

Constructing Abstractions over K-Grams

Greedy agglomerative procedure

- Initially map each abstraction to a k-gram

Recursively group pairs of abstractions until m abstractions are obtained
Constructing two Abstractions $\mathcal{A}=\left\{a_{16}, a_{14}\right\}$ on a set $\mathcal{S}=\left\{s_{1}, \cdots, s_{9}\right\}$ of 2-grams over an Constructing two Abstractions $\mathcal{A}=\left\{a_{16}, a_{14}\right\}$ on a set $\mathcal{S}=\left\{s_{1}, \cdots, s_{9}\right\}$ of 2 -Grams on
alphabet of size 3 . The abstractions a_{1} to a_{9} Correspond to the 2 -Grams s_{1} to s_{9}, respectively

$$
a_{16}:\left\{s_{1}, s_{2}, s_{3}, s_{4}, 5_{5}, s_{6}\right\}
$$

$$
a_{15:\left\{\left\{1, s_{2}, s_{3}, s_{4}, 55\right\}\right.} \bigcirc
$$

DISTANCE between two abstractions a_{u} AND a_{v}

Let A denote a random variable that takes values in a set of abstractions $\mathcal{A}=\left\{a_{1}, \cdots, a_{m}\right\}$.
Goal: find a set of abstractions s.t. the reduction in the mutual information between A and class variable $Y, I(A, Y)$, is minimized at each step of the greedy procedure
We have shown that the reduction in $I(A, Y)$ due to a merge $\left\{a_{u}, a_{v}\right\} \rightarrow a_{w}$ of the greedy procedure is given by: $\delta I\left(\left\{a_{u}, a_{v}\right\}, a_{w}\right)=\left(p\left(a_{u}\right)+p\left(a_{v}\right)\right) \cdot J S_{\pi_{u}, \pi_{v}}\left(p\left(Y \mid a_{u}\right), p\left(Y \mid a_{v}\right)\right) \geqslant 0$ where
$J S_{\pi_{1}, \pi_{2}}\left(\left[p_{1}(y)\right],\left[p_{2}(y)\right]\right)=\pi_{1} K L\left(p_{1}(y) \| p(y)\right)+\pi_{2} K L\left(p_{2}(y) \| p(y)\right)$
Hence, the distance between two abstractions is as follows:

$$
d_{\mathcal{D}}\left(a_{u}, a_{v}\right)=\delta I\left(\left\{a_{u}, a_{v}\right\}, a_{v}\right) \text { where } a_{w v}=\left\{a_{u} \cup a_{v}\right\}
$$

Feature selection

alternative approach to reducing the number of k -grams to m k -grams
we used mutual information between the class variable and k -grams to rank the k -grams

Task: Protein Subcellular localization Prediction

plant data set [Emanuelsson et al., 2000]
$\therefore 940$ protein sequences classified into: chloroplast, mitochondrial, secretory pathwayysignal peptide, and other non-plant data set [Emanuelsson et al., 2000]

EXPERIMENTS

We compare Naïve Bayes (NB) and Support Vector Machine (SVM) classifiers trained using: unigrams: a bag of letters representation of protein sequences, no super-structuring, abstraction unigrams: a bag of letters represe
or feature selection (UNIGRAM);
super-structuring: a bag of k-grams $(k=3)$ representation of protein sequences (SS); super-structuring and feature selection: a bag of $m k$-grams $(k=3)$ chosen using feature selection from the bag of k-grams obtained by super-structuring (See Section 3 for details) (SS+FSEL); super-structuring and abstraction: a bag of m abstractions over k-grams $(k=3)$ obtained using the combination of super-structuring and abstraction (See Section 2 for details) (SS +ABS).

Results

Figure: Comparison of super-structuring and abstraction (SS+ABS) with super-structuring alone (SS), Figure: Comparison of super--structuring and abstraction (SS+AASS) with super-structuring alone (SS),
super-structuring and feeatre selection (SS+FSSL) and UNGRAM on the plant and non-plant data sets using Naive
Bayes (NB) (eft Bayes (NB) (left column), and Support Vector Machines (SVM) with linear kernel (right column). The plots show the accuracy as a function of the number of features used in the classification model, ranging from 1 to $\approx 8,000$ on both

Analysis of Abstractions

Figure: Class probability distributions induced by one of the m abstractions, namely a_{i} and by three 3 -grams, namel VFV", "SSS", and "PSS", on the plant data set, where $m=10$ and $i=1$ (leff) and $m=100$ and $i=3$ (right). The

Conclusions

We have shown that:

-combining super-structuring and abstraction makes it possible to construct predictive models that use significantly smaller number of features than those obtained using super-structuring alone.
bstraction in combination with super-structuring yields better performing models than those obtained by
feature selection in combination with super-structuring.

