IOWA STATE UNIVERSITY

REAL WORLD APPLICATIONS

BIOINFORMATICS: PROTEIN LOCALIZATION? ···· PVKLKPGMDGPKVKQWPLTEEKIKA····

FROM DATA TO KNOWLEDGE

to efficiently and accurately classify text and biological sequence data

Challenge: Data representation provided to a learner

- The data representation has to be:
- rich enough to capture distinctions that are relevant from the standpoint of learning
- but not so rich as to make the task of learning harder due to overfitting

Approaches to Feature Construction

Let $\mathbf{x} = (x_0, x_1, \cdots, x_{t-1})$ be a sequence over a finite set $\mathcal{X}, \mathbf{x} \in \mathcal{X}^*$

Super-structuring:

k-grams): $(x_{i-k}, \dots, x_{i-1})$ for $i = k, \dots, t$

$$k = 2:$$

 X_{i-3} X_{i-2} X_{i-1} X_i X_{i+1}

Helps model dependencies between neighboring elements in a sequence

Abstraction:

► Is the operation of grouping "similar" entities to generate more abstract entities

Our Approach

Combining super-structuring and abstraction to construct new features!

Acknowledgements: This work is supported in part by a grant from the National Science Foundation (NSF 0711356) to Vasant Honavar.

Designing Abstract Features for Sequence Classication Tasks Cornelia Caragea, Joint Work with Adrian Silvescu and Vasant Honavar

the combination of super-structuring and abstraction (See Section 2 for details) (SS+ABS).

RESULTS

Figure: Comparison of super-structuring and abstraction (SS+ABS) with super-structuring alone (SS), super-structuring and feature selection (SS+FSEL) and UNIGRAM on the plant and non-plant data sets using Naïve Bayes (NB) (left column), and Support Vector Machines (SVM) with linear kernel (right column). The plots show the accuracy as a function of the number of features used in the classification model, ranging from 1 to $\approx 8,000$ on both data sets. The *x* axis shows the number of features on a logarithmic scale.

ANALYSIS OF ABSTRACTIONS

Figure: Class probability distributions induced by one of the *m* abstractions, namely *a_i*, and by three 3-grams, namely "VFV", "SSS", and "PSF", on the **plant** data set, where m = 10 and i = 1 (left); and m = 100 and i = 3 (right). The three 3-grams are initially sampled from a_3 (when m = 100). The number of classes in the data set is 4.

CONCLUSIONS

- We have shown that:
- feature selection in combination with super-structuring.

Computer Science Department, Iowa State University

• combining super-structuring and abstraction makes it possible to construct predictive models that use significantly smaller number of features than those obtained using super-structuring alone. • abstraction in combination with super-structuring yields better performing models than those obtained by