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REAL WORLD APPLICATIONS

BIOINFORMATICS: PROTEIN LOCALIZATION?
-+« PVKLKPGMDGPKVKQWPLTEEKIKA. - -

SEQUENCE DATA:
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FrRoM DATA TO KNOWLEDGE

Machine learning offers an approach to the design of algorithms for training computer programs
to efficiently and accurately classify text and biological sequence data

Challenge: Data representation provided to a learner

» The data representation has to be:
» rich enough to capture distinctions that are relevant from the standpoint of learning
> but not so rich as to make the task of learning harder due to overfitting

APPROACHES TO FEATURE CONSTRUCTION

Let x = (xg,xq1,--- ,x;_1) be a sequence over a finite set X, x € X*

» Super-structuring:
» Is the operation of generating all the contiguous sub-sequences of a certain length k from x (“super-structures” or

k-grams): (xj_x,- -+ ,xi—1) fori=k,--- ¢
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k = 2:

» Helps model dependencies between neighboring elements in a sequence

» Abstraction:
» Is the operation of grouping “similar” entities to generate more abstract entities

Amino Acids

A alanine (ala)

R arginine (arg)
S | N asparagine {(asn)

/ -\ P D aspartic acid (asp)
Aliphatic
P A \ -

Hydroxylic

Q glutamine (gin)
E glutamic acid (glu)
G glycine (aly)
H histidine (his)
| isoleucine (ile)
Q L leucine (leu)
K lysine (lys)
M metioneine (met)

C cysteine (cys)
\\.

F phenyalanine (phe)
/ —~_Positive P proline (pro)
{Bagig') S serine (ser)

T threonine (thr)

W trytophan (trp)

Y tyrosine (tyr)

Aromatic

Hydrophobic

Charged

OUuUR APPROACH

Combining super-structuring and abstraction to construct new features!

CONSTRUCTING ABSTRACTIONS OVER K-GRAMS

» Greedy agglomerative procedure
» Initially map each abstraction to a k-gram
» Recursively group pairs of abstractions until m abstractions are obtained

CONSTRUCTING TWO ABSTRACTIONS A = {A1¢,014} ON A SET 8 = {51, - ,S9] OF 2-GRAMS OVER AN
ALPHABET OF SIZE 3. THE ABSTRACTIONS 4] TO dg CORRESPOND TO THE 2-GRAMS S1 TO S,

RESPECTIVELY.
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DISTANCE BETWEEN TWO ABSTRACTIONS d,, AND 4,

Let A denote a random variable that takes values in a set of abstractions A = {ay, - -, am}.

Goal: find a set of abstractions s.t. the reduction in the mutual information between A and the
class variable Y, I(A, Y), is minimized at each step of the greedy procedure.

We have shown that the reduction in I(A, Y) due to a merge {ay, 4y} — ay of the greedy procedure

is given by: |dI(iay, av}, dw) = (plaw) + plav)) - JSm,m, (p(Ylau), p(Ylay)) > 0] where
57,7 ([P1(9)], [p2(9)]) = mKL(p1(9)llp(9)) + maKL(p2(9)llp(9))

Hence, the distance between two abstractions is as follows:

dp(ay, ay) = 6I({ay, av},aw) where ayy = {a, U ay}

FEATURE SELECTION

» alternative approach to reducing the number of k-grams to m k-grams
» we used mutual information between the class variable and k-grams to rank the k-grams

TAaskx: PROTEIN SUBCELLULAR LOCALIZATION PREDICTION

> plant data set [Emanuelsson et al., 2000]

> 940 protein sequences classified into: chloroplast, mitochondrial, secretory pathway/signal peptide, and other

» non-plant data set [Emanuelsson et al., 2000]
» 2738 protein sequences classified into: mitochondrial, secretory pathway/signal peptide, and other

EXPERIMENTS

We compare Naive Bayes (NB) and Support Vector Machine (SVM) classifiers trained using;:

» unigrams: a bag of letters representation of protein sequences, no super-structuring, abstraction
or feature selection (UNIGRAM);

» super-structuring: a bag of k-grams (k = 3) representation of protein sequences (SS);

» super-structuring and feature selection: a bag of m k-grams (k = 3) chosen using feature selection
from the bag of k-grams obtained by super-structuring (See Section 3 for details) (SS+FSEL);

» super-structuring and abstraction: a bag of m abstractions over k-grams (k = 3) obtained using
the combination of super-structuring and abstraction (See Section 2 for details) (SS+ABS).
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Figure: Comparison of super-structuring and abstraction (SS+ABS) with super-structuring alone (SS),
super-structuring and feature selection (SS5+FSEL) and UNIGRAM on the plant and non-plant data sets using Naive
Bayes (NB) (left column), and Support Vector Machines (SVM) with linear kernel (right column). The plots show the
accuracy as a function of the number of features used in the classification model, ranging from 1 to ~ 8,000 on both
data sets. The x axis shows the number of features on a logarithmic scale.

ANALYSIS OF ABSTRACTIONS

0.32

VFV

VFV

- SSS - - 8SS

034y PSF 1 ost : PSF
— Abstraction 2N

— Abstraction

0.28

o

N

oo
T

ClasslFeature)
V)

P(ClasslFeature)

P
o
o
=~

"y 2 3 4 1 2 3 4
Class Class

Figure: Class probability distributions induced by one of the m abstractions, namely a;, and by three 3-grams, namely
“VFV”,“555”, and “PSF”, on the plant data set, where m = 10 and i = 1 (left); and m = 100 and i = 3 (right). The
three 3-grams are initially sampled from a3 (when m = 100). The number of classes in the data set is 4.

CONCLUSIONS

» We have shown that:

» combining super-structuring and abstraction makes it possible to construct predictive models that use
significantly smaller number of features than those obtained using super-structuring alone.

» abstraction in combination with super-structuring yields better performing models than those obtained by
feature selection in combination with super-structuring.
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