against D that to answer the set of queries Si(D). Let
Q(Plan(Si(D))) =

∑ni
j=1Q(plan(sD(i, j))). Let QL =∑

iQ(Plan(Si(D))). Clearly, ∀j Q(plan(sD(i, j))) ⊆
Q(Plan(Si(D))) ⊆ QL ⊆ QD. Consider a se-
quence of sets of statistical queries S1(D) · · ·Si(D)
generated by L when it is executed against a dataset
D. Let φi be the corresponding sequence of sets of
query plans Plan(S1(D)), P lan(S2(D)) · · ·Plan(Si(D))
produced by the query planner. Let Q̂(φi) =
∪il=1Q̂(Plan(Sl(D))) denotes the set of primitive queries
retrieved as a result. Assume that the system maintains a
cache of answers to primitive queries that gets updated af-
ter each set of queries is answered during the execution
of L against D. The contents of the cache after execut-
ing the query set Si−1(D) (but before executing Si(D)) is
simply Q̂(φi−1). Taking advantage of the cache, we have

Q̂(Plan(Si(D)) = Q(Plan(Si(D))) − Q̂(φi−1); That is,
the set of primitive queries that need to be answered in ex-
ecuting the set of query plans Plan(Si(D)) is precisely
the set of primitive queries in Q(Plan(Si(D))) that are
not already present in the cache prior to the generation of
Plan(Si(D)). Assuming that L generates a sequence of
m query sets S1(D) · · ·Sm(D) prior to terminating with a
learned hypothesis, we can define the query complexity of
φm, denoted byQC(φm), as

∣∣∣Q̂(φm)
∣∣∣, that is the total num-

ber of primitive queries that are posed to the data source
based on φm. The communication complexity of φm, de-
noted by CC(φi), is defined as the bandwidth needed to
transmit the primitive queries (and retrieve answers from)
to the data sourceD according to φm. The task of the query
planner is to generate a sequence of sets of query plans φm
so as to minimize the query complexityQC(φm) which can
be important in settings where the data source imposes a
cost for answering each primitive query or communication
complexity CC(φm) (which can be important in settings
where bandwidth is at a premium) or both. In addition to
taking advantage of the cache as outlined above, at each
step i, the set of plans Plan(Si(D) can be optimized by
sharing primitive queries across the query plans for individ-
ual statistical queries in the query set Si(D).

2 Representative Learning Algorithms
Naive Bayes Learner

Naive Bayes [8] is a simple learning algorithm that of-
ten yields classifiers with satisfactory performance in many
applications. Naive Bayes classifier assigns an instance
x =< x1 · · ·xn > to the most probable class label under
the assumption that the attributes of the instance are inde-
pendent given the class:

CNB(x) = arg maxck∈VC P (ck)
n∏
j=1

P (xi)|ck)

During the learning phase, we need to estimate the class
probabilities:

P (ck) =
S(D,C = ck)

S(D)

and the probability of each possible value of each possible
attribute for each class. That is probabilities of the form:

P (ai = vij |C = ck) =
S(D,C = ck, ai = vij)

S(D,C = ck)

where Vai denotes the domain of attribute ai and vij ∈ Vai
denotes the jth possible value in the domain Vai of the
attribute ai. Because learning Naive Bayes classifier
requires, in the setting where the learner has direct access
to the dataset, only a single pass through the dataset, in

our setting, the learner needs to pose only a single set
of queries against D, that is, a set of all queries of form
S(D), S(D, ck) and S(D, ck, ai = vij). However, in the
simple setting where the dataset D is known to contain
no missing values, the query planner can exploit the fact
that S(D, ck) =

∑
vi
j
∈Vai

S(D,C = ck, ai = vij) and that
S(D) =

∑
ck∈Vc S(D,C = ck) to generate query plans

for the queries of the form S(D) and S(D,C = ck) using
answers to the queries of the form S(D,C = ck, ai = vij),
so as to obtain a set of query plans with the minimal query
complexity of

∑|A|
i=1 |Vai ||VC |. See section 3 for discussion

of how to handle missing values in a learning Naive Bayes
classifiers using statistical queries.

Decision Tree Learner
Decision Tree algorithms are among some of the most

widely used machine learning algorithms for building clas-
sifiers from data. A decision tree learner recursively
chooses at each step an attribute that yields the most in-
formation regarding the class label (e.g., as measured by
the reduction in entropy). The choice of an attribute at a
node in the decision tree partitions the dataset based on the
values of the chosen attribute. This process is repeated un-
til a desired termination criterion is satisfied. Hence, each
path π from the root to a given node in the decision tree
has associated with it, a subset of the data Dπ . Extend-
ing the path π requires identifying an attribute that pro-
vides the maximal information about the class membership
of instances in Dπ . Given a dataset Dπ the information
gain for an attribute ai, denoted by Gain(Dπ, ai) is given

by H(Dπ) −
∑
ai
j
∈Vai

H(Dπ
ai
j
) ×

|Dπ
ai
j

|

|Dπ| where Dπ
ai
j

repre-
sents the sub data set of Dπ where the attribute ai takes the
jth value (vij) in its domain Vai . H(Dπ) denotes the en-
tropy of the class distribution in Dπ[11]. We need to com-
pute Gain(Dπ, ai) using statistical queries against D. Let
S(Dπ

aij , C = ck, ai = vij) represent the count query over
the dataset Dπ

ai
j

where the class label is ck and the attribute

ai takes the value vij . We have:

H(Dπ
ai
j
) = −

∑
ck∈Vc

S(Dπ, C = ck, ai = vij)
|Dπ

ai
j

|

log2
S(Dπ, C = ck, ai = vij)

|Dπ
ai
j

|

H(Dπ) = −
∑
ck∈Vc

S(Dπ, C = ck)
|Dπ|

log2
S(Dπ, C = ck)

|Dπ|

In the absence of missing values in the dataset D, we
have:

|Dπ
ai
j
| =

∑
ck∈Vc

S(Dπ, C = ck, ai = vij)

|Dπ| =
∑

vi
j
∈Vai

∑
ck∈Vc

S(Dπ, C = ck, ai = vij)

S(Dπ, C = ck) =
∑

vi
j
∈Vai

S(Dπ, C = ck, ai = vij)

Hence, in absence of missing values queries of the form
S(Dπ, ck, ai = vij) over Desc(Dπ) suffice to choose the
attribute to be chosen for the next node that extends the
path π. However, because Desc(Dπ) is not available to
the system, we need to compute it from Desc(D) and
the path π. Initially, the path π is empty, and the corre-
sponding Desc(Dφ) = Desc(D) =< A,C,V >. Con-
sider a path π which is a one-step extension of a path ψ
and obtained by appending an arc ai = vij to ψ. Then
Descπ =< Aπ, C,Vπ > where Aπ = Aψ − {ai} and
Vπ = Vψ − {Vi}. It is easy to see that a query q over
Dπ can be expressed in terms of a query over D by simply
adding to q, a clause Clause(π) that corresponds to the val-
ues associated with each of the attributes along the path π.
For example, S(Dπ, C = ck, aj = vjl) as Select Count(*)
From D Where C = ck AND aj = vjl AND Clause(π).
Note the resulting query is a query against the data set D.

The query complexity of the optimal sequence of sets of
query plans φ for constructing a decision tree over a dataset
D can be derived by noting that in presence of no missing
values, extending a path π requires answers to all queries
of the S(Dπ, ck, ai = vij) over Desc(Dπ). To simplify
the calculation of the query complexity, assume that each
of the attributes has a domain of the same cardinality. That
is, ∀i, |Vi| = mi = m. Suppose ti is the total number of
paths of length i in the decision tree T (D) constructed from
the dataset D. Then the query complexity of the optimal
sequence of sets of queries posed by decision tree learner
against a dataset D in constructing T (D) is given by

d−1∑
i=0

ti × (|A| − i)×m× |Vc|

where d is the length of the longest path in the decision tree.

3 Dealing with Missing Values
The presence of missing values for some of the attributes

in some of the instances in the dataset D requires modifica-
tions to the basic procedures described above for learning
using statistical queries. The techniques for dealing with
missing values that have been well studied in the literature
[7, 11] assume direct access to the dataset D. We assume
that the database uses a designated special value (e.g., ?)
to indicate a missing value. As an example, consider how
to handle missing values in learning a decision tree under
the assumption that the missing values only occur in one or
more of the attributes but not the class label. Recall that for

choosing the optimal attribute to extend a path π, the deci-
sion tree learner has to gather statistics over the dataset Dπ .
The number of instances in Dπ that have missing values for
the attribute ai is given by:

δai = S(Dπ)−
∑
ck∈Vc

∑
vi
j
∈Vai

S(ck, ai = vij)

The calculation of δai does not entail any queries beyond
those required under the assumption of no missing values
which include queries of the form S(Dπ) and S(Dπ, C =
ck, ai = vij). 3

Distributing counts for missing values according to the
observed distribution of the attribute values is one way to
handle missing values. Once we have obtained the counts
from the data set Dπ we modify all the counts of form
S(Dπ, C = ck, ai = vij) by adding

δai ×
S(Dπ, C = ck, ai = vij)∑

vi
j
∈Vai

S(Dπ, C = ck, ai = vij)

This approach can be extended in a relatively straightfor-
ward manner to deal with missing class labels. In the case of
Naive Bayes, the procedure for handling missing attribute
values is similar, with Dπ replaced by D.

4 Results and Discussion
We have completed an open source implementation in

Java as part of the INDUS Data Mining Toolkit. The sys-
tem also includes some utilities that support reading the data
from an arff file format that is used in WEKA [12]. Unlike
in the case of WEKA implementation of popular learning
algorithms which require the entire dataset to be read into
memory, the sufficient statistics based approach to learning
from data in INDUS interacts with the data source via statis-
tical queries (and hence does not require access to data) and
consequently supports learning classifiers from datasets that
are too large to fit into the memory of the device on which
the learning algorithm is executed.
Provost et al [10] survey work on scaling up learning algo-
rithms. Examples of approaches that have been explored in-
clude parallelization of specific algorithms [6], support for
disk resident data [1], and learning decision trees from sta-
tistical queries [9, 3, 2]. WekaDB [13] enables WEKA im-
plementations of learning algorithms to be used with data
that reside in a relational database. However, WekaDB does
require access to the underlying dataset to read the instances
and ability to modify the instances in the database to deal
with missing values.

In contrast, the approach to learning classifiers from data
using statistical queries described in this paper is designed

3The Clause(π) needs to be suitably modified to ensure that the sub
dataset Dπ does include those instances where the attributes that form the
path π have a missing value. We omit the details due to space constraints.

for settings where the learning algorithm does not have di-
rect access to the dataset in memory (because of the large
size of the dataset, or bandwidth or privacy considerations)
or ability to execute user defined code on the dataset. It
can cope with learning scenarios in which some of the in-
stances in the dataset have missing values for some of the
attributes. We have also outlined some ideas for minimiz-
ing the query complexity, that is, the number of queries that
have to be answered by the data source. Work in progress is
aimed at augmenting the implementation to handle learning
from distributed databases with disparate schema based on
the general strategy outlined in [5].

References

[1] K. Alsabti, S. Ranka, and V. Singh. CLOUDS: A decision
tree classifier for large datasets. In Knowledge Discovery
and Data Mining, pages 2–8, 1998.

[2] A. Bar-Or, D. Keren, A. Schuster, and R. Wolff. Hierarchi-
cal decision tree induction in distributed genomic databases.
IEEE Transactions on Knowledge and Data Engineering,
17:1138–1151, 2005.

[3] D. Caragea. Learning classifiers from distributed, semanti-
cally hetrogeneous, autonomous data sources. PhD thesis,
Iowa State University, 2004.

[4] D. Caragea, J. Zhang, J. Bao, J. Pathak, and V. Honavar. Al-
gorithms and software for collaborative discovery from au-
tonomous, semantically heterogeneous information sources
(invited paper). In Proceedings of the 16th International
Conference on Algorithmic Learning Theory., volume 3734,
pages 13–44. Springer-Verlag., 2005.

[5] V. Honavar and D. Caragea. Next Generation of Data Min-
ing, chapter Towards Semantics-Enabled Infrastructure for
Knowledge Acquisition from Distributed Data. Taylor and
Francis, 2008.

[6] R. Jin and G. Agrawal. Communication and memory effi-
cient parallel decision tree construction. 2003.

[7] W. Z. Liu, A. P. White, S. G. Thompson, and M. A. Bramer.
Techniques for dealing with missing values in classification.
Lecture Notes in Computer Science, 1280:527–??, 1997.

[8] T. M. Mitchell. Machine Learning. McGraw-Hill Higher
Education, 1997.

[9] A. Moore and M. S. Lee. Cached sufficient statistics for
efficient machine learning with large datasets. Journal of
Artificial Intelligence Research, 8:67– 91, March 1998.

[10] F. Provost and V. Kolluri. A survey of methods for scaling up
inductive algorithms. Data Min. Knowl. Discov., 3(2):131–
169, 1999.

[11] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, 1993.

[12] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.

[13] B. Zou, X. Ma, B. Kemme, G. Newton, , and D. Precup.
Data mining using relational database management systems.
In Advances in Knowledge Discovery and Data Mining, vol-
ume 3918 of Lecture Notes in Computer Science, pages 657–
667. Springer Berlin / Heidelberg, 2006.

