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ABSTRACT
In this paper, we address the keyphrase extraction problem as se-
quence labeling and propose a model that jointly exploits the com-
plementary strengths of Conditional Random Fields that capture
label dependencies through a transition parameter matrix consist-
ing of the transition probabilities from one label to the neighboring
label, and Bidirectional Long Short Term Memory networks that
capture hidden semantics in text through the long distance depen-
dencies. Our results on three datasets of scholarly documents show
that the proposed model substantially outperforms strong baselines
and previous approaches for keyphrase extraction.
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• Computing methodologies → Natural language process-
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1 INTRODUCTION
Keyphrase extraction is a key natural language processing task
aimed at automatically extracting descriptive phrases or words
from a document [17]. Keyphrases (also referred as keywords) pro-
vide a brief summary of the content of a document. The importance
of keyphrases has been widely recognized in many downstream
applications such as query formulation, document clustering, classi-
fication, recommendation, indexing, and summarization [16, 21, 38].

Most of the existing works on automatic keyphrase extraction
focus on supervised and unsupervised approaches. The unsuper-
vised approaches use ranking techniques to rank phrases based on
the aggregated “informativeness” scores of the individual words
comprising a phrase. Graph-based ranking algorithms that are ap-
plied to the word graph representation of a document are the most
prevalent in this category. To construct the graph, each candidate
word in a document (i.e., a word with certain part-of-speech tags)
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is mapped to a node and connecting edges represent the associa-
tion patterns among the candidate words. The scores of individual
words are estimated using various graph centrality measures such
as PageRank [10, 12, 27, 34, 41].

The supervised approaches use binary classification to label
candidate phrases positively (as keyphrases) or negatively (as non-
keyphrases), based on a set of linguistic and statistical features such
as tf-idf, part of speech (POS) tags, and the position of phrases in
documents. Supervised keyphrase extraction allows for expressive
feature design and is reported to often outperform unsupervised
methods [6, 23]. Two major limitations of these supervised ap-
proaches are: (1) they classify the labels of each candidate phrase
independently, while completely ignoring the dependencies that
could potentially exist between neighboring labels; and (2) they do
not incorporate the hidden semantics in the input text.

More recently, Gollapalli et al. [13] formulated keyphrase ex-
traction as sequence labeling and showed that using linear-chain
Conditional Random Fields can improve the performance over base-
line models for this task. However, the approach in [13] does not
explicitly take into account the long-term dependencies and se-
mantic relationships hidden in text. Figure 1 shows examples of
long-term dependency patterns and semantic relationships hidden
in text from a research paper published in the ACM KDD confer-
ence, e.g., the phrase “we describe” is followed by (and indicative
of) keyphrases, whereas the terms “Conditional Random Field” and
“discriminatively-trained model” are semantically related. We posit
that a deep understanding of the text is required in order to correctly
identify keyphrases for a document.

To this end, we address keyphrase extraction as a sequence la-
beling problem, using research papers as a case study, and precisely
aim to capture both the semantics of document contexts as well as
the dependencies among the labels of neighboring words in order
to overcome the limitations in previous approaches. Specifically,
we explore a neural learning model, called Bi-LSTM-CRF, that com-
bines a bi-directional Long Short-Term Memory (Bi-LSTM) layer
to model the sequential text data with a Conditional Random Field
(CRF) layer to model dependencies in the output [19, 30]. The result
of this extraction task will aid indexing of documents in scholarly
document collections, and hence, will lead to improved organiza-
tion, search, retrieval, and recommendation of scientific documents.
In summary, our contributions are as follows:

• We explore a neural learning model for keyphrase extraction
from scholarly documents that combines the complementary
strengths of Bi-LSTM and CRF. In the combined model, the
input and output layers are not directly connected as in CRF,
but instead a Bi-LSTM layer is inserted between them to
exploit the long term dependencies in the text.
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A Unified Approach for Schema Matching, Coreference and Canonicalization
by Michael L. Wick, Khashayar Rohanimanesh, Karl Schultz and Andrew McCallum
The automatic consolidation of database records from many heterogeneous sources into a single repository requires solving several information integration
tasks. Although tasks such as coreference, schema matching, and canonicalization are closely related, they are most commonly studied in isolation.
Systems that do tackle multiple integration problems traditionally solve each independently, allowing errors to propagate from one task to another. In this
paper, we describe a discriminatively-trained model that reasons about schema matching, coreference, and canonicalization jointly. [...]

Author-annotated keyphrases: Data Integration, Coreference, Schema Matching, Canonicalization, Conditional Random Field, Weighted Logic

Figure 1: The title and abstract of a paper by Wick et al. (2008) and the author-input keyphrases for the paper. Cyan bold
phrases represent the gold-standard (author-annotated) keyphrases for the document. Red italic phrases represent long-term
dependency patterns or semantic relationships with the gold-standard keyphrases.

• We conduct a thorough evaluation to examine the role of
each layer in the model. To our knowledge, there is no study
that demonstrates an ablation experiment that compares,
with this clarity, the role of input dependencies and label
dependencies in keyphrase extraction from research papers.
• We show empirically on three datasets of research papers
that the Bi-LSTM-CRF model outperforms strong baselines
and previous works on the keyphrase extraction task.
• We investigate the performance of Bi-LSTM-CRF at docu-
ment and sentence level and show that a document level
model that captures a broader context is more accurate than
a sentence level model. To our knowledge, this has not been
addressed before, especially, not on a large scale dataset as
we do in this paper.

In the next section, we describe related work on keyphrase ex-
traction. We then introduce the neural learning model in Section 3,
followed by Section 4 that presents our evaluation setup. Finally,
we discuss our experimental results in Section 5 before we conclude
the paper and touch on future directions in Section 6.

2 RELATEDWORK
Keyphrase extraction has been the focus of many studies. These
studies generally adopt a two phase approach. In the first phase,
candidate words or phrases are extracted from the text using heuris-
tics such as POS patterns for words or n-grams [20]. In the second
phase, the candidate phrases are predicted as keyphrases or non-
keyphrases, using both supervised and unsupervised approaches.
In the supervised approaches, the prediction is done based on a
selection of features, e.g., POS tags, tf-idf scores, and position infor-
mation, used in conjunction with machine learning classifiers [11,
20, 36, 39]. Traditional features were also combined with features
extracted from external sources such as WordNet and Wikipedia
[29, 32] or from various neighborhoods, e.g., a document’s citation
network or a webpage’s hyper-link network [5, 6, 22].

Unsupervised approaches include phrase scoring methods based
on measures such as tf-idf and topic proportions [3, 28, 46], graph-
based ranking using centrality measures [15, 34, 41], and keyphrase
selection from topics detected using topic modeling [25, 40]. In this
context, several extensions of PageRank and personalized PageRank
have been proposed that make use of a document’s citation network
[12] or that bias the random walk based on the words’ positions
in text [10] or the words’ topic distribution [27]. In order to add
semantic relatedness between the words in a word graph, Martinez-
Romo et al. [31] used information from WordNet.

The best performing SemEval 2010 system used term frequency
thresholds to filter out phrases that are unlikely to be keyphrases,
where the thresholds were estimated from the data [9]. The can-
didate phrases were ranked using the tf-idf model in conjunction
with a boosting factor which aims at reducing the bias towards
single word terms. Danesh et al. [8] computed an initial weight for
each phrase based on a combination of the tf-idf score and the first
position of a phrase in a document. Phrases and their initial weights
were then incorporated into a graph-based algorithm, which pro-
duces the final ranking of keyphrases. Adar and Datta [1] extracted
keyphrases by mining abbreviations from scientific literature and
built a semantic hierarchical keyphrase database. Many of the above
approaches, both supervised and unsupervised, are compared and
analyzed in a survey by Hasan and Ng [17].

Neural networks have started to be incorporated into models
for keyphrase extraction. For example, Wang et al. [42] investigate
word embeddings to measure the relatedness between words in
graph-based models. A Recurrent Neural Network (RNN) based
approach is proposed by Zhang et al. [45] to identify keyphrases in
Twitter data. The model addresses the problem as sequence labeling
for very short text, where a joint-layer RNN is used to capture the
semantic dependencies in the input sequence, but does not address
the dependencies in the labels. In our work, we capture the flow of
scientific writing and the dependencies between keyphrases and
the other words in the text that may not necessarily exist between
hashtags and the text of the tweets. Augenstein and Søgaard [2]
treated keyphrase extraction as a multi-task learning problem and
applied RNNs to classify keyphrase boundaries. Inspired from work
in machine translation, Meng et al. [33] focused on keyphrase gen-
eration (rather than keyphrase extraction) and addressed it as a
sequence to sequence learning problem with a copying mechanism,
where the sequence of words in a document is used to generate
a sequence of keyphrases. An Encoder-Decoder RNN, originally
proposed by Cho et al. [7], was used to generate the keyphrase se-
quences. A variation of the model, which performs better than the
Encoder-Decoder RNN, includes a copying mechanism to identify
keyphrases that occur rarely in the text. Unlike Meng et al. [33], we
focus on keyphrase extraction, i.e., extracting only words that are
present in text, and not keyphrase generation, which outputs words
that may or may not be present in text. We use the Encoder-Decoder
RNN with the copying mechanism as one of our baselines.

Sequence labeling models for keyphrase extraction have shown
promising results in recent studies [4, 13, 44]. For example, Golla-
palli et al. [13] trained Conditional Random Fields (CRFs) to extract
keyphrases from scholarly documents, using features such as tf-idf
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Figure 2: Layers in a CRF network.

and POS tags to predict a label for each token position in a docu-
ment as being a keyphrase token (KP) or not (Non-KP). This CRF
model is able to capture the dependencies in previous and future
tags in the label sequence, however, the semantic dependencies in
the input sequence, i.e., the text, are not incorporated.

Recently, a sequence labeling framework that takes into consid-
eration both types of dependencies has been explored on a variety
of NLP tasks such as part-of-speech tagging, noun phrase chunking,
and named entity recognition [19, 26, 30]. This framework com-
bines a bidirectional LSTM (Bi-LSTM) network as the first layer to
capture sequential text dependencies with a second CRF layer to
capture label dependencies. In our work, we identify the limitations
of each independent model (Bi-LSTM and CRF) and explore their
combination on keyphrase extraction from scholarly documents.
To our knowledge, in the context of keyphrase extraction from
scholarly documents, we are the first to simultaneously capture the
semantics of document contexts and long-range dependencies in
text bymodeling the sequential text data as well as the dependencies
among the labels of neighboring words.

3 METHODOLOGY
In this section, we formulate keyphrase extraction as a sequence
labeling task and present the details of the Bi-LSTM-CRF model
and its constituent components, CRF and Bi-LSTM.

3.1 Problem Formulation
Keyphrase extraction can be formulated as a sequence labeling task
as follows: Given an input sequence x = {x1, · · · , xn }, where each
xi represents the input vector of the ith word, predict a sequence of
labels y = {y1, · · · ,yn }, one label for each word in the input, where
each label yi is KP (keyphrase word) or Non-KP (not keyphrase
word). The sequence labeling formulation of our task takes into
account the correlations between neighboring labels and allows to
jointly decode the best sequence of labels for the input sequence,
rather than decoding each label independently.

3.2 Conditional Random Fields
Conditional Random Field (CRF) introduced by Lafferty et al. [24]
has been successfully used in many sequence labeling tasks and we
use it here to jointly model the sequence of labels for our keyphrase
extraction task. The conditional probability distribution over the
label sequence y given x defined by CRF has the form:

p (y|x;W, b) ∝ exp *
,

n∑
i=1

WT
yi−1,yi xi + byi−1,yi

+
-

whereWyi−1,yi and byi−1,yi are model parameters (weight vector
and bias) corresponding to the neighboring labels (yi−1,yi ).

For training a CRF model, we estimate model parametersW and
b from a training dataset D = {(x(j ) , y(j ) )}Nj=1 by maximizing the

x1 x2 xn−1 xn

input · · ·

hidden

backward

· · ·
· · ·

forward

output · · ·

y1 y2 yn−1 yn

Figure 3: Layers in a Bi-LSTM network.

log-likelihood given by:

L(W, b) =
N∑
j=1

logp (y(j ) |x(j ) ;W, b)

To find the best sequence path during decoding, the optimal
sequence y that maximizes the likelihood, is computed using the
Viterbi decoding:

y∗ = argmaxy∈Y (x)p (y|x;W, b)

Figure 2 depicts the layout of a simple CRF network. As shown
in the figure, nodes in the output layer are connected, enabling the
model to capture dependencies in the sequence of labels.

3.3 Bi-LSTM
Long Short Term Memory networks (LSTMs) are a special type of
Recurrent Neural Networks (RNNs) and are designed to overcome
the gradient vanishing problem of RNNs. In particular, LSTMs have
additional memory cells, which store memory from long distance
terms [18]. Because LSTMs are capable of preserving information
over previous inputs of a sequence into the current input state, they
have been a natural choice for applications involving temporal and
sequence data such as speech recognition, language modeling and
translation [14, 35]. The structure of an LSTM includes an input
layer, a hidden layer and an output layer. An LSTM unit at time t
consists of sub-unit-inputs (it ), output (ot ), forget gates (ft ) and
memory cell (ct ). The updates at time t are then:

it = σ (W(i )ht−1 + U(i )xt + b(i ) )
ft = σ (W(f )ht−1 + U(f )xt + b(f ) )
ot = σ (W(o)ht−1 + U(o)xt + b(o) )
c̃t = tanh(W(c )ht−1 + U(c )xt + b(c ) )
ct = ft ⊙ c(t−1) + it ⊙ c̃t
ht = ot ⊙ tanh(ct )

Here, σ is the element-wise logistic sigmoid function and ⊙ is the
Hadamard product; xt is the input vector at time t , i.e., the word
embedding in our case, and ht is the hidden state that stores sequen-
tial information up to time t . W, U, and b are model parameters to
be estimated during training.

In a forward LSTM network, the hidden state ht stores informa-
tion only from the past. To capture the flow of information both
ways, we use a bi-directional LSTM network, which consists of a
forward hidden layer and a backward hidden layer. Figure 3 shows
the structure of a Bi-LSTM network. Here, the nodes in the hid-
den layer are connected which is how long distance information is
maintained in the matrix weights.
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Table 1: Dataset statistics.

Statistics Training Validation Testing
kp527k kp20k-v kp20k WWW KDD

Number of documents 527,830 20,000 20,000 1,330 755
Number of sentences 4,686,986 176,930 177,278 12,288 7,768
Number of tokens in total 78,441,075 2,948,609 2,971,668 200,704 132,728
Number of tokens in keyphrases 5,458,743 205,586 207,073 12,181 6,119
Number of keyphrases 2,806,381 106,181 105,523 6,405 3,093

x1 x2 xn−1 xn

input · · ·

hidden

backward

· · ·
· · ·

forward

output · · ·

y1 y2 yn−1 yn

Figure 4: Layers in a Bi-LSTM-CRF network.

3.4 Bi-LSTM-CRF
In order to build a sequence labeling model that incorporates long
distance information over a sequence of input as well as information
on the output sequence, we combine a Bi-LSTM network with a CRF
network. The network architecture is shown in Figure 4. As shown
in the figure, the first layer of the model is a Bi-LSTM network with
the purpose of capturing the semantics of the input text sequence.
The output of the Bi-LSTM layer is passed to a CRF layer that
produces a probability distribution over the tag sequence using
the dependencies among labels of the entire sequence. In order to
find the best sequence of labels for an input sequence, the Viterbi
algorithm is used.

4 EVALUATION SETTING
To evaluate the performance of our proposed model, we conduct a
wide range of experiments. In this section, we describe the datasets
used for training and evaluation, discuss hyper-parameters, base-
lines and the evaluation measures.

4.1 Datasets
We use three different datasets of scientific documents for our
evaluation purpose. The first dataset was made available by Meng
et al. [33] and was collected by crawling the metadata of papers
from several online digital libraries such as ACM, WebofScience,
andWiley. The dataset contains metadata for 567, 830 papers with a
clear split as train, validation, and test sets provided by the authors,
as follows: 527, 830 were used for model training, 20, 000 were used
for parameter tuning, and the remaining 20, 000were used formodel
evaluation. We refer to these sets as kp527k, kp20k-validation
(or kp20k-v), and kp20k-test (or simply kp20k), respectively.

The second and third datasets were made available by Gollapalli
and Caragea [12] and were compiled from the CiteSeerX digital
library. These datasets contain metadata for research papers from
the proceedings of two top-tier data mining and machine learning
conferences, i.e., the ACM Conference on Knowledge Discovery

and Data Mining (referred as KDD) and the World Wide Web Con-
ference (referred asWWW).

The metadata of each paper from all three datasets above consist
of titles, abstracts, and author-assigned keyphrases. The title and
abstract of each paper are used to extract keyphrases, whereas the
author-input keyphrases are used as gold-standard for evaluation.
In experiments, for all models, we use kp527k for model training,
kp20k-validation for parameter tuning, and kp20k, KDD, and
WWW as three independent test sets for model evaluation. Note
that we removed from KDD and WWW the entries that occur
also in kp527k-train and kp20k-validation to avoid the overlap
between train, validation, and test sets. Table ?? shows the statistics
of these datasets.

4.2 Implementation Details
Since we use a sequence labeling formulation of the keyphrase ex-
traction problem, the abstract/keyphrases data pairs are converted
such that each document is a sequence of word tokens, each with a
positive (KP) label if it occurs in a keyphrase, or with a negative
(Non-KP) label, otherwise (consistent with [13]). We train four
network models: Bi-LSTM-CRF, CRF, Bi-LSTM, and LSTM. Each
sentence from a document is passed to a network as the input se-
quence. To evaluate performance and runtime differences, we also
train Bi-LSTM-CRF models with the entire document as the input
sequence (instead of each sentence at a time).

We use word embeddings as input to the above four models.
The word embeddings are initialized with 100-dimension Glove
pre-trained embedding vectors [37]. For all models, we use a single
100-dimension hidden layer. The LSTM, Bi-LSTM, and Bi-LSTM-
CRF are optimized during training using stochastic gradient descent
with learning rate ηt =

η0
1+ρt , where initial learning rate η0 = 10−2

and decay ratio ρt = 0.5. Gradient clipping of 5.0 is used to prevent
the gradient from overflows during back-propagation. In addition,
we use dropout to avoid over-fitting. We select the model with the
best F1 score on the validation set, kp20k-validation.

Our implementation of the network models is based on a mod-
ified version of the implementation developed by [26].1 Publicly
available implementations were used for the other baselines [33].2

4.3 Baselines and Evaluation Measures
We contrast the Bi-LSTM-CRF network with three baselines: CRF,
forward LSTM, and Bi-LSTM, and several previous models: copy-
RNN [33], KEA [11], Tf-Idf, TextRank [34] and SingleRank [41].
1https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
2https://github.com/memray/seq2seq-keyphrase
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Table 2: Results (Pr, Re, F1) of Bi-LSTM-CRF in an ablation experiment on the kp20k, WWW, and KDD datasets.

kp20k WWW KDD
Method Pr% Re% F1% Pr% Re% F1% Pr% Re% F1%

Bi-LSTM-CRF 64.19 24.66 35.63 64.33 28.43 39.43 57.83 31.85 41.08
CRF 66.67 10.04 17.46 64.89 22.11 32.98 55.76 18.69 27.99
Bi-LSTM 9.41 76.24 16.75 9.53 76.76 16.96 8.15 75.93 14.71
LSTM 9.41 78.43 16.81 9.51 75.71 16.90 8.13 75.38 14.68

Consistent with previous works, we evaluate the predictions of
each model against the author-input keyphrases, which are avail-
able with each document, i.e., the gold standard, and report Preci-
sion, Recall, and F1-score. For model comparison in the next section,
we focus the discussion of our results in terms of the F1-score, which
is the harmonic mean of Precision and Recall.

5 RESULTS AND OBSERVATIONS
We now describe the evaluation performance of the Bi-LSTM-CRF
model for extracting keyphrases from research papers.

5.1 Performance of Bi-LSTM-CRF for
Keyphrase Extraction

First, we evaluate the performance of Bi-LSTM-CRF in an ablation
experiment to determine the role played by each component in
extracting keyphrases from research papers. Specifically, we com-
pare the Bi-LSTM-CRF model with a bidirectional LSTM, a forward
LSTM, and a CRF model (by removing one component at a time
from the full Bi-LSTM-CRF model).

Table 2 shows the results of this comparison. As can be seen from
the table, Bi-LSTM-CRF consistently achieves the best results on all
three datasets in terms of the F1-score. For example, on the kp20k
dataset, Bi-LSTM-CRF achieves an F1-score of 35.63%, whereas CRF
and Bi-LSTM achieve an F1-score of 17.46% and 16.75%, respec-
tively. Interestingly, removing the Bi-LSTM component and using
only a CRF model, we notice a steep drop in recall on all three
datasets. For example, on kp20k, Bi-LSTM-CRF achieves a recall
of 24.66%, whereas CRF alone achieves a recall of only 10.04%. This
result demonstrates that leveraging the long distance semantic de-
pendencies from text through the Bi-LSTM component of the full
model is beneficial for correctly extracting a larger fraction of gold
keyphrases. The CRF model alone generally achieves a similar or
small increase in precision compared with the Bi-LSTM-CRF model.
For example, onWWW, the precision values of Bi-LSTM-CRF and
CRF are 64.33% and 64.89%, respectively, whereas on the kp20k
dataset, these values are 64.19% and 66.67%, respectively.

On the other hand, removing the CRF component and using only
an LSTM model (either bidirectional or forward LSTM) yields a
consistent and substantial improvement in recall on all datasets
over both CRF and Bi-LSTM-CRF at the expense of a dramatic drop
in precision, consistently across all datasets (see Table 2). That is,
on kp20k, the precision drops from 64.19% (achieved by Bi-LSTM-
CRF) to an unacceptable value of 9.41% (obtained by LSTM alone),
whereas the recall increases from 24.66% to 78.43%, obtained by
Bi-LSTM-CRF and LSTM, respectively. This result indicates that
LSTM is powerful in capturing the deep semantics of the text, and is

KP Non-KP

KP
No

n-
KP

0.4211 0.5789

0.0267 0.9733

KP Non-KP

KP
No

n-
KP

0.5132 0.4868

0.0358 0.9642

KP Non-KP

KP
No

n-
KP

0.5527 0.4473

0.0387 0.9613
0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(a) Bi-LSTM-CRF

KP Non-KP

KP
No

n-
KP

0.2087 0.7913

0.0145 0.9855

KP Non-KP

KP
No

n-
KP

0.3266 0.6734

0.0228 0.9772

KP Non-KP

KP
No

n-
KP

0.2964 0.7036

0.0218 0.9782
0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(b) CRF
Figure 5: Keyphrase extraction confusionmatrices on kp20k
(left), WWW (middle), and KDD (right) (results reported at
word-level). The darker the blue on the main diagonal, the
more accurate the model is.
able to achieve a high recall. This result also indicates that the CRF
component of the full Bi-LSTM-CRF model successfully captures
the label dependencies among the output labels for identifying
keyphrases and contributes the most towards the full model’s pre-
cision. Thus, exploiting dependencies in both the textual content
of a document and the sequence of labels through the combination
of an LSTM model with a CRF model yields improved results over
CRF and LSTM models alone, quantified by a much larger F1-score.

Table 2 shows also that the performance of bidirectional-LSTM is
very similar to that of forward LSTM. Intuitively, this makes sense
since, in scientific papers, often dependencies occur in a forward
fashion, e.g., patterns such as "we propose/study/explore/describe"
precede keyphrases.

Moreover, from Table 2, we can also see that the performance
on theWWW and KDD datasets is higher than that on the kp20k
dataset. The lower performance on kp20k could be due to a larger
spectrum of venues, author writing styles and author keyphrase
annotations, whereas WWW and KDD are specialized datasets of
papers from the data mining and machine learning communities.

Figures 5a and 5b show the confusion matrices of Bi-LSTM-CRF
and CRF, on all three datasets. Each matrix is represented as a heat
map, i.e., the darker the color, the higher the value at that position.
An accuracy of 100% will be represented by a matrix with dark blue
blocks on the main diagonal and white blocks off diagonal. As can
be seen from the figures, the Bi-LSTM-CRF model that incorporates
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Table 3: Comparison of Bi-LSTM-CRF with previous approaches on kp20k, WWW, and KDD datasets.

kp20k WWW KDD
Method Pr% Re% F1% Pr% Re% F1% Pr% Re% F1%

Bi-LSTM-CRF 64.19 24.66 35.63 64.33 28.43 39.43 57.83 31.85 41.08
copyRNN @5 27.71 41.79 33.29 11.47 14.72 12.89 8.59 11.8 9.94
Tf-Idf @5 8.97 13.49 10.77 8.90 10.00 9.40 8.30 10.20 9.20
TextRank @5 15.29 23.01 18.37 5.80 7.10 6.20 5.10 6.50 5.60
SingleRank @5 8.42 12.70 10.14 8.80 10.90 9.50 7.70 10.30 8.60
KEA 15.14 22.78 18.19 13.57 15.25 13.86 11.39 14.50 12.42

dependencies in both the input and output, is more accurate (and
thus, has a lower percentage of mis-labeled keyphrases) showed by
darker cells corresponding to the KP-KP entry in all matrices.

5.2 Baseline Comparisons
Second, we compare the performance of Bi-LSTM-CRF with ex-
isting state-of-the-art models including supervised, unsupervised
as well as deep learning models. The unsupervised models are Tf-
Idf, TextRank [34], and SingleRank [41]. The supervised model is
KEA3 [43], and the deep learning model is the recently proposed
copyRNN4 [33], which is a sequence to sequence learning model
based on an RNN Encoder-Decoder framework [7], combined with
a copying mechanism. The Bi-LSTM-CRF, copyRNN, and KEA mod-
els are all trained on the kp527k dataset. For the unsupervised
models and the sequence to sequence learning model, we report
the performance at top 5 predicted keyphrases since top-5 showed
highest performance in previous works for these models.

Table 3 shows the results of this comparison. The Bi-LSTM-
CRF model outperforms all baselines in terms of the F1-score, on
all three datasets. More notably, Bi-LSTM-CRF outperforms the
copyRNN model in precision on all datasets, yet is slightly worse in
the recall score on the kp20k dataset. For example, on the kp20k,
Bi-LSTM-CRF achieves an F1-score of 35.63% as compared with
33.29% achieved by copyRNN. The precision increases from 27.71%
(obtained by copyRNN) to 64.19% (obtained by Bi-LSTM-CRF) at
the expense of a drop in recall from 41.79% (obtained by copyRNN)
to 24.66% (obtained by Bi-LSTM-CRF).

This result is consistent with our findings in the previous section
regarding the role of CRF in improving precision. Although both
models use variants of RNNs to capture the semantics of the input
sequence, by integrating the learning of phrasal structure into the
model itself, via the CRF layer, we get higher performance than
applying beam search to a decoded sequence after the learning
phase, as is done in the copyRNN model.

5.3 Sentence vs. Document Level Input
Third, we conduct an experiment to examine the effect of the type
of input sequence used to the models. Specifically, we compare the
model where the input sequence consists of the entire document
with the model where the input sequence consists of each sentence.

3http://www.nzdl.org/Kea/Download/Kea-4.0.zip
4https://github.com/memray/seq2seq-keyphrase

Table 4: Comparison results for document (“doc”) vs. sen-
tence (“sent”) level for Bi-LSTM-CRF on the kp20k dataset.

Method Pr% Re% F1%

Bi-LSTM-CRF doc 67.30 30.32 41.81
sent 64.19 24.66 35.63

Table 4 shows the results of this comparison for document vs.
sentence level Bi-LSTM-CRF, on the kp20k dataset. As can be seen
from the table, the performance of the Bi-LSTM-CRF that takes as
input the entire content (all sentences at once) is higher than that
of the Bi-LSTM-CRF that takes as input each sentence at a time.
Precisely, precision, recall, and F1 values for the document-level
Bi-LSTM-CRF show improvement by up to 6% over the sentence-
level Bi-LSTM-CRF. This is likely due to the increased information
captured by the LSTM layer (through the larger context) when
using the entire content as opposed to each sentence.

A common drawback with increasing input sequence length for
a recurrent neural network is that computing the gradients during
back-propagation takes longer, which in turn increases the time it
takes to train the model. For example, in our setting, training the
Bi-LSTM-CRF model on the kp527k dataset at the document level
took on average 22.1 hours for only five epochs, where the average
input sequence size is 147 tokens, whereas when training Bi-LSTM-
CRF using the sentence-level, it took only 2.7 hours, where the
average number of tokens in a sentence is 16.

6 CONCLUSIONS
In this paper, we formulated the keyphrase extraction task as se-
quence labeling and proposed to use a Bi-LSTM-CRF model that
incorporates dependencies among both the input and output se-
quences. To our knowledge, this is the first work to propose a neural
network based sequence labeling model for keyphrase extraction
from scholarly documents. The model takes advantage of the ability
of Bi-LSTM to capture long distance semantic information from
the input sequence and the ability of CRF to capture dependencies
from the label sequence. Experimental results on three datasets
showed that the proposed Bi-LSTM-CRF model that takes into ac-
count both of these dependencies play an important role in the
keyphrase extraction performance.
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As future work, it would be interesting to integrate the rela-
tionships between documents such as those available from a cita-
tion network. Another interesting direction would be to extend
keyphrase extraction approaches to other scholarly domains.
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